
On Charge Detection with Inductive

Superconducting Single Electron

Transistor

M. Sc. Thesis

Jani Tuorila

University of Oulu

Department of Physical Sciences

Theoretical Physics

Oulu 2004



ii



Contents

Preface 1

1 Introduction 3

2 Tunnel Junctions and Superconductivity 7

2.1 Single Tunnel Junction . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Ultra Small Tunnel Junction . . . . . . . . . . . . . . . . 9

2.2 Superconductivity and Josephson Junctions . . . . . . . . . . . 10

2.2.1 Josephson Effects . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Quasiparticles and the RCSJ Model . . . . . . . . . . . . 17

2.2.3 Quantum Picture of the Junction . . . . . . . . . . . . . 21

2.2.4 Quasicharge and the Bloch-Wave Oscillations . . . . . . 22

2.2.5 Complementary Effects . . . . . . . . . . . . . . . . . . . 27

3 Charge Transport in Small Tunnel Junctions 29

3.1 Local View of a Tunnel Junction . . . . . . . . . . . . . . . . . 30

3.2 Description of Environment . . . . . . . . . . . . . . . . . . . . 32

3.3 Tunneling Rates in Superconducting Junctions . . . . . . . . . . 33

3.3.1 Tunneling of Cooper Pairs . . . . . . . . . . . . . . . . . 33

3.3.2 Tunneling of Quasiparticles . . . . . . . . . . . . . . . . 38

3.3.3 Suppression of the Coulomb Blockade . . . . . . . . . . . 39

3.4 Circuits of Tunnel Junctions . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Single Electron Transistor . . . . . . . . . . . . . . . . . 41

3.4.2 Superconducting SET . . . . . . . . . . . . . . . . . . . 48

3.4.3 SETs and Quantum Computers . . . . . . . . . . . . . . 54

4 Inductive Superconducting SET 57

4.1 Classical Model of the Circuit . . . . . . . . . . . . . . . . . . . 57



iv CONTENTS

4.1.1 Lagrangian of the system . . . . . . . . . . . . . . . . . . 60

4.2 Quantum Mechanical Model of the Circuit . . . . . . . . . . . . 61

5 Simulations and Calculations 63

5.1 Reflection Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . 65

5.2 System Parameters and Results . . . . . . . . . . . . . . . . . . 67

5.2.1 Resonance Frequency Shift . . . . . . . . . . . . . . . . . 70

5.2.2 Effect of the Gate Capacitance . . . . . . . . . . . . . . 74

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Conclusions 77



Preface

Before getting started I would like to thank the persons whose influence have

been crucial during the processing of this thesis. First of all, a big thank you to

Professor Erkki Thuneberg for instructing and supervising this work. I would

also like to thank the whole faculty of Theoretical Physics in the University of

Oulu for the great working atmosphere. Especially the guys in room TE319,

who were a real cheer-up whenever I needed one. I am extremely grateful to

my parents who have always supported me in whatever I have been doing. I

would also like to mention the rest of my family, my friends and, particularly,

the guys from the football grounds that have constantly reminded me that life

is in fact only a small part of football.

Last, and above all, my deepest gratitude goes to my dear wife Sanna, who

has been my ’driving force’ throughout this year of mental torment.

Oulu, May 24, 2004

Jani Tuorila



2 CONTENTS



Chapter 1

Introduction

”Life is like a box of chocolates. You never know what you’re gonna

get.”

- Forrest Gump

What is the Truth? A Question has been raised and, according to some peo-

ple’s intuition, when that happens there should exist an answer. But is every

question answerable? Can we tell about the Truth in terms of the language?

The science fiction novelist T. Pratchett has written in one of his famous Disc-

world -novels that when you remove all that is impossible, you are left with the

Truth. But in this way there pops up another question of what is impossible.

Physics is all about the Truth. The experiments made in the laboratories

and the everyday observations perceived by our senses tell us bits of the An-

swer. Conclusions are made based on these discoveries and on the grounds of

these conclusions the theories of the Truth are formed. Some of these theories

(e.g. quantum theory and theory of relativity) are based on deep thougths

about the Universe and the Existence as a whole and explain reasonably the

observations that have been made. In that way, the theories at issue describe

the pieces of the Truth that have been detected. However, there is no guaran-

tee that the things we observe are all that can be observed. Moreover, it is not

certain that everything that can be measured is everything that is. Therefore,

until it is acceptable to say: “These experiments give us all that is possible,

the rest is impossible.”, these theories cannot be called as the Answer. In

this sense the life, and moreover the whole Existence, is indeed like a box of

chocolates.
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One of these observations is the superconductivity. It is a strange phe-

nomenon. First of all, it reveals the peculiarities of the quantum theory on a

macroscopic scale [1]. In superconductivity systems of millions of microscopic

entities can form up into a single macroscopic quantum system that can excite

and tunnel, superpose and entangle. Secondly, it is caused by electrons that, in

contrast to our intuition, work in pairs (so called Cooper pairs) [1]. And lastly,

there are the numerous phenomena such as the disappearance of electrical re-

sistance at low temperatures, the Meissner effect and the flux quantization

that stun by their existence. Altogether, one could say that superconductivity

brings out Mother Nature at her best - unpredictable and devious.

It all started in 1911, when the Dutch physicist H. Kamerlingh Onnes

discovered that electrical resistance of mercury goes to zero when mercury is

cooled below the critical temperature of about 4.2 K. He found out that this

critical temperature Tc is a characteristic of a material and is of the order

of 1 K to 10 K. Since then many alloys and compounds have been found

which have a high critical temperature. Highest to date (2003) is 139 K for

Mercury Barium Thallium Copper Oxide or Hg0.2T l0.8Ca2Cu3O [2]. The next

milestone was in 1933 when W. Meissner and R. Ochsenweld discovered that

the superconducting state is a diamagnetic state. It means that magnetic field

is not only excluded from entering a superconductor but also that it is expelled

from an originally normal sample when the sample is cooled below Tc. These

results tell us that superconductivity is a physical state with zero electrical

resistance and zero magnetic field. [3, 4]

The Meissner effect does not occur with arbitrary magnetic fields. In fact,

for every superconducting material there exists a temperature dependent crit-

ical magnetic field Hc which is strong enough to destroy the zero resistance

and take the material back to the normal state. At Tc this field is zero and so

there is no Meissner effect at critical temperature. [3, 4, 5]

By the year 1950 these and many more interesting superconductivity re-

lated experiments had been performed. All that was missing was the the-

oretical base which could explain the observed phenomena. In 1950 V. L.

Ginzburg and L. D. Landau [6] succeeded in creating a phenomenological the-

oretical model of the superconductivity. Ginzburg and Landau presumed that

there is a complex order parameter that describes the superconducting state.

Their discovery was, however, not very much appreciated, until in 1959 and

1960 L. P. Gor’kov was able to show the equivalence between their theory and

a theory that was formulated from a microscopic point of view in 1957 [3].
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J. Bardeen, L. N. Cooper and J. R. Schrieffer developed this theory (called

BCS-theory) [7] and showed that even a weak attractive interaction between

electrons is enough to form Cooper pairs. These pairs consist of two electrons

which can via the weak atrraction be spread over considerable distances; sev-

eral pairs can be occupying the same region of space at the same time [1]. As in

general, the theoretical basis is needed for the development of superconductiv-

ity related applications. Although the theories of superconductivity are rather

interesting they itself are not studied a lot farther in this thesis. However, the

superconductivity is examined not in general, but concentrating on one of its

special applications, namely Josephson junctions.

In 1962 B. D. Josephson [8] was analyzing a situation where two supercon-

ducting regions have been connected by a weak insulating layer. He predicted

that even when there is no potential difference between the two regions there

exists a direct supercurrent through the junction. He also noted that if the

two regions are connected to the two terminals of a battery, the current starts

to oscillate at high frequency. The Josephson tunneling effect was shown ex-

perimentally already in 1963 by P. W Anderson and J. M. Rowell [9] and

the oscillations were seen in 1965 by I. K. Yanson et al. [10]. These junctions

have numerous applications. For example, two such junctions, when connected

in series, can be used in very sensitive charge measurements [1]. If the two

junctions are connected in parallel, one has a superconducting quantum inter-

ference devices (SQUIDs) which are used, for instance, in qubits which are the

building blocks of the quantum computer [11, 12]. They are also very inter-

esting because with them one can display quantum effects on a macroscopic

scale.

In his book Fabric of Reality [13], David Deutsch has written that the

fabric of reality (or the Truth) can be understood only by understanding all

the theories that explain it. Because all these theories explain more than can

be said out of hand, it is evident that we understand more than we know of.

In this thesis the explaining theory is the theory of superconductivity. Even if

one understands the whole superconductivity, it is naive to expect that one is

therefore able to explain, for example, every single circuit that is made out of

superconducting materials. One of these circuits, called the Inductive Single

Electron Transistor (L-SET), is presented in this thesis. The L-SET consists of

two Josephson tunnel junctions and therefore it is important first to understand

the basic ideas of charge tunneling and superconductivity. Tunnel junctions are

therefore studied in Chapter 2, in the normal and then in the superconducting
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state. The properties of the Josephson junction that are relevant later in

the thesis, which include the Josephson effects and the uncertainty relation,

are also discussed in detail. A brief introduction to superconductivity is also

provided. Also, the effects that are complementary to the usual Josephson

ones are discussed.

In Chapter 3 the tunneling rates of a superconducting junction are cal-

culated. The basics of single electron transistors (SET) are also presented.

Finally, superconducting SETs are discussed. A peek in quantum computing

is also made to get some motivation for the studies of SETs. Chapter 4 is de-

voted to an introduction of an inductive superconducting SET (L-SET), which

is proposed to perform charge measurements near the quantum limit. Classical

and quantum mechanical models of the device are formed. Chapter 5 includes

the simulations of the dynamics of the system that were made based on the

model presented in Chapter 4. Finally, a summary and the conclusions that

were drawn are shown in Chapter 6.



Chapter 2

Tunnel Junctions and

Superconductivity

”It pleases me as much to doubt as to know.”

- Dante Aleghieri

One of the numerous strange phenomena that the quantum theory implies is

quantum tunneling. What the theory in principle says, is that if one e.g. throws

a ball at wall there exists small but altogether definite probability for the ball

to go through the wall1. The ball is said to tunnel through the wall. Why is it

then, that tunneling does not appear in our everyday lives? Why can we not

throw a ball through a wall? Why can we not walk through the doors without

opening them? The explanation lies in our (and the ball’s)macroscopic nature.

Our bodies consist of atoms and, moreover, of elementary particles, such as

electrons. Each of these billions of particles has a tiny probability to tunnel

through a potential wall, let us say a wooden door, for example. Moreover,

these particles are coupled with each other so that the probability for all of

them to tunnel through becomes negligible.

Although the above discussion is an oversimplification of the things that

really happen at microscopic scale, it anyhow gives an idea of the phenomenon

of tunneling. In the next few sections this idea is developed by considering two

metallic islands that are coupled via thin insulator. In this case the “ball” is an

electron and the insulator acts as the “wall”. These systems are called tunnel

1Of course, this does not mean that the ball breaks the wall down. It just goes through

it.
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junctions. Due to the quantum theory the electrons at both of the conducting

islands have finite probabilities of tunneling to the other side of the insulating

barrier. If the tunneling events are such that the energy of the electron does

not change, the tunneling is called elastic.

2.1 Single Tunnel Junction

Let us consider a case with a single tunnel junction. Classically it can be

taken as the definition of the capacitor. So, there exists a parameter that

characterizes the junction, namely the capacitance C. If one considers the

junction to consist of two metallic plates separated by an insulator, one gets

for the capacitance [14]

C = εε0
A

d
, (2.1)

where ε is the electric permittivity of the insulator, ε0 is the permittivity of the

free space, A is the area of a plate and d is the thickness of the insulator. This

is a very good approximation [15] even in small sizes. If a constant potential

difference (with a battery with voltage V ) is produced accross the junction, the

plates are charged with equal but opposite charges. Effectively, the battery

transfers the charge from one plate to another. The potential of a plate is

the same as the potential of the terminal of the battery it is connected to.

Therefore the potential difference between the junction plates is the same as

that of the terminals of the battery. If the battery is disconnected the charge

remains on the plates by the mutual attraction (in the classcical picture of the

junction). The magnitude of the charge Q of the plates is directly proportional

to the voltage V , i.e.

Q = CV, (2.2)

where the capacitance C can be thought to be determined by the geometrical

properties of the junction2, i.e. A and d. The potential energy of a capacitor

is the amount of work the battery has to do to charge the capacitor. The

work needed to transfer an infinitesimal charge dq from one plate to another

is dW = V dq = (q/C)dq. The total work done to charge the capacitor is

therefore [14]

U =

∫ Q

0

q

C
dq =

Q2

2C
. (2.3)

2That is, when the insulating material, that sets the ε, has been chosen.
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This is the electrical potential energy of the capacitor.

This picture alters a little when one takes the quantum effects into con-

sideration. Because of the possibility of electron tunneling through the junc-

tion there exists a small leakage current. With small potential differences the

current-voltage relationship of the junction can be taken linear, which defines

the tunneling resistance RT . The tunnel junction can therefore be modelled

by a capacitor with capacitance C and a resistor with resistance RT connected

parallel. If one disconnects the battery, the capacitor starts to act as a voltage

source and the energy stored in it dissipates as heat in the resistor.

The knowledge obtained from the quantum theory tells that the charge is a

quantized concept. The smallest amount of charge that exists free in the nature

is the charge of an electron. However, because of the continuous nature of the

voltage V , the junction can be charged to any charge, even to the fractions

of the charge of an electron. This is due to a fractional shift of the electrons

in the junction plates with respect to the positive ionic background. On the

other hand, the tunneling events concern only a discrete change of charge. In

the following, the single electron tunneling effects are considered.

2.1.1 Ultra Small Tunnel Junction

As can be seen in Equation (2.1) the capacitance of a tunnel junction is de-

pendent on its dimensions. So, the smaller the capacitor is, the smaller is

the capacitance. This means, according to Equation (2.3), that the potential

energy stored in a capacitor gets bigger as the dimensions of the capacitor

get smaller3, assuming the charge on the plates is kept constant. When the

capacitor is small enough the behaviour of a single electron becomes important.

