

HYbrid FLying rollIng with-snakE-aRm robot for contact inSpection

H2020-ICT-25-2016-2017

HYFLIERS

D8.1

HYFLIERS Project Presentation

Contractual date of delivery	31-Jan-2018		
Actual date of delivery	30-Jan-2018		
Editor(s) Juha Röning (U	OULU)		
Author(s) Juha Röning, U	or(s) Juha Röning, Ulrico Celentano (UOULU)		
Workpackage	WP8		
Estimated person-months	0,1 pms		
Dissemination level	PU		
Туре	R		
Version	1.0		
Total number of pages	7		

Abstract:

This deliverables presents the project outlining its objective, motivation, implementation and expected results.

Keywords:

Cost efficiency. Hybrid robot. Ground support platform. Horizon 2020. ICT. Inspection. Oil and gas industry. Pipe corrosion. Prototyping. Robotic arm. Robotic system. Safety. Flying vehicle stability. Ultrasonic sensors. Ultrasonic thickness measurements.

Executive summary

HYFLIERS is a research and innovation action (RIA) of EU Horizon 2020 programme for advanced robot capabilities research and take-up, worth 3,9 million euro funding.

HYFLIERS will develop the world's first industrial integrated robot with hybrid air and ground mobility with a long-reach hyper-redundant manipulator capable of reaching sites where no other robot can access, reducing the exposition of human inspectors to potentially dangerous working conditions. Targeting ultrasonic thickness measurements for oil and gas refineries and chemical plants, the results could be applied to many other robotic inspection technologies.

The consortium is composed of eight partners from Finland, Spain, Italy, France and Switzerland, including high reputation universities, research institutes, industrial partners with research and innovation development capabilities, and two world leader oil and gas industrial companies.

Abbreviations

ctrl	control
HYFLIERS	Hybrid flying rolling with-snake-arm robot for contact inspection
nav	navigation
NDT	non-destructive testing
OpEx	operating expenditures
teleop	teleoperation
UT	ultrasonic sensing

Table of Contents

Executive summary	.2
Abbreviations	.3
1. Overview	.5
1.1. Objective	.5
1.2. Motivation	.5
1.3. Implementation	.5
1.4. Expected impact	.6
2. Consortium	.6
3. Appendix: HYFLIERS presentation poster	.6

1. Overview

HYFLIERS is a research and innovation action (RIA) of EU Horizon 2020 programme for advanced robot capabilities research and take-up, worth 3,9 million euro funding.

HYFLIERS will develop the world's first industrial integrated robot with hybrid air and ground mobility with a long-reach hyper-redundant manipulator capable of reaching sites where no other robot can access, reducing the exposition of human inspectors to potentially dangerous working conditions. Targeting ultrasonic thickness measurements for oil and gas refineries and chemical plants, the results could be applied to many other robotic inspection technologies.

The consortium is composed of eight partners from Finland, Spain, Italy, France and Switzerland, including high reputation universities, research institutes, industrial partners with research and innovation development capabilities, and two world leader oil and gas industrial companies.

1.1. Objective

Focusing on non-destructive contact measurements but with potential application to a wider set of industrial scenarios, the scope of HYFLIERS project is to study and develop solutions to perform inspection measurements with reduced exposure to risks and costs. To this end, the first accurate controlled hybrid aerial-ground robot with a hyper-redundant lightweight robotic articulated arm equipped with an inspection sensor will be developed together with supporting services for efficient and safe navigation in complex and safety-critical environments.

1.2. Motivation

In oil and gas production plants, all or part of the components are often subject to degradation caused by exposure to the environment or products within the production process. Excessive pipe corrosion may lead to accidents, including catastrophic failures with explosions and release of toxic products, thus having impact on safety, environment and availability of the plant.

Inspection processes for thickness measurements ensure that plants are in safe operating condition or provide alerts to execute necessary corrective actions. These measurements are traditionally executed by personnel that requires access to specific locations. Typically, more than 50% (and up to 90%) of these activities are carried out by working at elevated locations with the use of ladders, scaffold, rope access or cranes, and sometimes in presence of high temperatures or toxic materials. Obviously, this causes considerable costs for ensuring safety of inspection personnel but in some cases, casualties may occur. Moreover, anxiety and exposure to dangerous locations affects concentration and promote human errors.

There are safety, quality and cost drivers for novel inspection methods.

1.3. Implementation

HYFLIERS will address the above objectives by studying, designing, developing and testing a robotic system including prototypes for the first worldwide hybrid aerial/ground robot with a hyperredundant lightweight robotic articulated arm equipped with an inspection sensing sub-system and a ground support unit for efficient and safe inspection in industrial sites.

The robot will be equipped with interfaces for teleoperation, but it will also possess automatic collision detection and avoidance. This will ensure accurate positioning, guidance, landing and rolling on constrained surfaces, such as pipes. The control system also integrating environment perception

and aerodynamic control will moreover include a mission planning system to optimise the use of the robot in the inspection and therefore bringing energy savings.

1.4. Expected impact

HYFLIERS will decrease the cost and risks of current human inspection in production plants. The technology results will be validated in the inspection of pipes, which is a very relevant short-term application, but the results of the project could be also applied to other industrial scenarios, such as power generation plants.

2. Consortium

The HYFLIERS consortium is made of the partners described in Table 1.

Partner	Country	web-site
University of Oulu (coordinator)	Finland	www.oulu.fi www.oulu.fi/bisg
University of Seville	Spain	www.us.es grvc.us.es
Chevron Oronite	France	www.oronite.com
Total	France	www.total.com
Consorzio di Ricerca per l'Energia e le Tecnologie dell'Elettromagnetismo C.R.E.A.T.E.	Italy	www.create.unina.it www.prisma.unina.it/
Advanced Center for Aerospace Technologies FADA-CATEC	Spain	www.catec.aero
General Electric Inspection Robotics	Switzerland	inspection-robotics.com
Dasel sistemas	Spain	www.daselsistemas.com

Table 1. The HYFLIERS consortium.

3. Appendix: HYFLIERS presentation poster

Additional details are provided by the poster for the presentation of the HYFLIERS project, see below.

www.oulu.fi

www.oulu.fi/bisq

www.us.es

grvc.us.es

www.oronite.com

www.total.com

www.create.unina.it

www.prisma.unina.it

www.catec.aero

inspection-robotics.com www.daselsistemas.com