Before that can happen, two conditions have to be fulfilled. Firstly, the

charging energy of a single electron, Ec = e2/2C, has to be substantially larger

than the average thermal energy kBT (kB is the Boltzmann’s constant, T is

the temperature), i.e.

Ec À kBT. (2.4)

This ensures that the single electron charging effects are not smeared out

by thermal fluctuations. The condition (2.4) means that for T ∼ 1 K the

capacitance of the junction has to be smaller than 10−15 F. Secondly, the

3This is the case also when one takes the quantum effects into account. It only takes a

little bit of extra work for the battery to heat up the resistive channel of the junction.
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charging energy of a single electron must be larger than quantum uncertainty

of energy

Ec À ∆E ≥ ~/∆t. (2.5)

Here the ~ is the Planck’s constant divided by 2π and ∆t is the finite lifetime

of the charge on the capacitor plate. This lifetime can be approximated with

the time constant τ = RTC, which is the charge relaxation time. This means

in practice, that the charge on the capacitor plates is assumed to resume

equilibrium before the next tunneling event can occur. So, one gets

Ec =
e2

2C
À ~

RTC
⇒ RT À

2~

e2
≈ RQ. (2.6)

Here the RQ = ~/e2 is the so called resistance quantum. The condition

RT À RQ (2.7)

ensures that the wave function of the charge carrier on a junction plate is

localized there. This means that under condition (2.7) the single electron

charging effects are not washed away by quantum fluctuations.

But what are these single electron charging effects? This question is an-

swered in the following chapter, but at first, tunnel junctions with supercon-

ducting plates are considered.

2.2 Superconductivity and Josephson Junctions

Before proceeding to the superconconducting tunnel junctions, a few words

about the basic phenomenom of superconductivity are discussed. As men-

tioned in the Introduction, superconductivity is a physical state that exists

when the temperature and the magnitude of the external magnetic field are

below their critical values. These values are characteristic to the material at

hand. The effects of this state were mentioned to be the infinite conductance,

the Meissner effect etc. But what is the explanation that lies behind these

observations? Why do some materials become superconductive in right cir-

cumstances? Qualitatively superconductivity can be understood like this. Let

us take two electrons that are in the superconducting material. Intuitively one

considers that, like in a vacuum, these electrons repell each other due to the

Coulomb interaction. But, however, the situation is now different from that

in an empty space. The electrons are located in a medium, i.e. in the crystal,
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and this, in fact, can change the sign of their interaction. Namely, when an

electron is moving in a superconducting material it deforms the crystal lattice

by means of electric forces. This displacement of the ions in the lattice affects

the state of the other electron, which sees a somewhat altered structure of the

polarized lattice. As a result the electron is surrounded by a “cloud” of positive

charge. This cloud is attracted to a single electron and the magnitude of the

charge of this positive cloud can exceed the charge of an electron. So, one of

our electrons together with the positive cloud can have positive net charge and

therefore might be able4 to be attracted by the other one. At high tempera-

tures the thermal oscillations wash away these effects, but at low temperatures

they are of great importance. [16]

Based on the above discussion, the electrons might be able to exist in pairs.

These electron-electron pairs are called Cooper pairs. This is a crude way of

describing things, because, for example, it is possible for two pairs to occupy

the same region of space at same time. It is, however, a sufficient way for the

purpose of this thesis.

But how do these Cooper pairs explain the superconductivity? The answer

lies in the spin of a Cooper pair. A single electron is a fermion. This means,

that it follows the Pauli’s exclusion principle, which says that no two identical

particles can be in the same physical state at the same time. A Cooper pair,

however, is not a fermion. It consists of two fermions and is therefore a boson.

The bosons do not follow Pauli’s principle. Quite on the contrary, when there

are many bosons in a given state there is an especially large probability for the

others to go to the same state [1]. This way one could describe the state of a

superconductor by a single wave function that describes the behaviour of the

whole electron system as a unit. As can be noted from above, all the Cooper

pairs in a superconductor are in a common physical state and therefore have

the same energy. Moreover, a finite energy must be expended, if one wants

to excite this state. This common state is referred to the ground state of the

superconductor and the Cooper pairs are said to form a condensate. The finite

energy difference that is between the ground state and the excited state is

called the energy gap and denoted by ∆. The excitation of the system can be

described as a breakup of a Cooper pair and the energy needed for such an

operation is 2∆, which is the so called pair binding energy. For example, the

absence of the electrical resistance of the superconductors can be explained

by energy gap. That is, because it is known that the electrical resistance of a

4I.e. it is not prohibited by the laws of physics we know of.
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Figure 2.1: Two superconductors coupled with thin insulator.

metal is due to the interaction between the moving electron system (that is, the

electric current) and the vibrations of the lattice or with impurities. Due to the

energy gap, however, these quantum transitions will not always be possible.

This implies, that the electron system will not be excited when it is moving

slowly. It means, that the charge transfer is frictionless, i.e. no electrical

resistance occurs. This way of thinking also defines the critical current. When

this current is exceeded the superconductivity disappears. [16]

The most astonishing thing about this way of explaining the superconduc-

tivity is the existence of the superconducting gap. It means that the energy

spectrum of the common wave function is discrete. This tells us, that a su-

perconductor, that is described by millions of Cooper pairs that form a single

entity, is actually a Macroscopic Quantum Object.

These ideas are the basis of the theories that explain the superconductivity,

for example the BCS- and the GL-theories. However, some people may say that

this way of explaining the superconductivity only leads us to a new problem:

How to determine exactly the electron-electron attraction? Some of them

may even ditch the theory on the grounds of this question. But, all in all,

especially to those people: This possible attraction is not prohibited by the

laws of physics known to us. Moreover, it explains the phenomenon, and

actually is the best explanation that we have. Therefore, until a better theory

is needed and provided, one should be content with this one.
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Figure 2.2: Symbol for a a) normal metal tunnel junction and b) supercon-

ducting tunnel junction.

Josephson Junction

As mentioned in the Introduction a Josephson junction consists of two su-

perconducting regions that are coupled via a thin insulator (see Figure 2.1).

Circuit symbols for normal metal and superconducting tunnel junctions are

presented in Figure 2.2. The insulating layer must be thin enough so that the

probability for the electrons to tunnel through becomes sufficiently large. If

one thinks the junction classically one notices that it is like an ordinary capac-

itor with a characteristic capacitance C [17]. By connecting the junction to an

external circuit one finds out that it may be charged with a charge Q = CV

where V is the voltage across the junction [17]. Similarly, as discussed in

the previous section dealing with tunnel junction in general, the voltage V is a

continuos variable and therefore the junction charge Q can be continuously po-

larized, with respect to the positive background of ions of the junction plates,

even on the scale of an elementary charge. When the quantum effects are taken

into account it is possible that charge is transported through the insulating

barrier. In the superconducting state the tunneling particles are Cooper pairs

and so the transported charge is 2e. This type of transport involves only dis-

crete changes of charge and a typical change of energy for the process is the

charging energy Ec = (2e)2/2C, where e is the elementary charge [17].

Because a Josephson junction consists of two superconductors, such as in

the Figure 2.1, it must be cooled down below the critical temperature Tc for

the two superconducting regions to be in the superconducting state. This is

necessary to see the superconducting effects, i.e. the Cooper pair tunneling.

If the junction is in high temperatures, i.e. above Tc, it acts just as a normal

metal tunnel junction. For the reasons presented above, as the temparture

falls the electrons try to reach the energetically lowest state which leads to

formation of Cooper pairs. These pairs are expected to be moving in the
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same state. In this state both sides 1 and 2 of Fig. 2.1 are characterized

by Ginzburg-Landau (GL) order parameters Ψ1 and Ψ2, respectively [5]. Let

us call these order parameters the common wave functions of pairs and write

them as [1]:

Ψ1 =
√
ρ1e

iθ1 ,

Ψ2 =
√
ρ2e

iθ2 ,
(2.8)

where ρ1 and ρ2 are the densities of electrons on the two sides of the junction

and θ1 and θ2 are the phases of the wave functions at those sides.

2.2.1 Josephson Effects

The discussion in this subsection is based on Reference [1]. Let us now think

that the junction is symmetrical, i.e. the superconducting material is the same

on the both sides of the insulator. In the following it is also assumed that there

exists no magnetic field. Then the equations for two weakly coupled super-

conductors are the standard equations for two coupled quantum mechanical

states

i~
∂Ψ1

∂t
= U1Ψ1 +KΨ2

i~
∂Ψ2

∂t
= U2Ψ2 +KΨ1,

(2.9)

where the constant K is a characteristic of the junction and ~ is Planck’s

constant divided by 2π. If K were zero then there would be no coupling and

the equations would describe the lowest energy state of each superconductor,

with corresponding energy U . But, due to the coupling, the K-factor is non-

zero and there can be some leakage from one side to the other. Now, if there

is a potential difference V across the junction, then U1 and U2 are not equal,

but U1 − U2 = qV , where q is the charge of a pair. If the zero of energy is

defined halfway between them, the coupled equations are

i~
∂Ψ1

∂t
=
qV

2
Ψ1 +KΨ2,

i~
∂Ψ2

∂t
= −qV

2
Ψ2 +KΨ1.

(2.10)

Let us substitute Ψ1 and Ψ2 by the ones defined in Equation (2.8). Moreover,

ρ1,2 and θ1,2 are the electron densities and the phases of the wavefunctions on
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the two sides of the junction, respectively. One should note that in practice the

electron densities are almost exactly equal to the normal density of electrons

ρ0 in the superconducting material. This way one arrives at

ρ̇1 =
2

~
K
√
ρ1ρ2 sin∆θ,

ρ̇2 = −
2

~
K
√
ρ1ρ2 sin∆θ, (2.11)

θ̇1 =
K

~

√

ρ2
ρ1

cos∆θ − qV

2~
,

θ̇2 =
K

~

√

ρ1
ρ2

cos∆θ +
qV

2~
. (2.12)

Here ∆θ = θ2−θ1. As justified in Reference [1], one can write, how the current

would start to flow from side 1 to side 2. According to Equation (2.11) this

current is of form

I =
2K

~

√
ρ1ρ2 sin∆θ. (2.13)

Because the junction is connected to a battery, the charge densities do not

change and the current can be written as in Equation (2.13). In fact, the charge

densities can be written as equal to ρ0, and then we can set 2Kρ0/~ = Ic, which

leads to the so-called DC Josephson effect

I = Ic sin∆θ. (2.14)

Ic is the critical current of the junction. It is the maximum supercurrent the

junction can support and, like K, a number that is a characteristic of the

junction. [1, 3]

Gauge-invariant Phase

The above discussion has been carried out in terms of the phase difference ∆θ.

Because it is not a gauge-invariant quantity it cannot in general determine

the current I, which is a well-defined gauge-invariant physical quantity. The

problem is solved by introducing the gauge-invariant phase difference:

ϕ ≡ ∆θ − (2π/Φ0)

∫

A · ds, (2.15)

where Φ0 = h/2e is the magnetic flux quantum and A is the vector potential.

By replacing ∆θ in Equation (2.14) by ϕ one gets the general expression for
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the supercurrent in an ideal Josephson junction:

I = Ic sinϕ (2.16)

This means that if there is no magnetic field present, ∆θ and ϕ can be used

interchangably. [3]

Ac Josephson Effect

The pair of Equations (2.12) tells us that (when no magnetic field is present)

ϕ̇ = ∆θ̇ = θ̇2 − θ̇1 =
qV

~
. (2.17)

It is worthwhile to remember, that q is the charge of a pair which is equal to

2e. Therefore,

ϕ̇ =
2eV

~
, (2.18)

which is called the AC Josephson effect.

So, if the junction is connected to a constant voltage V the Cooper pairs

should gain the energy 2eV when tunneling through the insulator. In normal

metal tunnel junctions part of the energy is dissipated via the resistive channel

of the normal tunnel junction, as was seen previously. In Josephson junctions

this is not the case. Instead, the energy acquired by the Cooper pair is not

needed to overcome the resistance but is radiated away as a light quantum of

frequency 2eV/~. This radiation can be and has been observed experimentally.

These experiments show that the electrons indeed work in pairs. [16]

Together with relation (2.14) one gets that if the junction is connected to

a dc voltage source the current oscillates like the sine function. These are

the so-called Josephson oscillations. There exist no net current through the

junction on the average. But at zero voltage one gets a current that can be of

any amount between −Ic and Ic depending on the phase difference across the

junction [1].

Josephson Energy

Josephson relations (2.14) and (2.18) can be used to show that energy can be

stored in the Josephson junction. This is seen if one calculates the work done

by the external voltage source in changing the phase difference, i.e.

W =

∫

IV dt. (2.19)
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By substituting I = Ic sinϕ and ϕ̇ = 2eV/~, one arrives at the relation

W = C − EJ cosϕ, (2.20)

where C is an integration constant and EJ ≡ ~Ic/2e. The integration constant

C is determined by the choice of the zero level of energy. Then, the energy

(where the zero level of energy has been chosen so that C ≡ 0)

UJ(ϕ) = W = −EJ cosϕ (2.21)

can be taken as the “potential” energy of the supercurrent I. EJ is the so-called

Josephson energy.

Previously two important energy scales, considering the effects in ultrasmall

tunnel junctions, were discussed. These were the charging energy Ec = e2/2C

related to a situation where a single electron tunnels, and the thermal energy

kBT that causes the thermal fluctuations. In addition to these, the Josephson

energy of a junction is also of great importance when determining the dynamics

of the junction. If the charging energy of the junction is much larger than the

Josephson coupling energy (Ec >> EJ) then, due to the quantum nature of

the phase charge relationship (as will be shown in the following), the charge

is a well defined quantity and fluctuates only little. This is called the weak

coupling regime. On the other hand, if the Josephson coupling energy is much

larger than the charging energy (EJ >> Ec) then the phase is well defined

and does not fluctuate. This is called the strong coupling regime. The effects

of these regimes are discussed later in this section. [17]

2.2.2 Quasiparticles and the RCSJ Model

All the discussion presented above have neglected one important aspect. That

is, that the absolute zero temperature cannot be achieved. This means, that

no matter how much the Josephson junction is cooled, there still exists a small

but finite temperature T that gives rise to a nonvanishing thermal energy

kBT . This energy is able to break some of the Cooper pairs in the condensate

creating single “normal” electrons. The quotes are used with the word normal

because the presence of the condensate makes the properties of these electrons

different from those in a normal metal. Therefore they are often called as

quasielectrons or quasiparticles.

When the voltage V = 0 across the junction, these quasiparticles do not

contribute to the current. This is due to their normal electron properties, i.e.
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Figure 2.3: The equivalent circuit of the RCSJ model.

they do not form a condensate and therefore cannot present any superconduct-

ing properties. But, if voltage V 6= 0, the quasiparticles can contribute to the

current. This defines, as in normal metal junctions, the tunneling resistance R

for the quasiparticles. It should be noted that there still exists no resistance for

the Cooper pair current. In addition the junction is always characterized by

the capacitance C between the two superconducting plates. Therefore, the fi-

nite voltage situations can be modelled by an ideal Josephson junction shunted

by a resistance R and capacitance C(see Figure 2.3). This model is called the

resistively and capacitively shunted junction (RCSJ) model. [3] Because the

pair binding energy is 2∆, high enough voltages, V > Vg ≡ 2∆/e, can also

break Cooper pairs. In this case the tunneling resistance is of the order of the

normal state tunneling resistance RT . On the other hand, if V < Vg and, of

course, T < Tc, the R is approximately RT e
∆/kBT . [3]

The time dependence of the phase ϕ in the RCSJ model can be derived in

the presence of an externally supplied bias current I. This is done by equating

I to the total junction current through the three parallel channels [3]

I = Ic sinϕ+ V/R + CdV/dt. (2.22)
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The voltage V can be written in terms of ϕ which implies

d2ϕ/dτ 2 +Q−1dϕ/dτ + sinϕ = I/Ic (2.23)

where a dimensioless time variable τ = ωpt is introduced, with

ωp = (2eIc/~C)1/2 = (8EJEc)
1/2/~ (2.24)

being the so-called plasma frequency of the junction. The quality factor Q is

defined by

Q = ωpRC. (2.25)

Q2 is identical to the damping parameter βc, which was introduced by W. C.

Stewart and D. E. McCumber [18, 19] . When Q < 1 one has an overdamped

junction and if Q > 1 an underdamped one [3].

Equation (2.23) is the equation of motion of the RCSJ-system. It can be

rewritten as

EJd
2ϕ/dτ 2 + EJQ

−1dϕ/dτ +
d

dϕ

[

− EJ cosϕ− (I~/2e)ϕ
]

= 0, (2.26)

where the relation Ic = (2e/~)EJ has been used. Classically, the equation of

motion gives the time development, i.e. the dynamics, of the system. The

first term on the left hand side of Equation (2.26) can be thought to be some

kind of consequence of the kinetic energy of the system. The third term is

due to the potential energy. If the second term, describing the dissipation to

the environment, is disregarded, the equation of motion can be thought to be

derived from the Lagrangian L of the system. The Lagrangian is the difference

between the kinetic and the potential energies of the system. The derivation

is done with the help of Lagrange’s equations [20]

d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= 0, (2.27)

where the qi’s and q̇i’s are the generalized coordinates and velocities of the

system, respectively. The maximum value of i is the number of equations.

This maximum value is set by the number of degrees of freedom. In Equation

(2.23) the generalized coordinate is ~ϕ/2e. The Lagrangian L describing the

RCSJ-system is taken to be such that its kinetic energy depends only on second

power of the generalized velocity and its potential energy is dependent only
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Figure 2.4: The tilted-washboard potential.

on the generalized coordinate. Thus, the term −EJ cosϕ − (I~/2e)ϕ can be

taken as the potential energy of the system and it is denoted by

UJ(ϕ) = −EJ cosϕ− (I~/2e)ϕ. (2.28)

This is the so called “tilted washboard” potential, which can be seen in Figure

2.4. It has a mechanical analog described in Reference [3] pp. 204-205. The

state of the system at low biasing currents (i.e. I < Ic) is obtained by mini-

mizing the energy by a classically well-defined value of ϕ at the minimum of

a well of the tilted cosine potential [21]. In this limit the total Hamiltonian of

the junction can be written as

H =
Q2

2C
− EJ cosϕ ≈

Q2

2C
+

1

2
EJϕ

2 − EJ . (2.29)

Here the deviation from the minimum of the potential well has been taken to

be small. One can neglect the constant EJ in Equation (2.29) by setting zero

level of energy at−EJ . With small phases, the supercurrent I = Ic sinϕ ≈ Icϕ,

and so one gets

H =
Q2

2C
+
EJI

2

2I2c
=
Q2

2C
+
LJI

2

2
, (2.30)

where it has been denoted LJ = EJ/I
2
c . The LJ defines the inductance of

the Josephson junction. This way one sees that when the phase is localized
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in one of the minima of the potential and fluctuates only little, the system

behaves like an LC-circuit, where the charge oscillates. These circuits behave

like harmonic oscillators, as is known from the basic electrodynamics. So,

the energy states of the phase of the Josephson junction are the well known

states of the harmonic oscillator. The frequency of this oscillation is the usual

ω = 1/
√
LJC =

√
8EJEc/~. This frequency is naturally the same as the

plasma frequency defined by Equation (2.24). This way one gets a qualitative

picture of the dc Josephson effect.

If the biasing current is grown high enough (i.e. I > Ic), the phase is able

to escape from the potential minimum and as a consequence the current starts

to oscillate according to the ac Josephson relation (2.18). Moreover, no current

can be detected on average, as discussed in the previous subsection.

2.2.3 Quantum Picture of the Junction

If one wants to analyze the so called secondary quantum effects (tunneling and

interference) in the Josephson junction one should consider all the quantities

describing the junction as quantum mechanical operators rather than classical

variables [22]. The operators that correspond to the main variables, the phase

difference ϕ and the electric charge Q of capacitance C of the junction, satisfy

the commutation relation [22]:

[ϕ̌, Q̌] = 2ei. (2.31)

This can be easily derived starting from the charging energy

EQ =
1

2
CV 2 =

1

2
C

(

~

2e

)2

ϕ̇2. (2.32)

This can be taken as some kind of kinetic energy when the corresponding

potential energy is the Josephson coupling energy UJ = −EJ cosϕ. Now the

Lagrangian of the system is

L =
1

2
C

(

~

2e

)2

ϕ̇2 + EJ cosϕ. (2.33)

From the Lagrangian one can get the generalized momentum [23]:

p =
∂L
∂ ~

2e
ϕ̇

= C
~

2e
ϕ̇ = CV = Q. (2.34)
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Now the commutation rule for the canonical variables is

[x̌, p̌] = i~, (2.35)

so that

[ϕ̌, Q̌] = 2ei. (2.36)

From this commutator relation we get the Heisenberg’s uncertainty relation

for ϕ̌ and Q̌. It also gives that

Q̌ =
2e

i

∂

∂ϕ
. (2.37)

2.2.4 Quasicharge and the Bloch-Wave Oscillations

Using the consepts of the previous subsection, one gets the Hamiltonian func-

tion of a Josephson junction in its simplest form

H =
Q2

2C
− EJ sinϕ = −

(

Ec
∂2

∂(ϕ/2)2
+ EJ cosϕ

)

. (2.38)

This Hamiltonian describes the sum between the “kinetic energy” Ec = Q2/2C

and the “potential” energy UJ = −EJ sinϕ of the junction. The most impor-

tant thing in this Hamiltonian is that even though the potential is periodic

in ϕ, the states of the Josephson junction before and after a 2π translation

of the phase ϕ are, nevertheless, distinguishable [22]. This implies that the

Hamiltonian (2.38) is similar to the Hamiltonian of a one-dimensional quan-

tum particle of mass (~/2e)2C moving with momentum (~/2e)Q along the ϕ

axis in a periodic field of the potential FJ(ϕ) [22]. The situation therefore

resembles that of mutually noninteracting electrons in periodic potential of an

ionic lattice. This analogy can be used as long as the energy dissipation is

disregarded. The wave function of the Hamiltonian (2.38) should analogously

consist of Bloch waves [22]

Ψ(ϕ) =
∑

s

∫

dkC
(s)
k Ψ

(s)
k , Ψ

(s)
k = u

(s)
k (ϕ) exp(ikϕ)

u
(s)
k (ϕ+ 2π) = u

(s)
k (ϕ), s = 0, 1, 2, . . . ,−∞ < k <∞

(2.39)

Sometimes the variable

q = 2ek (2.40)
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Figure 2.5: Dispersion curves of the energy bands of the Hamiltonian (2.38)

with with ratio Ec/EJ = 0.14.

is used to give the wave number k the dimension of the electric charge. This

variable differs from the real charge Q to the extent that the quasimomentum

of an electron in a crystal lattice differs from its real momentum [22]. That is

why q is called the quasicharge.

If one writes down the Schrödinger equation for such a Hamiltonian, one

gets the Mathieu equation

HΨ = EΨ⇒ ∂2Ψ

∂(ϕ/2)2
+

(

E

Ec

+
EJ

Ec

cosϕ

)

Ψ = 0. (2.41)

By substituting the wave function (2.39) into the Schrödinger equation, one

gets the picture of band energy spectrum and a set of related effects well known

from solid state theory, such as Bloch oscillations and Zener tunneling [24].

Each of the energy bands are periodic in q as can be seen in Figures 2.5 and

2.6. The first Brillouin zone extends over −e ≤ q ≤ e.

In Figure 2.5 the dispersion curve E(k) of the Hamiltonian (2.38) has been

drawn in the strong coupling regime for the three lowest energy bands. In

the weak coupling regime the two lowest dispersion curves of the Hamiltonian

(2.38) look something like in Figure 2.6. The energy has been approximated
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Figure 2.6: Dispersion curves of the energy bands of Hamiltonian (2.38) with

with ratio Ec/EJ = 2.5.

by the formula [25]

E(q) =
1

2

[

q2 + (|q| − 2)2 ±
√

(

(|q| − 2)2 − q2
)2

+ EJ

]

(2.42)

The Quantum Langevin Equation For q

The analogy between a small Josephson junction and an electron in a crystal

lattice fails as soon as even a weak interaction between the junction and the

set of coordinates of the system of the junction quasiparticles, which plays the

role of a “heat bath” (i.e. the junction environment), is taken into account. As

discussed above, the junction has to be taken as a single macroscopic quantum

object which alone represents the total statistical ensemble. Accordingly, if

the temperature T is low enough,

kBT ¿ ∆(0) (2.43)

where ∆(0) is the energy gap between the lowest and the next energy band,

the junction will be confined in the lowest band. Later it is also shown that

the same conclusion is valid if there exists a small but nonvanishing external

current I(t). [22]
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Throughout the discussion presented here, it has silently been assumed

that the development of the system is adiabatic, i.e. the voltage V across the

junction is not very large,

e|V | ¿ ∆1,2(T ) (2.44)

where ∆1,2 are the energy gaps in the superconducting electrodes. In the single-

band approximation this assumption leads to a Langevin-type of equation for

the junction quasicharge as done in Reference [22]

q̇ = I(t)−GV − Ĩ(t). (2.45)

Here G is the quasiparticle conductivity for low voltages and Ĩ(t) describes

the current fluctuations. The voltage V can be written in the single-band

approximation as dE(0)/dq.

Bloch-Wave Oscillations

Let us analyze the situation where the current fluctuations Ĩ(t) are so small

that they can be neglected. Now the quasicharge q and the voltage V can be

considered as well-determined classical variables

q = q0(t), V = V0(t) = (dE(0)/dq)q=q0 (2.46)

By taking the time average of Eq. (2.45) one gets

V̄ = G−1(Ī − ¯̇q). (2.47)

If the dc current Ī exceeds the threshold value

It = G−1[dE(0)/dq]max (2.48)

it induces periodic oscillations of q and V with the frequency [22]

ωB = (π/e)(Ī −GV̄ ). (2.49)

These are just the exact analog of the so-called Bloch oscillations, which can

arise in space-periodic conducting solid under the action of an intense electric

field [22]. The Bloch oscillations correspond to reflections from Brillouin zone

boundaries.

The description of the Bloch-wave oscillations is translated to the Josephson

junction language in Reference [22]. In short, the Bloch-wave oscillations are



26 CHAPTER 2. Tunnel Junctions and Superconductivity

qe−e

E

p p

6

-

¾

w 7

Figure 2.7: Bloch oscillation on the lowest energy band in the limit EJ ¿ EQ.

just the process of a periodic discrete transfer of Cooper pairs between the

junction electrodes, interposed by a recharging of the junction capacitance by

the external current. The basic Bloch oscillation process is sketched in Figure

2.7.

Besides the Bloch-oscillations, the usual Josephson oscillations (2.18) are

always present in the junction, but the amplitude of these oscillations vanishes

in the present limit. [22]

The Bloch-wave oscillations have been observed in single Josephson junc-

tions by D. B. Haviland et al. [26]

Zener tunneling

If the external current Ī(t) is kept small, the junction keeps Bloch oscillating in

the lowest energy band. But, if the current is increased, the Bloch oscillations

are suppressed because of the transitions of the system to the higher energy

bands become more probable [27]. This is an exact analog to Zener tunneling,

which occurs when electrons in a periodic potential are under influence of an

electric field [24]. This kind of “jumps” to higher energy bands are possible

already for exponentially small Zener tunneling probabilities. When the system

is transferred to a higher band it starts to oscillate only if the external current
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Ī exceeds a threshold current similar to Equation (2.48)

It = G−1[dE(1)/dq]max. (2.50)

Otherwise, the state of the system becomes stationary on the higher band.

However, it is possible for the system to transfer to even higher bands. This cor-

responds to an unlimited growth of the voltage across the junction in time. [28]

The above picture is valid only when one neglects the effects of dissipation,

i.e. if one describes the junction dynamics with Hamiltonian (2.38) [28]. In real

systems the junction is in connection with its environment and the dissipation

gives rise to relaxation to lower bands [29]. These relaxation processes stabilize

the system and lead to the existence of a crossover between the regime of

Bloch oscillations in the lowest energy band and dissipative dynamics of the

quasicharge in higher bands [29]. The Bloch oscillations make also possible the

building of a novel type of transistor, namely the Bloch Oscillating Transistor

(BOT) [30, 31].

2.2.5 Complementary Effects

K. K. Likharev and A. B. Zorin have proposed [22] that the “classical” Joseph-

son effects and the Bloch-wave effects are conjugated in the sense that the

Josephson coupling should lead to one of these effects, depending on the junc-

tion parameters. Later experimental observations [26] have confirmed their

proposition. In the limit of EJ → 0 the quasicharge q is nearly a classical

quantity and Bloch-wave oscillations and related effects take place. In the

opposite limit, where Ec → 0, one has the phase difference ϕ as a classical

variable and gets the usual Josephson effects. Both of these effects occur at

T = 0 and I = 0 but become unstable with respect to small currents and ther-

mal fluctuations which lead to quantum fluctuations of q or ϕ and to nonlinear

effects. [22]
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Chapter 3

Charge Transport in Small

Tunnel Junctions

”To retain respect for sausages and laws, one must not watch them

in the making.”

- Otto von Bismarck

In the previous chapter it was discussed that to see the single charge effects

in an ultrasmall tunnel junction, the junction properties have to satisfy two

conditions. Firstly, the charging energy Ec of a single electron has to be larger

than the thermal energy kBT in order to avoid thermal fluctuations. Secondly,

the tunneling resistance RT of the junction has to be larger than the so called

resistance quantum RQ. This is to avoid the quantum fluctuations of charge.

Furthermore, the junction was coupled with an ideal voltage source which

results in constant charge on the junction capacitor. The tunneling current

through the junction defined the tunnel resistance. In this way the current-

voltage characteristic are of the same form as for an Ohmic resistor (see Figure

3.1). This kind of description of the behaviour of the tunnel junction is called

the global view.

However, this is not the only way to describe junction dynamics. In the

next section the local view of a tunnel junction is discussed. Then a description

of the junction environment is presented. Finally, there is some discussion of

tunneling rates in Josephson junctions and in double junction systems. This

chapter is based on the review by Ingold and Nazarov [17].
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Figure 3.1: Current-voltage characteristic of the global view.

3.1 Local View of a Tunnel Junction

Instead of connecting the tunnel junction to an ideal voltage source, consider

a case where an ideal external current I controls the junction charge. Again,

because the current is a continuous variable, the junction can be charged con-

tinuously, even in fractions of elementary charge. The interplay between the

discrete nature of the charge of the tunneling electron and the continuous

nature of the junction charge Q leads to new type of charging effects. The

tunneling event in zero temperature is possible only if the difference between

the charging energies in the state before and after the tunneling event is posi-

tive, i.e.

∆E = Eb − Ea =
Q2

2C
− (Q− e)2

2C
=
e(Q− e

2
)

C
> 0. (3.1)

Here b stands for before and a for after. This implies, that when Q < e/2

the tunneling effect will not occur. This is called the Coulomb blockade of

tunneling. Furthermore, the current through the junction should equal to zero

when the potential difference V across the junction plates satisfies −e/2C <

V < e/2C. This means that there should exists a so called Coulomb gap

(see Figure 3.2). The Coulomb blockade of tunneling is weakened by the

thermal and quantum fluctuations of the electromagnetic environment that

can activate the charge transfer across the junction [32]. On the other hand, if

one considers a tunnel junction made of superconducting material, one must

take into account that the charge of the tunneling particle is 2e. Due to this,

one must multiply every e in above discussion by the factor 2.

According to Equation (3.1), when one starts with a junction with charge
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Figure 3.2: Current-voltage characteristic of the local view.

Q < e/2 the external current I is only charging the junction until the threshold

charge e/2 is reached. When that happens, a tunneling event occurs and the

cycle starts again. By repeating this process one gets the so called Single Elec-

tron Tunneling (SET) oscillations of the junction voltage V . The oscillations

occur with the fundamental frequency

fSET = I/e. (3.2)

Similarly, with Josephson junctions, one gets the familiar Bloch oscillations

(see Subsection 2.2.4) with frequency

fBloch = I/2e. (3.3)

The consideration above takes into account only the energy difference (3.1),

and therefore tackles solely with the junction the charge is tunneling through,

ignoring its interactions with the rest of the world1. On the other hand, in the

global view of describing the tunneling process there is no change in charging

energy. The charge equilibrium is immediately restored by the voltage source,

which does the work eV (2eV ) in transfering an electron (or a Cooper pair)

to charge the junction capacitor back to charge Q. So, which one of these

descriptions is correct? Can the junction be taken as decoupled from its sur-

roundings by replacing the rest of the world by ideal voltage or current source?

The answer is both yes and no. The local and global view are correct, but only

if assumptions made in them hold in the system, i.e. the junction is connected

only to an ideal current or voltage source. But, if there exists some impedance

1Therefore the term local view.
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Z(ω) in the environment, it must be taken into account. For example, the

leads that connect the sources to the junction always have capacitances, that

are polarized by the average voltage across the junction and therefore act as

an effective voltage source [33]. Also, the electromagnetic modes of the leads

and external circuit are coupled to the electric field between the plates of the

junction. This affects the charge tunnling rates of the junction, as will be seen

later on. All in all, tunneling in tunnel junctions cannot be modelled by de-

scribing the surroundings of the junction by ideal current and voltage sources,

but instead the impedance of the environment must be taken into account.

3.2 Description of Environment

The Hamiltonian description of a system does not take dissipation into account,

i.e. the energy is always conserved inside the system the Hamiltonian describes.

Now, if one wants to introduce impedance Z(ω) into the system, then one is

also including dissipation. How is it then possible to incorporate impedance

and still stay in Hamiltonian formalism? Well, the answer is rather obvious.

The Hamiltonian of the system is coupled with that of an environment. This

means, that when talking about tunnel junctions the Hamiltonian of the whole

junction + dissipation system consist of Hamiltonians of the junction HJ and

the environment Henv, like

H = HJ +Henv. (3.4)

What is the form of the Hamiltonian of the environment, when considering a

Josephson junction? A. O. Caldeira and A. J. Leggett have introduced [34, 35]

a model where the dissipation is represented by a set of harmonic oscillators

that are bilinearly coupled to the phase difference ϕ of the junction. These

harmonic oscillators can be viewed as LC-circuits and in some cases they can

be justified microscopically. From now on, the tunnel junctions studied here are

Josephson junctions. This way the phase difference ϕ is the difference between

the phases of the macroscopic wave functions of the Cooper pair condensates

on both sides of the junction. Now the Hamiltonian of the environment can

be written as

Henv =
Q̃2

2C
+

N
∑

n=1

[

q2n
2Cn

+ (
~

e
)2

1

2Ln

(ϕ̃− ϕn)
2

]

, (3.5)
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where the first term describes the charging energy of the junction capacitor.

The second term consist of the sum over the environmental degrees of freedom

that are represented by harmonic oscillators with frequency 1/
√
LnCn. N is

the number of environmental degrees of freedom and has to be rather large.

Here the Q̃ and ϕ̃ are the fluctuations of the charge of the junction capacitor

and the phase difference of the junction plates, respectively. They are defined

as

Q̃ = Q− CV,

ϕ̃(t) = ϕ(t)− 2e

~
V t,

(3.6)

where Q is the actual charge of the junction and CV is the average one imposed

by the voltage source V . ϕ(t) is similarly the actual (time-dependent) phase

difference and 2e
~
V t is the average time evolution of the phase. This change of

the reference frame has been done in order to see the equivalence between the

LC-circuit and a harmonic oscillator.

In the next section the rates for tunneling of Cooper pairs and quasiparticles

are derived by using the description of environment presented here.

3.3 Tunneling Rates in Superconducting Junc-

tions

3.3.1 Tunneling of Cooper Pairs

Let us first consider the case of Cooper pair tunneling in the weak coupling

regime (EJ ¿ Ec). The temperature is assumed to be very low compared to

the critical temperature of the superconductor and voltages are supposed to

be below the voltage 2∆/e, where 2∆ is the pair binding energy. With these

assumptions one can neglect quasiparticle exitations, as seen in Chapter 2.

So, the tunneling events consist solely of the tunneling of Cooper pairs. The

Hamiltonian is now acting in the Hilbert space of Q, ϕ and the environmental

degrees of freedom. The Cooper pairs form a condensate and therefore do not

lead to additional dynamical degrees of freedom. The total Hamiltonian (3.4)

is then

H = Henv + EJ cosϕ, (3.7)

where the environmental Hamiltonian is the one presented in Equation (3.5)

and the second term gives the coupling between the superconducting regions.
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One can rewrite the second term as

EJ cosϕ =
EJ

2
e−iϕ +

EJ

2
eiϕ (3.8)

The operator e−iϕ changes the charge Q on the junction by 2e, which can be

seen by calculating

eiϕQe−iϕ = eiϕ
[

Q

∞
∑

k=0

(−i)kϕk

k!

]

= eiϕ
[ ∞
∑

k=0

(−i)kQϕk

k!

]

. (3.9)

Now, according to the commutation relation (2.31),

Qϕ = ϕQ− 2ei⇒ Qϕ2 = ϕQϕ− 2eiϕ = ϕ2Q− 4eiϕ. (3.10)

By induction Qϕk = ϕkQ− ik2eϕk−1. So, one gets

eiϕQe−iϕ = eiϕ
[ ∞
∑

k=0

(−i)k(ϕkQ− ik2eϕk−1)

k!

]

. (3.11)

This is equivalent to

eiϕQe−iϕ = eiϕ
[ ∞
∑

k=0

(−i)kϕkQ

k!

]

− eiϕ
[ ∞
∑

k=1

(−i)kik2eϕk−1

k!

]

, (3.12)

from which

eiϕQe−iϕ = eiϕe−iϕQ− eiϕ
[ ∞
∑

k=1

(−i)k−1(−i)i2eϕk−1

(k − 1)!

]

. (3.13)

And, finally one gets

eiϕQe−iϕ = Q− 2e(eiϕe−iϕ) = Q− 2e. (3.14)

To obtain the supercurrent through the junction let us first calculate the tun-

neling rates.

Calculation of tunneling rates

The tunneling rate calculation is done in terms of the Fermi’s Golden Rule

approximation [36]. Because the Josephson energy is considered small in the
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limit at hand, the coupling can be taken as a perturbation. According to the

golden rule, the transition rate to the “forward” direction is given by

Γi→f =
2π

~
|〈f |EJ cos(ϕ)|i〉|2δ(Ei − Ef ). (3.15)

This is the rate for Cooper pair trasitions between the initial state |i〉 and the

final state |f〉. In the absence of the quasiparticle exitations we can write the

matrix element in Equation (3.15)

〈f |EJ cos(ϕ)|i〉 =
EJ

2
〈R′|e−iϕ|R〉+ EJ

2
〈R′|eiϕ|R〉 (3.16)

where |R〉 and |R′〉 are charge states with energies ER and ER′ . To calculate

the total rate for Cooper pairs from “left” to “right” one has to sum over all

initial states R weighted with the probability Pβ(R) to find these states and

over all final states R′. So the forward tunneling rate is

−→
Γ (V ) =

2π

~

(

EJ

2

)2
∑

R,R′

|〈R′|e−iϕ|R〉|2Pβ(R)δ(ER − ER′) (3.17)

The delta function can be rewritten in terms of its Fourier transform:

δ(ER − ER′) =
1

2π~

∫ ∞

−∞

dt exp
( i

~
(ER − ER′)t

)

. (3.18)

The tunneling rate can now be written as

−→
Γ (V ) =

E2J
4~2

∫ ∞

−∞

dt
∑

R,R′

〈R|e i
~
Ĥteiϕe−

i
~
Ĥt|R′〉〈R′|e−iϕ|R〉Pβ(R). (3.19)

The time dependence can be included in the phase operator by switching to

Heisenberg picture where the time dependent phase operator is defined as [37]

ϕ(t) = e
i
~
Ĥtϕe−

i
~
Ĥt. (3.20)

At t = 0 the operators are the same in both representations [37],

ϕ(0) = ϕ. (3.21)

Therefore,

e
i
~
Ĥteiϕe−

i
~
Ĥtϕ = eiϕ(t), (3.22)

e−iϕ = e−iϕ(0). (3.23)
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Now the tunneling rate is of form

−→
Γ (V ) =

E2J
4~2

∫ ∞

−∞

dt
∑

R,R′

〈R|eiϕ(t)|R′〉〈R′|e−iϕ(0)|R〉Pβ(R). (3.24)

According to Equation (3.6) ϕ(0) can be written as ϕ(0) = ϕ̃(0). Also, if

Equation (3.24) is multiplied and divided by e
i
~
2eV t it becomes

−→
Γ (V ) =

E2J
4~2

∫ ∞

−∞

dt exp
( i

~
2eV t

)

∑

R,R′

〈R|eiϕ(t)− 2eV t
~ |R′〉

× 〈R′|e−iϕ̃(0)|R〉Pβ(R).

(3.25)

The term ϕ − 2eV t
~

can also be written according to Equation (3.6), arriving

thus at

−→
Γ (V ) =

E2J
4~2

∫ ∞

−∞

dt exp
( i

~
2eV t

)

∑

R,R′

〈R|eiϕ̃(t)|R′〉〈R′|e−iϕ̃(0)|R〉Pβ(R).

(3.26)

Because the charge states form a complete set, the sum over all R′ is an identity

operator and

−→
Γ (V ) =

E2J
4~2

∫ ∞

−∞

dt exp
( i

~
2eV t

)

∑

R

〈R|eiϕ̃(t)e−iϕ̃(0)|R〉Pβ(R), (3.27)

and together with definition of the equilibrium correlation function

〈eiϕ̃(t)e−iϕ̃(0)〉 =
∑

R

〈R|eiϕ̃(t)e−iϕ̃(0)|R〉Pβ(R) (3.28)

the tunneling rate is obtained

−→
Γ (V ) =

E2J
4~2

∫ ∞

−∞

dt exp
( i

~
2eV t

)

〈eiϕ̃(t)e−iϕ̃(0)〉. [17] (3.29)

The equilibrium correlation function (3.28) can be simplified by using the

generalized Wick theorem for equilibrium correlation functions, as done in

Reference [17]. By doing so, one gets

〈eiϕ̃(t)e−iϕ̃(0)〉 = e〈[ϕ̃(t)−ϕ̃(0)]ϕ̃(0)〉. (3.30)

Equation (3.30) can be expressed in terms of the phase-phase correlation func-

tion

J(t) = 〈
[

ϕ̃(t)− ϕ̃(0)
]

ϕ̃(0)〉. (3.31)
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For the use in Equation (3.29) it is useful to introduce the Fourier transform

of the correlation function (3.30), which is denoted by P (E)

P (E) =
1

2π~

∫ ∞

−∞

dt exp
(

J(t) +
i

~
Et
)

. (3.32)

Finally, the tunneling rate for the Cooper pairs is given by

−→
Γ (V ) =

πE2J
2~

P (2eV ). (3.33)

A corresponding calculation can be done for the backward tunneling rate, but

it is obvious from symmetry reasons that [17]

←−
Γ (V ) =

−→
Γ (−V ). (3.34)

The discussion presented above has considered only the weak coupling

regime, where the charge is well defined and the phase fluctuates. In the

limit of large Josephson coupling energy (EJ ¿ Ec) the phase is localized

in one of the wells in the “tilted-washboard” potential. The tunneling rates

in this limit could be derived similarly. They can also be obtained with the

phase-charge duality transformations presented in Reference [17]. This is the

process dual to the tunneling of Cooper pairs in the weak coupling regime, and

involves incoherent tunneling of the phase.

Supercurrent Through the Junction

From the rate expression (3.33) and the symmetry (3.34) the supercurrent is

immediately obtained [17]

IS(V ) = 2e
(−→
Γ (V )−←−Γ (V )

)

=
πeE2J

~

(

P (2eV )− P (−2eV )
)

. (3.35)

Here it is taken into account that each tunneling process transports a charge of

2e. This result is equivalent to the fact that each Cooper pair tunneling carries

an energy 2eV in the direction of applied field. Because Cooper pairs do not

have kinetic energy to absorb a part of 2eV , this energy has to be transferred to

the environment. The probability of this transfer is P (E). One sees from (3.35)

that the supercurrent is directly proportional to the probability P (E). This

makes it possible to measure the properties of the environment directly. [17]



38 CHAPTER 3. Charge Transport in Small Tunnel Junctions

General Properties of P (E) and J(t)

The phase-phase correlation function (3.31) can be written in terms of the real

part of the total impedance. It is done in Reference [17] using the fluctuation-

dissipation theorem and it says that

J(t) =
1

2

∫ ∞

0

dω

ω

ReZt(ω)

RQ

{

coth

(

1

2
β~ω

)

[

cos(ωt)− 1
]

− i sin(ωt)
}

. (3.36)

Here the Zt(ω) is total impedance of the system and can be written in terms of

the total impedance of the junction parallel with the environmental impedance

Zt(ω) =
1

iωC + Z−1(ω)
. (3.37)

The P (E) can now be calculated if the total impedance is known. For example,

if the total impedance is zero the P (E) transforms into a delta function:

P (E) =
1

2π~

∫ ∞

−∞

exp
(

0 +
i

~
Et
)

= δ(E). (3.38)

Analytically it is, however, impossible except for some special cases. There are

nonetheless general properties which are independent of the impedance. They

are proven in Reference [17] and only listed here:
∫ ∞

−∞

dEP (E) = 1, (3.39)

∫ ∞

−∞

dEEP (E) =
e2

2C
, (3.40)

P (−E) = e−βEP (E). (3.41)

Here β = 1/kBT where kB is the Boltzmann constant and T is the temperature.

The first relation is a confirmation of the interpretation of P (E) as probability.

The last of the relations means that the probability to excite environmental

modes compared to the probability to absorb energy from the environment

is larger by a Boltzmann factor. It also says that at zero temperature there

can be no energy absorption from the environment when P (E) vanishes for

negative energies.

3.3.2 Tunneling of Quasiparticles

In Josephson junctions also quasiparticle tunneling can exist, in addition to

Cooper pair tunneling. Let us first consider the quasiparticle density of states
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obtained from the BCS-theory [7]

NS(E)

N(0)
=

{

|E|

(E2−∆2)1/2
for |E| > ∆

0 for |E| < ∆
(3.42)

where the density of states is taken relative to the density of states in the

normal metal at Fermi level. 2∆ is the magnitude of the superconducting gap

within which the quasiparticle density of states vanishes. With the help of

this equation one is able to determine the forward tunneling rate as done in

Reference [17] and arrive at

−→
Γ (V ) =

1

e2RT

∫ ∞

−∞

dEdE ′
NS(E)NS(E

′ + eV )

N(0)2

× f(E)
[

1− f(E ′ + eV )
]

P ′(E − E ′).
(3.43)

Here the f(E) = 1/[1 + exp(βE)] are Fermi functions and the probability to

exchange energy with the environment is given by

P ′(E) =
1

2π~

∫ ∞

−∞

exp
(

J ′(t) +
i

~
Et
)

(3.44)

which differs from (3.32) in terms of the phase-phase correlation function2 that

is slightly different than in (3.31) because the phase fluctuations differ due to

the charge carried by quasiparticles is only e.

By using the symmetry relation (3.34), the detailed balance symmetry

(3.41) and the properties of the Fermi function, it is possible to write the

quasiparticle current as [17]

Iqp =
1

eRT

∫ ∞

−∞

dEdE ′
NS(E

′)NS(E
′ + E)

N(0)2
1− e−βeV

1− e−βE

× P ′(eV − E)
[

f(E ′)− f(E ′ + E)
]

(3.45)

The quasiparticle tunneling between two superconductors can be used in mea-

suring the superconducting energy gap as done in References [38]- [40].

3.3.3 Suppression of the Coulomb Blockade

The quantum mechanical nature of the electromagnetic environment can sev-

erly reduce the Coulomb charging effects discussed in Section 3.1. The tunnel-

ing electron has to excite electromagnetic modes of the coupled system formed

2This is, in fact, the same P’(E) as one would get for the normal metal tunnel junction

by doing the same kind of calculations as done for the superconducting one.
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by the junction and its electromagnetic environment to change the charge on

the junction capacitor and thus lead to the Coulomb effect [41]. The energy of

these modes is quantized so they will be excited only if the voltage V across

the junction reaches ~ω/e. An increase of the impedance of the environment

strengthens the coupling of the junction to low-frequency modes. Thereby, the

charging effects are usually observable when the junction is placed in a very

high-impedance environment or for large voltages.

The above situation has a straight mechanical analoque in the solid state

physics, namely the Mössbauer effect. In the Mössbauer effect the γ quanta

(photons) that impinge upon nuclei of atoms in a lattice can excite nuclear

transitions in ways that would be forbidden if the lattice were not present. The

γ quanta are emitted by, for example, a radioactive nucleus that is embedded in

crystal. There are two possible ways to satisfy momentum conservation when a

γ quantum is emitted. The first is to excite phonons in a crystal, which means

that the momentum is transferred to the emitting nucleus and the energy of

the γ quantum is reduced. The second possibility is the so called Mössbauer

transition in which the recoil momentum is transferred to the whole crystal.

The recoilless transitions are favored if it is difficult to excite phonons. If the

mass of the crystal is large the energy of the γ quantum and the momentum

of the nucleus remain unchanged.

In ultrasmall tunnel junctions the emission of the γ quantum is identified

as the tunneling of an electron. The momentum of the nucleus is related to

the charge of the junction. If the charge is kept fixed there is no Coulomb

blockade which compares to the Mössbauer transition. There is no excita-

tion of the environmental modes. If the charge of the junction is changed the

Coulomb blockade is obtained and the situation is analogous to the non-Möss-

bauer transition. This requires excitations of environmental modes. So the

Coulomb blockade is only possible if there are low frequency environmental

modes coupled strongly to the tunneling electron, which means that a high

impedance environment is needed. [17]

3.4 Circuits of Tunnel Junctions

The lenghty derivations of the P (E)-function in the previous section could have

been skipped3 just by defining the P (E) as the probability of the tunneling

3At least, in the context of this thesis.
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electron to transfer energy to electromagnetic modes of the circuit, and by

saying that this probability depends on the impedance Z(ω) of the environment

of the junction. However, based on Equations (3.32) and (3.35), one is able

to determine the IV -characteristics of the junction, at least in some special

cases. One gets on the grounds of the P (E), that the charging effects are

observable only, when the environmental impedance is of the order of the

resistance quantum RQ [17]. This sets some practical limitations, since a very

high resistance has to be placed near the junction in order to see the charging

effects. This large resistance heats the junction and therefore prevents the

desired effects to occur (see Equation (2.5)). Additionaly, the leads effectively

provide a voltage bias and cause large zero-point fluctuations of the charge on

the junction plates, and therefore wash out the single charge effects.

So, a single junction connected to an electromagnetic environment is not a

very practical starting point, if one wants to see the effects of the single charge

tunneling. Intuitively, the next wise step is to study multijunction systems

and try to observe these effects in them. As an example, a Single Electron

Transistor (SET) is examined in the following subsections, both in the normal

and superconducting case.

3.4.1 Single Electron Transistor

The SET consists of two tunnel junctions connected in series and driven by

voltage V . As a consequence, there exists a metallic island between the two

junctions. This island is connected to a control voltage Vg source via a capaci-

tor Cg. These are called as the gate voltage and gate capacitance, respectively.

A circuit diagram is presented in Figure 3.3 where N describes the number of

excess electrons on the island compared with the positive charge (protons) on

the island. The first observations of single charge tunneling were made with

this device by T. A. Fulton and G. J. Dolan [42]. Let us now analyze this

circuit a little bit.

First of all, the total capacitance C of the two tunnel junctions is obtained

by equating in standard way

1

C
=

1

C1
+

1

C2
=
C1 + C2
C1C2

, (3.46)

which implies

C =
C1C2
C1 + C2

. (3.47)
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N

Cg

Vg

−V/2 V/2
C1, R1 C2, R2

Figure 3.3: The single electron transistor.

Also, the potential difference across the whole two junction system is U =

Q1/C1 + Q2/C2, where Q1 and Q2 are the charges on the junction 1 and 2,

respectively (see Fig. 3.3). Therefore, one has for the total charge of the two

junction system as seen from the outside

Q = CU =

(

C1C2
C1 + C2

)(

Q1
C1

+
Q2
C2

)

=
Q1C2 +Q2C1
C1 + C2

. (3.48)

In this way the two junctions are described as one, and therefore, based on the

discussion made in Chapter 2, one can take the total charge Q as a continuos

variable. On the other hand, the charge on the island can change only when

an electron tunnels to or from the island. This implies that the island charge

is an integer multiple of the elementary charge, i.e.

Q1 −Q2 = Ne. (3.49)

This means that the charge on the island is quantized. The charging energy of

the capacitors can now, according to Equations (3.48) and (3.49) be written

in terms of Q1 and Q2 or Q and Ne

Q21
2C1

+
Q22
2C2

=
Q2

2C
+

(Ne)2

2(C1 + C2)
. (3.50)

So, one cannot describe the double junction system simply by single junc-

tion with capacitance C, because the charging energy contains a contribution

arising from the island charge.

The treatment of the transistor presented above has not taken into account

the effect of the gate capacitor and voltage. As can be seen in the following,
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the effect of adding these leads to a (continuous) shift of the island charge by

Q0 = CgVg. The charge on the island is now

Ne = Q1 −Q2 −Qg. (3.51)

According to Kirchhoff’s rules, one gets two equations for voltages

V

2
− Q1
C1
− Qg

Cg

+ Vg = 0 (3.52)

− V

2
+
Q1
C1
− Qg

Cg

+ Vg = 0. (3.53)

So, one has three equations for three unknown variables, i.e. Q1, Q2 and Qg.

By solving the group of three linear equations (3.51)-(3.53) one ends up with

Q1 =
C1
CΣ

[

(

C2 +
Cg

2

)

V + CgVg +Ne

]

(3.54)

Q2 = −
C2
CΣ

[

−
(

C1 +
Cg

2

)

V + CgVg +Ne

]

(3.55)

Qg = −
Cg

CΣ

[

1

2
(C2 − C1)V − (C1 + C2)Vg +Ne

]

, (3.56)

where CΣ = C1 + C2 + Cg. These equations describe the electrostatic equilib-

rium of the transistor.

If it is now assumed that an electron has tunneled through the left junction

onto the island, then the island charge has changed from Ne to (N − 1)e.

Accordingly, the charge on the plates of the junction 1 has changed from Q1

to Q1− e. If one replaces N with (N − 1) in the equilibrium equations (3.55)-

(3.56), one will not result in charge Q1− e. Therefore, the new charges Q1− e,
Q2 and Qg do not describe an equilibrium state. Instead, the changes in the

charges before and after the tunneling processes are due to the work done by

the voltage sources and, according to the equations (3.55)-(3.56), are of form

δQ1 = −
C1
CΣ

e (3.57)

δQ2 =
C2
CΣ

e (3.58)

δQg =
Cg

CΣ
e. (3.59)

Disregarding the energy transfer to and from the environmental modes, the

energy that determines the tunneling rates is the difference in the electrostatic
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mV

Z(ω)

C1, R1 C2, R2

Figure 3.4: Double junction system coupled to a voltage source V via

impedance Z(ω).

energy of the entire circuit. This energy difference now consists of conributions

of the work done by the voltage sources V and Vg which do not change in the

tunneling process. Additionally to a single junction case there exists also

a contribution (Ne)2/2CΣ that depends on the island charge. Therefore, the

difference in the electrostatic energy before and after a tunneling event through

the first junction on the left onto the island is

∆E =
(Ne)2

2CΣ
−
[

(N − 1)e
]2

2CΣ
− V

2
(δQ1 + e) +

V

2
δQ2 + VgδQg

=
e

CΣ

[

(

C2 +
Cg

2

)

V + CgVg +Ne− e

2

]

.

(3.60)

One has to add an extra elementary charge to δQ1 because the charge trans-

ferred by the voltage source is diminished by −e due to the electron tunneling

through the left junction. From this it can be seen that the work done by the

gate voltage leads to an effective island charge q = Ne+ CgVg. The fact that

the gate voltage Vg is a continuous variable leads to a continuous Q0 = VgCg.

This is of great importance when the SET is used as an electrometer, as will

be seen later.

Tunneling Rates in SET

The tunneling rates of the SET could be calculated as in a single junction case

by using second order perturbation theory (Fermi’s Golden Rule). But instead,

they are done here by exploiting the properties of the rates of a single tunnel

junction. The double junction system studied here is the Figure 3.4. In this

system Cg is assumed to be small compared to the junction capacitances Ci
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b

b

mκ1V

C1 + C2 κ21Zt(ω)

Figure 3.5: An equivalent effective circuit for tunneling through the first junc-

tion.

(i = 1, 2). Therefore, it can be neglected when considering the capacitance of

the system. However, the gate voltage Vg is assumed to be sufficiently large to

cause the offset VgCg. By using Norton and Thevenin configurations one is able

to transform the double junction circuit (Figure 3.4) to an equivalent effective

circuit for tunneling through the first junction, as done in Reference [17]. This

effective circuit is presented in Figure 3.5. One could do similar transform

to the other junction and end up with identical circuit where only κ1 has

transformed to κ2. The two kappa’s are defined as

κi =
C

Ci

(i = 1, 2), (3.61)

and are a straight consequence of the Thevenin-Norton treatment. The C is

the total capacitance of the circuit defined in Equation (3.47). Because C is

always smaller than the smallest of the capacitances Ci, the κi’s are therefore

always less than one. Accordingly,

κ1 + κ2 =
C

C1
+

C

C2
=
C2 + C1
C1C2

C = 1. (3.62)

Also, the total impedance Zt(ω) is of the form

Zt(ω) =
1

iωC + Z−1(ω)
, (3.63)

where C is defined again as in Equation (3.47) and Z(ω) is the environmental

impedance.

According to the Figure 3.5, the two junction system behaves in the tun-

neling processes just like a single junction, with appropriate tunneling capaci-

tance C, reduced voltage κiV and reduced environmental impedance κ2iZt(ω).
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Therefore, one is able to write the probabilities of the electron to transfer en-

ergy E with the environment, when tunneling through the ith junction, like in

Equation (3.44)

P ′(κi, E) =
1

2π~

∫ ∞

−∞

exp
(

κ2iJ
′(t) +

i

~
Et
)

. (3.64)

The J ′(t) is phase-phase correlation function for the normal metal junction.

The energy difference between before and after an electron tunnel process

through ith junction is due to the work done by reduced voltage source and

difference between the charging energies of the island charge

∆Ei = κieV +
q2

2(C1 + C2)
− (q − e)2

2(C1 + C2)

= κieV +
e(q − e/2)
C1 + C2

(i = 1, 2),

(3.65)

where q = Ne+ VgCg is the effective island charge. Now, one is able to write

the forward tunneling rate through the first junction as

−→
Γ 1(V, q) =

1

e2R1

∫ +∞

−∞

dE
E

1− exp(−βE)
P ′(κ1,∆E1 − E), (3.66)

where R1 is the tunneling resistance of the first junction. Actually, the rate

formula has been previously derived only for the superconducting junction,

but the one for normal junction is somewhat similar and can be read from

Reference [17]. Now, if the environmental impedance is low, the P ′(κ1, E) ≈
δ(E) (according to Equation (3.38)) and the tunneling rate through the first

junction can be written as

−→
Γ 1(V, q) =

1

e2R1

∆E1
1− exp(−β∆E1)

. (3.67)

For zero temperatures 1/(1 − exp(−βx)) = Θ(x), where Θ(x) is a unit step

function. This way one gets

−→
Γ 1(V, q) =

1

e2R1
∆E1Θ(∆E1). (3.68)

So, at low temperatures and in low impedance environment the tunneling

rate is nonzero only if ∆E1 > 0. Together with Equation (3.65) one gets for
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tunneling through the first juntion onto the island

κ1eV +
e(q − e/2)
C1 + C2

=
C

C1
eV +

e(q − e/2)
C1 + C2

=
C2

C1 + C2
eV +

e(q − e/2)
C1 + C2

> 0,

(3.69)

which implies

V +
1

C2
(q − e/2) > 0. (3.70)

Because the tunneling rate (3.68) obeys also the detailed balance symmetry,

as does the single junction rate, one is able to write at zero temperature

←−
Γ 1(V, q − e) = −

1

e2R1
∆E1Θ(−∆E1). (3.71)

One is able to do the same kind of calculations for the tunneling through the

second junction and obtain the same kind of results, just changing the 1’s to

2’s and q to −q. Together with Equation (3.65) one gets four conditions under

which the rates are nonvanishing

−→
Γ1(V, q) : V +

1

C2
(q − e/2) > 0 (3.72)

←−
Γ1(V, q) : V +

1

C2
(q + e/2) < 0 (3.73)

−→
Γ2(V, q) : V − 1

C1
(q + e/2) > 0 (3.74)

←−
Γ2(V, q) : V − 1

C1
(q − e/2) < 0. (3.75)

From these equations one sees immediately that if the voltage satisfies V <

min(e/2C1, e/2C2) = Vcg, a Coulomb blockade of tunneling exists even in the

low impedance environment. This is very different from what was seen in

the single junction case in the previous section. The difference arises of the

charging energy of the island charge.

The voltage Vcg is constant if no offset charge is applied at the island.

Now, if one places a charge near the island as in the SET setup, the Vcg

becomes strongly dependent of it (see Reference [17]). In the high impedance

environment one naturally also sees the Coulomb effects, with the exception

that the gap voltages are higher, and therefore the effects are more easily

observed.
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From the tunneling rates above one is able to calculate the current through

the SET as a function of the offset charge Q0 and the transport voltage V .

These voltages have been restricted below the gap voltage because analytical

expressions cannot be given at the other limit. Furthermore, the situation

is restricted to zero temperature and the assumptions of the low impedance

environment are satisfied. The calculation for the transistor current I has been

done in Reference [17] and says that

I(Q0, V ) =
1

2

(Q0−e/2
2C

)2 − V 2

(R1 −R2)Q0−e/2
2C

− (R1 +R2)V

×Θ(Q0 − e/2 + 2CV )Θ(−Q0 + e/2 + 2CV ).

(3.76)

From this connection one can see that the current I through the junction

can be very sensitive to changes in the offset charge Q0. This sensitivity

is essential when one is using the two junction system as a transistor or an

electrometer [17].

In this subsection the so-called second order effects, have not been treated.

They rise, for example, from the simultaneous tunneling of two electrons; one

through the first junction onto the the island and one through the second

junction from the island. This way there is a possibility to a current through

the two junction system to exist, even if the system is in a Coulomb blockade

state. This process is called co-tunneling.

3.4.2 Superconducting SET

In the previous subsection the two junctions were made of normal metal. If

the material used in fabricating the junctions is, instead, superconducting, the

situation is somewhat more difficult. In addition to the Cooper pair current

in the superconducting junctions, there also exists a current that consists of

quasiparticles. Moreover, the fluctuations in the electromagnetic environment

cause also some structure to these currents. These three properties have been

studied, for example, by A. Maassen van den Brink et al. [43]. But, before

the current characteristics of the two superconducting junction system are

discussed, let us first study the concept of the parity of the island charge. All

the discussion in this subsection is based on Reference [3].
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Figure 3.6: The superconducting single electron transistor.

Parity of the Superconducting Island

According to Chapter 2, in the ground state of a superconducting island all

the electrons are bound as Cooper pairs. This implies that if the number N

of electrons of the island is an even integer the corresponding energy of the

ground state E0 is smaller than if N is odd. Namely, an odd N means that

one of the electrons in the island (that is in the ground state) does not belong

to the Cooper pair condensate, i.e. it does not have a pair. Therefore it has

to be a quasiparticle which has an energy that is larger than the energy of the

Cooper pairs by the amount of the superconducting gap ∆. D. Averin and Yu.

Nazarov have described this difference with an additive energy term, that has

a value ∆ when N is odd and zero when N is even [44]. At low temperatures

this leads to 2e-periodicity Q0 depedence of the I − V characteristics of the

superconducting transistor. This changes to the normal metal e-periodicity

when the temperature rises. These effects were observed by M. Tuominen et

al. [45].

When N is even and the voltage is below 2∆/e, no excitations can be

created and only elastic tunneling is allowed. Also, if Ec = e2/2CΣ ¿ ∆

the tunneling of single electrons (i.e. quasiparticles) is omitted. In fact, if ∆

is larger than all the energies that describe the system, i.e. EJ and Ec, the

situation can be restricted to states where only even number of electrons lie on

the island in the form of Cooper pairs. This way one can write the net charge

Q of the island as 2eN . Let us now consider a situation where the voltage bias

is zero.
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Superconducting Island with Zero Bias Voltage

The Hamiltonian of the two Josephson junction system with zero voltage bias

can be written as

H = −E1 cosϕ1 − E2 cosϕ2 +
(Q−Q0)2

2CΣ
. (3.77)

Here E1, ϕ1 and E2, ϕ2 are the Josephson energies and phase differences of

the first and second Josephson junction, respectively. Q − Q0 is the island

charge polarized by the gate voltage. The CΣ is the sum of single junction

capacitances and the gate junction capacitance. To make the Hamiltonian

somewhat more convenient, a change of variables is made from ϕ1 and ϕ2 to

θ = ϕ1 + ϕ2

ϕ = (ϕ2 − ϕ1)/2.
(3.78)

Here the θ is total phase difference over the whole two junction system. ϕ is the

phase of the “internal” island and can show quantum mechanical properties. In

fact, ϕ and the net charge Q of the island are conjugated quantum variables

and obey the commutation relation (2.31). Let us now try to eliminate ϕ1
and ϕ2 in favor of θ and ϕ. With the help of trigonometry, Equation (3.77)

transforms into

H = −EJ(θ) cos(ϕ− χ) +
(Q−Q0)2

2CΣ
, (3.79)

where

EJ(θ) = (E21 + E22 + 2E1E2 cos θ)
1/2

χ = tan−1
[

(E1 − E2)
(E1 + E2)

tan
θ

2

]

.
(3.80)

Now, χ can be suppressed, because the eigenvalues of Equation (3.79) do not

depend on it. So, one can rewrite

H = −EJ(θ) cosϕ+
(Q−Q0)2

2CΣ
. (3.81)

If there is no polarization charge Q0, Equation (3.81) reduces to the familiar

single junction Hamiltonian. Because the Josephson energy EJ(θ) is dependent

on the phase difference, the supercurrent-energy relation derived in Equation

(2.2.1) must be generalized to

I =
2e

~

∂E

∂θ
. (3.82)
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If the island capacitance CΣ is so large that the charging energy term is effec-

tively zero, the total energy of the system is E = −EJ(θ). This implies that

the system operates in the strong coupling regime (EJ À Ec) and that the

critical current of the two junction system is

I = −2e

~

∂EJ(θ)

∂θ
= −2e

~

[

1

2EJ

(−2E1E2 sin θ)
]

=
2e

~

E1E2 sin θ

EJ

. (3.83)

If the two junctions are symmetric with respect to their Josephson energies,

i.e. E1 = E2 = E, the situation is reduced to

I =
2e

~

E2

EJ

sin θ =
2e

~

E2

(2E2 + 2E2 cos θ)1/2
sin θ

=
2e

~
E

sin θ
[

2(1 + cos θ)
]1/2

.
(3.84)

Equation (3.84) is equivalent to a current through a single junction with

Josephson energy E and phase difference θ/2, but only in the range θ ∈ [−π, π],
i.e.

I =
2e

~
E sin

θ

2
, θ ∈ [−π, π]. (3.85)

The whole current I as a function of θ is shown in Figure 3.7.

On the other hand, if the two junctions are very asymmetric (E1 À E2) it

follows that EJ ≈ E1 and I = (2e/~)E2 sin θ. So, the current is determined

entirely by the second junction.

If one considers the Hamiltonian (3.81) in the limit Ec À EJ it is useful

to express the Josephson coupling energy in the basis that consists of the

eigenstates of the Cooper pair number operator N . Because cosϕ = eiϕ+e−iϕ,

then according to the Equation (3.14), the Hamiltonian of the system is

H = −EJ

∑

N

|N + 1〉〈N |+ |N − 1〉〈N |
2

+
(2eN −Q0)2

2CΣ

= −EJ

∑

N

|N + 1〉〈N |+ |N − 1〉〈N |
2

+
e2

2CΣ
(2N − Q0

e
)2

= −EJ

∑

N

|N + 1〉〈N |+ |N − 1〉〈N |
2

+ Ec(2N −
Q0
e
)2.

(3.86)

The diagonal matrix elements of the Hamiltonian are then

HNN = Ec

(

2N − Q0
e

)2

, (3.87)
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Figure 3.7: Supercurrent I through the superconducting island in the strong

coupling regime. The I is measured in the units of 2eE
~
.

and the off-diagonal elements are

HN,N±1 = −
EJ

2
. (3.88)

Now one needs to find the eigenvalues of the Hamiltonian, i.e. one has to solve

the Schrödinger equation

HΨ = EΨ. (3.89)

Because the charging energy of the system is 2e-periodic with respect the gate

charge Q0 and that the Ec and EJ are small compared with the other relevant

energies of the system, the Schrödinger equation can be solved exactly. This

is by solving it for two neighbouring state (N and N + 1, e.g.) and then

expanding the solution periodically. In this way the matrix representation for

the Hamiltonian is

Hm =

(

Ec(2N − Q0

e
)2 −EJ/2

−EJ/2 Ec(2N + 2− Q0

e
)2

)

. (3.90)
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The eigenvalues of this matrix are obtained from the determinant equation
∣

∣

∣

∣

∣

Ec

(

2N − Q0

e

)2 − E −EJ/2

−EJ/2 Ec

(

2N + 2− Q0

e

)2 − E

∣

∣

∣

∣

∣

=

[

Ec

(

2N − Q0
e

)2

− E
][

Ec

(

2N + 2− Q0
e

)2

− E
]

− (EJ/2)
2

= 0.

(3.91)

This is of second order in E and gives straightforwardly

E = Ec

[

(2N −Q0/e)2 + (2N + 2−Q0/e)2
2

± 2

(

(2N + 1−Q0/e)2 + (
EJ

4Ec

)2
)1/2 ]

.

(3.92)

Using this and Equation (3.82) one obtains for the supercurrent

I =
2e

~

E1E2
8Ec

sin θ

[(2N + 1−Q0/e)2 + (EJ/4Ec)2]1/2
. (3.93)

This equation means that in the limit at hand the supercurrent depends con-

tinuously of the gate charge Q0. This is the porperty that enables a very

sensitive charge measurement with the superconducting SET (SSET). For ex-

ample, when 2N + 1 = Q0/e the limiting maximum value occurs

I =
2e

~

E1E2
2EJ

sin θ, (3.94)

which reduces in symmetrical case (E1 = E2 = E) to

I =
2e

~

E

2

sin θ
[

2(1 + cos θ)
]1/2

. (3.95)

This is exactly half of the classical value in Equation (3.84).

As discussed previously, this picture is valid only when the temperature is

approximately zero and biasing voltage is far below the gap voltage. However,

it gives a valuable insight to the gate charge dependent current properties of the

SSET. Namely, the sensitivity of the current through the SSET with respect

to changes in gate charge is of great importance when one wants to measure

charge precisely. The exact measurement of charge is vital, for example, if one

wants to build a quantum computer using Josephson junctions. In the next

subsection a brief introduction to quantum computers is given to get some

motivation to study the SSETs.
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3.4.3 SETs and Quantum Computers

Quantum mechanics allows the building of new kind kind of computers, namely

quantum computers. Contrary to the ordinary computers, where the funda-

mental unit of information (the bit) is binary (i.e. its logical state is either 0

or 1), the quantum bit, qubit, can have a value that is 0, 1 or both. But how is

it possible that a qubit can be in a logical state that is simultaneously both 0

and 1? Well, the answer lies in the quantum nature of the qubit. Classically

speaking, at every moment a physical system is in some state that is deter-

mined by the system parameters, and is inherent to the system. But, contrary

to the classical mechanics, in quantum mechanics the system can be in all of

its so called eigenstates at the same time! All eigenstates appear with certain

probabilities, which is called the superposition of the states.

A quantum computer is a device that stores information into quantum

variables and processes this information conserving the quantum coherence.

The quantum variable is typically any kind of physical system whose motion

is effectively restricted to a two-dimensional Hilbert space [46]. These systems

are quantized two-level systems and they are called qubits (more on quantized

two-level systems in Reference [47], e.g.). Essentially any two-level system is

suitable for quantum computing, as long as it fulfils the following requirements

1. The system can be prepared in the ground state.

2. The system can be controlled.

3. The system can be measured.

4. The system can be connected to its neighbours.

5. The system can be isolated from its surroundings.

These basic requirements of the quantum computing have previously been

realized with the help of nuclear spins and ion traps [11].

If one couples many of these qubits together, it is imperative for the func-

tioning of the quantum computer that the states of the qubits become en-

tangled. This means that the many-particle state is no longer a product of

single-particle states. Then a measurement, that is focused apparently to a

single qubit, affects to the state of the whole system. A measurement of the

final state of the qubit is vital for the quantum computing and the system
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presented later in this thesis has a property to measure these “read-outs” as a

possible application.

In Section 2.2 it was discussed that the parameters of a Josephson junction

determine two of its three energy scales. It was also argued that if either

one of these energies (EJ or Ec) was much larger than the other then the

corresponding quantum variable (the gauge-invariant phase difference ϕ or the

quasicharge q, respectively) would be well-defined and fluctuate only little.

These regimes (EJ À Ec and Ec À EJ) were called the strong coupling

regime and the weak coupling regime. Based on this, one can build qubits

whose parameters are such that the system acts on either of these two extreme

regimes. When the qubit is in strong coupling regime, i.e. EJ À Ec, it is

called a phase qubit, and when it is in weak coupling regime it is called a

charge qubit.

As discussed above, to be able to do the read-out of the final state of the

qubit is vital for doing quantum computation with the quantum computer.

Previously, these read-outs for a charge qubit have been proposed to be done

by radio frequency SETs (RF-SET). The problem is, however, that RF-SETs

are not truly quantum-limited detectors and they have a relatively high power

disspation that is required for operation, due to the fact that they consist

of normal state metal. This disspation leads to heating up the surrounding

qubits. In the following an alternative option is presented. It is claimed that

the system described in the next chapter of this thesis is non-dissipative, does

a sensitive charge detection and is quantum limited in principle.

This introduction to quantum computers has been as brief as possible and

its sole purpose has been to give a meaning to measure the system presented

in the following chapters. To get further information in quantum computing,

Reference [48] is a good book to start with.
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Chapter 4

Inductive Superconducting SET

“If you can’t get rid of the skeleton in your closet, you’d best teach

it to dance.”

- George Bernard Shaw

If one wishes to build a quantum computer it is of great importance that one is

able to do the read-out of the qubits. It has been suggested that the read out of

Josephson junction qubits is made by RF-SETs. Even though the RF-SET has

proven to be suitable at high-frequency charge measurements, it is imperative,

due to its dissipative nature, that alternative technologies are searched. The

charge detector studied in this thesis is the same one that has been measured

by M. Sillanpää and co-workers at Low Temperature Laboratory in Helsinki,

Finland [49, 50]. In the following section the circuit of the detector is presented.

The classical and quantum mechanical models of the circuit are also presented

in the subsequent sections. So, at first the general theoretical treatment of the

circuit at hand is presented and thereafter, in the next chapter, the theory is

used in simulations of the system.

4.1 Classical Model of the Circuit

The circuit of the inductive SSET consists of harmonic (LC) oscillator con-

nected parallel to a SSET. It is a modification of the quantum limited elec-

trometer presented by A. B. Zorin [51, 52]. A drawing of the circuit is shown in

Figure 4.1. The system consists of two Josephson junctions which have iden-

tical tunneling resistances and Josephson energies, RT and EJ , respectively.
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Figure 4.1: Schematic of the inductive SSET circuit.

The island between these two junctions is coupled in the usual manner to a

gate voltage Vg via gate capacitance Cg. The effect of this connection is, as was

seen in previous chapter, to affect the island charge and thereby the current

through the two junction system. The energy gap ∆ of the junctions is as-

sumed to be so large (∆À Ec) that the quasiparticle tunneling effects can be

neglected. The LC-circuit consists of capacitance C and inductance L and is

characterized by the natural resonance frequency ω0 = 1/
√
LC. The effects of

dissipation are modelled by the resistance R parallel to the SSET. The whole

system is connected to a microwave feedline with impedance Z0 via coupling

capacitor Cc which reduces the noise reaching the sample.

Let us ignore the effects of the feedline and the coupling capacitor for a

while and consider only the L-SET circuit. If one feeds external current Iext(t)

to the circuit, one gets a current flow through each element of the circuit. The

external current can be written according to Kirchhoff’s rules as

Iext(t) = Icond + Ires + Iind + ISSET . (4.1)

Here Icond is the displacement current through the capacitor C and Ires is

current through the resistor R, whereas Iind and ISSET stand for the currents

through the inductor and the SSET, respectively. Now, basing on the previous

chapter, the current through the junction pair is approximated by Equation

(3.84)

ISSET =
2e

~
EJ(Vg)

sinϕ
[

2(1 + cosϕ)
]1/2

,

where EJ(Vg) is the gate tunable Josephson energy. With the help of this

and common knowledge of the electrical circuitry, one can write the external
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current as

Iext(t) = C
dV

dt
+
V

R
+

∫

V dt

L
+

2e

~
EJ(Vg)

sinϕ
√

2(1 + cosϕ)
. (4.2)

If one uses the AC Josephson relation (2.18), one gets that

Iext(t) = C
~

2e
ϕ̈+

~

2eR
ϕ̇+

~

2eL
ϕ+

2e

~
EJ(Vg)

sinϕ
√

2(1 + cosϕ)
, (4.3)

which is the classical equation of motion of the system. It can be written in di-

mensionless form by dividing with 2eEJ(Vg)/~ and introducing a dimensionless

time variable τ = ωpt, with ωp =
√

2eIc/~C and Ic = 2eEJ(Vg)/~

Iext(t)

Ic
=
d2ϕ

dτ 2
+

~ωp

2eRIc

dϕ

dτ
+

~

2eLIc
ϕ+

sinϕ
√

2(1 + cosϕ)
. (4.4)

In the following, the derivative of the phase difference ϕ with respect to

dimensionless time variable τ is for simplicity also denoted by ϕ̇. Similarly,

d2ϕ/dτ 2 ≡ ϕ̈. If the fluctuations of the phase ϕ are big, the sine term is

negligible compared with the linear term and so the equation of motion is of

form

ϕ̈+
~ωp

2eRIc
ϕ̇+

~

2eLIc
ϕ− Iext(t)

Ic
= 0. (4.5)

Because the frequency is measured in the units ωp the factor in front of ϕ can

be identified as the square of the resonance frequency

ω0 =
1√
LC

. (4.6)

This is actually the natural resonance frequency of a simple LC-circuit.

On the other hand, when the fluctuations of the phase difference ϕ are

small, one is able to write the sine term as sinϕ ≈ ϕ and the cosine term as

cosϕ ≈ 1. This way the equation of motion reduces to

ϕ̈+
~ωp

2eRIc
ϕ̇+

~

2eLIc
ϕ+

ϕ

2
− Iext(t)

Ic
= 0, (4.7)

which implies that

ϕ̈+
~ωp

2eRIc
ϕ̇+

[

~

2eLIc
+

1

2

]

ϕ− Iext(t)

Ic
= 0. (4.8)
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Here the square root of the factor of ϕ times ωp can be identified as the

resonance frequency ωr of the system

ωr = ωp

√

~

2eLIc
+

1

2
=

√

ω20 +
ω2p
2
. (4.9)

So, when the fluctuations of the phase ϕ are increased, one can expect a shift

in resonance frequency from ωr → ω0. This is in fact seen in the simulations

presented in the following chapter.

4.1.1 Lagrangian of the system

The equation of motion (4.3) gives the time development, i.e. the dynamics,

of the system. It can be rewritten in a form

Iext(t) = C
~

2e
ϕ̈+

~

2eR
ϕ̇

− d

d(~ϕ/2e)

(

EJ(Vg)
√

2(1 + cosϕ)− ~
2

8e2L
ϕ2
)

,
(4.10)

similar to what was done in Subsection 2.2.1. The term

~
2

8e2L
ϕ2 − EJ(Vg)

√

2(1 + cosϕ) (4.11)

can be interpreted as the potential energy V of the system. That is,

V =
~
2

8e2L
ϕ2 − EJ(Vg)

√

2(1 + cosϕ). (4.12)

Similarly, the term C~ϕ̈/2e can be written as

C
~

2e
ϕ̈ =

d

dt

[

d

d(~ϕ̇/2e)

( C~
2

2(2e)2
ϕ̇2
)

]

=
d

dt

[

d

d(~ϕ̇/2e)

(CV 2

2

)

]

, (4.13)

which implies that the kinetic energy K of the system is

K =
Q2

2C
. (4.14)

Now the Lagrangian of the system is

L = K − V =
Q2

2C
− ~

2

8e2L
ϕ2 + EJ(Vg)

√

2(1 + cosϕ). (4.15)
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As usual, the resistance R causes dissipation to the environment, and therefore

the term ~ϕ̇/2eR is left out of the Lagrangian formalism. The external Iext is

interpreted as the driving force and can be included into the potential of the

Lagrangian in the form

Vd = −
~

2e
ϕIext(t). (4.16)

However, if Iext(t) = Ie cos(ωt), as is the case here, the average potential over

time equals to zero.

4.2 QuantumMechanical Model of the Circuit

The Lagrangian (4.15) with the drive potential can be used to derive the

Hamiltonian of the system. Generally, the Hamilton’s function of a physical

system is defined as [20]

H =
∑

i

piq̇i − L, (4.17)

where the pi’s and q̇i’s are the generalized momenta and velocities, respectively.

Accordingly, the Hamiltonian can also be written as a sum of the kinetic and

the potential energies of the system. In this particular case, the Hamiltonian

is therefore

H =
Q2

2C
+

~
2

8e2L
ϕ2 − EJ(Vg)

√

2(1 + cosϕ)− ~

2e
ϕIext(t). (4.18)

The quantization of the charge and phase, done in Section (2.2.3), led to

Equation (2.37). Because ~ϕ̇/2e = V = Q/C, one gets by substituting that

Ĥ = −4e2

2C

∂2

∂ϕ2
+

~
2

8e2L
ϕ2 − EJ(Vg)

√

2(1 + cosϕ)− ~

2e
ϕIext(t). (4.19)

The transported charge is 2e, and therefore the charging energy related to a

single Cooper pair tunneling is denoted by Eq = 4e2/2C. Then the effective

Hamilton’s operator of the system is

Ĥ = −Eq
∂2

∂ϕ2
+

~
2

8e2L
ϕ2 − EJ(Vg)

√

2(1 + cosϕ)− ~

2e
ϕIext(t). (4.20)

The Schrödinger equation for a Hamiltonian is in general

ĤΨ = ÊΨ, (4.21)
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and for the system at hand it is

(

− Eq
∂2

∂ϕ2
+

~
2

8e2L
ϕ2

− EJ(Vg)
√

2(1 + cosϕ)− ~

2e
ϕIext(t)

)

Ψ = i~
∂

∂t
Ψ.

(4.22)

This implies that

( ∂2

∂ϕ2
− ~

2

8e2LEq

ϕ2 +
EJ(Vg)

Eq

√

2(1 + cosϕ)

+
~

2eEq

ϕIext(t) +
i~

Eq

∂

∂t

)

Ψ = 0.

(4.23)

Here the E and the Ψ are the eigenenergy and the eigenfunction of the system,

respectively.



Chapter 5

Simulations and Calculations

“In theory, there is no difference between theory and practice. But,

in practice, there is.”

- Jan L. A. van de Snepscheut

In this chapter some numerical results of the circuit presented above are dis-

cussed. The approximations made in the previous chapter are also used in the

following. The parameters of the circuit are chosen to be the same as in the

experiments made by the Helsinki group.

5.1 Reflection Coefficient

Let us feed a current Iin through the coupling capacitor Cc to the L-SET

circuit. Because the impedances between the feedline and the circuit differ

from each other, a part of the incoming current is reflected [53]. Both the

incoming and the reflected current (Iin and Ir, respectively) can be measured

and thereafter used in determining the reflection coefficient

Γ =
Ir
Iin

. (5.1)

Naturally, one expects the reflection coefficient Γ to have values in the range

of [0, 1]. Usually, when the probed system is linear, the reflection coefficient

can be calculated as a function of the feedline impedance Z0 and the system

impedance Z [53]

Γ =
Z − Z0
Z + Z0

. (5.2)
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Figure 5.1: A transmission line terminated at L-SET system.

In this case, however, the system is not linear due to the nonlinear inductance

of the two Josephson junctions. This makes the calculation of the reflection

coefficient a little more complicated.

The circuit presented in Figure 4.1 can be studied as a transmission line

that is terminated to impedance Z (see Figure 5.1). However, due to the

nonlinearity of the L-SET system, the impedance is not well defined. Therefore

the whole L-SET system is denoted only by Box. The travelling waves of the

voltage V and the current I in the transmission line can be written in the form

V (x, ω) = V−e
γx + V+e

−γx

I(x, ω) = −V−
Z0
eγx +

V+
Z0
e−γx.

(5.3)

Here the V+ and V− are the amplitudes of the incoming and the reflected waves,

respectively. Both of the amplitudes are complex and depend on ω, which is

the frequency of the input current. The quantity γ is called the propagation

function and its form will be of no importance in here, as will be seen later. [53]

At the end of the line (x = 0) the travelling waves simplify to

V (0, ω) ≡ V (ω) = V− + V+

I(0, ω) ≡ I(ω) = −V−
Z0

+
V+
Z0
.

(5.4)

This implies that

V+ =
1

2

(

V (ω) + Z0I(ω)
)

V− =
1

2

(

V (ω)− Z0I(ω)
)

.
(5.5)
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Figure 5.2: Equivalent circuit model for the probed L-SET system.

Here the V+ is fixed by the incoming radiation. The reflection coefficient can

now be expressed as

Γ =
V−
V+

=
V (ω)− Z0I(ω)
V (ω) + Z0I(ω)

. (5.6)

The actual numerical calculation of reflection coefficient in Equation (5.6) is

somewhat difficult due to the nonlinearity of the system.

On the other hand, let us consider a circuit depicted in Figure 5.2. Now

the Box is connected parallel with the feedline impedance Z0 and a current is

fed to this system by a current source I0. The potential difference accross the

Box is simply V1 = Z0(I0 − I1) which implies

V1 + Z0I1 = Z0I0. (5.7)

Now, if one identifies V with V1 and I with I1 one sees that solving the reflection

coefficient of the circuit in Figure 5.1 is equivalent to solving the circuit in

Figure 5.2 numerically. That is why the circuit above is called as the equivalent

circuit model for the probed L-SET system. This way 2V+ = Z0I0, 2V− =

Z0I0 − 2Z0I1 and the reflection coefficient reduces to

Γ =
I0 − 2I1

I0
. (5.8)

The equivalent circuit is numerically solved in the following subsection.

5.1.1 Equation of Motion

The derivation of the equation of motion of the equivalent circuit model is

begun, as in the previous chapter, with the Kirchhoff loop rules. The input



66 CHAPTER 5. Simulations and Calculations

current I0 equals to the sum of IZ0
and I1 that are the currents through the

impedance Z0 and the Box, respectively. That is,

I0 = IZ0
+ I1. (5.9)

Let us first consider a case where the coupling capacitance is equal to zero, i.e.

Cc = 0. In this way, I1 = Iext(t) and the total input current can be written as

I0 =
~

2eZ0
ϕ̇+ C

~

2e
ϕ̈+

~

2eR
ϕ̇+

~

2eL
ϕ+

2e

~
EJ(Vg)

sinϕ
√

2(1 + cosϕ)
. (5.10)

This can be again written in a dimensionless form

I0
Ic

=
d2ϕ

dτ 2
+

~ωp

2eIc

(

1

Z0
+

1

R

)

dϕ

dτ
+

~

2eLIc
ϕ+

sinϕ
√

2(1 + cosϕ)
, (5.11)

which implies

d2ϕ

dτ 2
=
I0
Ic
− ~ωp

2eIc

(

1

Z0
+

1

R

)

dϕ

dτ
− ~

2eLIc
ϕ− sinϕ

√

2(1 + cosϕ)

≡ f(τ, ϕ, ϕ̇),

(5.12)

where the derivation with respect to τ is denoted also by a dot. By denoting

χ = ϕ̇ one gets a pair of coupled first order differential equations

{

χ̇ = f(τ, ϕ, χ)

ϕ̇ = χ(τ, ϕ, χ)
(5.13)

which can be solved numerically by the fourth order Runge-Kutta method [54].

This, however, does not describe the circuit at hand and one has to pay atten-

tion also to the effects of the coupling capacitor Cc.

If the coupling capacitance is taken into consideration, the situation be-

comes somewhat more complicated, as can be seen in Figure 5.3. Namely,

again with the help of the Kirchhoff rules, a pair of equations can be formed

V1 +
1

Cc

∫

I1dt = Z0(I0 − I1) (5.14)

I1 = Iext(t). (5.15)

By taking the derivative of the Equation (5.14) with respect to time, one

obtains

İ1 = İ0 −
1

Z0Cc

I1 −
V̇1
Z0
. (5.16)
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Figure 5.3: Equivalent circuit model for the probed L-SET system with cou-

pling capacitor.

This can again be changed to dimensionless variables, and by denoting the

derivative with respect to τ with a dot, one obtains

İ1
Ic

=
İ0
Ic
− 1

Z0ωpCc

I1
Ic
− 1

CZ0ωp

ϕ̈ ≡ f1(τ, ϕ̈, I1). (5.17)

Also,

ϕ̈ =
I1
Ic
− ~ωp

2eIcR
ϕ̇− ~

2eLIc
ϕ− sinϕ

√

2(1 + cosϕ)
≡ f2(τ, ϕ, ϕ̇, I1) (5.18)

Now, one actually notices that ϕ̈ dependence in the function f1(τ, ϕ̈, I1) can

be eliminated. By doing so, one obtains f1(τ, ϕ̈, I1) ≡ f1(τ, ϕ, χ, I1), where it

has been denoted that χ = ϕ̇. This way, one obtains a group of coupled first

order differential equations







İ1 = f1(τ, ϕ, χ, I1)

χ̇ = f2(τ, ϕ, χ, I1)

ϕ̇ = χ(τ, ϕ, χ, I1))

(5.19)

This group can also be solved by fourth order Runge-Kutta method for systems

of differential equations [54].

5.2 System Parameters and Results

The parameters used for the computation were the same that have been ob-

tained from the measurements in Helsinki. The calculations were made for two
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Sample RSSET (kΩ) EJ (K) Ec (K) L (nH) C (pF) Cc (pF)

1 4.2 3.5 0.17 3 23 0.72

2 9.6 1.6 0.92 7.4 8.4 0.72

Table 5.1: Parameters of the two samples measured in Helsinki.

samples one of which was purely classical, i.e. EJ À Ec. The other one had

the Josephson energy EJ & Ec and was expected to undergo reduced SSET

processes (above all to have the gate charge dependent critical current). The

parameters of the two samples are shown in Table 5.1. The inductance and

capacitance of the LC-oscillator were determined by measuring the resonance

frequency at T = 4 K with known components. Also, if one considers the

junctions composing the SSET to be identical, then the single-junction tun-

neling resistance RT is half of the SSET resistance. This is, of course, of no

importance when the quasiparticle tunneling is neglected, as is the case in here.

However, with the help of RT and the approximated value of the supercon-

ducting gap ∆ one is able to obtain the single-junction value for the EJ . The

capacitive energy of the whole SSET is approximated by the experimenters.

Their quess is based on experience and the symmetry of the SSET.

In the spirit of Subsection 3.4.2 one is able to approximate the supercurrent

through two junction SSET. When the individual Josephson energies of the two

junctions are EJ the Josephson energy EJ,SSET ≡ EJ(Vg) of the approximation

can have values 0 < EJ(Vg) < EJ , depending on the gate voltage Vg. Let us

take this into consideration by denoting EJ(Vg) ≡ β(Vg)EJ where β(Vg) ∈
(0, 1). When the junction is classical, as is the case with Sample 1, β can

be taken as constant 1. This means naturally, that the gate voltage does not

affect to the supercurrent through the SSET.

The potential energies according to Equation (4.12) are shown in Figure 5.4,

corresponding to the parameter values given in Table 5.1 for the two samples.

The local minima of this potential are found by derivating it with respect to

ϕ and by setting this derivative to zero

dV
dϕ

=
~
2

4e2L
ϕ+ EJ(Vg)

sinϕ
√

2(1 + cosϕ)
= 0. (5.20)

This equation can be simplified for the calculations into form

f(ϕ) = ϕ+ γ
sinϕ

√

2(1 + cosϕ)
= 0, (5.21)
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Figure 5.4: Potential energy of the system for the Samples 1 (left) and 2 (right).

The relevant energies are measured in Kelvin’s.

where γ = EJ(Vg)4e
2L/~2. This was again derivated with respect to ϕ and the

minima were looked for. The first positive minimum sets a lower bound for γ

which was found to be γ > π. This means that when the ratio EJ(Vg)4e
2L/~2

exceeds π, one is expected to find a minimum in the potential V , other than

ϕ = 0. However, with the parameter values used here one obtains

EJ(Vg)4e
2L/~2 ¿ π. (5.22)

So, no potential minima (other than ϕ = 0) is found in the present approxi-

mation.

One is also able to calculate the asymptotic behaviour of the resonance

frequency. According to Equation (4.9) one gets that

f0 =
ω0
2π

fr =
1

2π

√

ω20 +
ω2p
2
.

For Sample 1 β(Vg) ≈ 1 and one gets that f0 = 606 MHz and fr = 784 MHz.

For Sample 2 let us approximate β(Vg) ≈ 0.65, which leads to f0 = 638 MHz

and fr = 847 MHz. These are, nevertheless, not the true values of the f0 and

fr due to the effects caused by the coupling capacitance. The more realistic

values are seen in the simulations made in the following subsection. Based on

the discussion above in this chapter, one expects a shift from fr to f0 when

the fluctuations of the phase ϕ get bigger, i.e. the drive current is increased.

This shift has been seen both in experiments and simulations.
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5.2.1 Resonance Frequency Shift

The shift in the resonance frequency can be measured in the following way.

An alternating current I0 = Ie cos(ωt) is called carrier current and fed to the

resonator (LC + SSET) via the feedline with impedance Z0 = 50 Ω. On the

boundary between the feedline and the resonator, part of the incoming current

is reflected and the rest is transmitted to the resonator. The argument and

the magnitude of the complex reflection coefficient can both be measured by

a proper network analyzer. This measurement has actually been done by M.

Sillanpää et al. A theoretical simulation of the situation is presented here.

The reflection coefficient is determined numerically in the following way.

At first, one solves the current I1 as a function of time according to the group

of linear equations (5.19). Simultaneously, its (complex) Fourier component

I1(f) corresponding to the carrier frequency f = ω/2π is calculated. Then one

is able to calculate the reflection coefficient according to Equation (5.8). This

calculation is repeated with different values of carrier amplitude and frequency.

The results of the simulations of the Sample 1 are shown in Figure 5.5.

On the left is the contour plot of the magnitude |Γ| of the current reflection

coefficient Γ = |Γ|ei arg(Γ) as a function of frequency and power of the incoming

current. The power is measured in decibels according to

dB = 10 · log10(P1/P0), (5.23)

where P1 is the incoming power and P0 the reference power. Here P0 is set

to 1 mW, which leads to power unit dBm. Because the incoming voltage can

be written as V+ = Z0Ie/2, the incoming power P1 can be calculated by using

relation [14]

P1 =
V 2+
2Z0

=
Z0I

2
e

8
. (5.24)

From the left hand side contour plot, one sees clearly the shift in resonance

frequency at the critical power Pc ≈ −100 dBm. A same kind of plotting of the

argument of Γ has been done on the right hand side of Figure 5.5. A similar

kind of behaviour has also been detected in classical junctions by I. Siddiqi et

al. in Yale [55].

In the simulations the magnitude got values from 0.83 (black) to 1.00

(white). Similarly, the argument had values from 0.04 (black) to 0.26 (white).

When results obtained for the magnitude are compared to the measured data

(see Figure 5.6), one sees that the width of the resonance peaks as well as
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Figure 5.5: Depedence of the calculated reflection coefficient Γ on the frequency

f and the amplitude Ie of the incoming current I for Sample 1. On the left is

the contour plot of the magnitude of Γ. The gray-scale goes from 0.83 (black)

to 1.00 (white). On the right is the countour plot of the argument of Γ with

the gray-scale from 0.04 (black) to 0.26 (white).

Figure 5.6: Measured magnitude of the reflection coefficient for Sample 1.
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Figure 5.7: Simulated reflection coefficient for Sample 1 with C = 25 pF,

L = 2.76 nH and Cc = 1.76 pF. The gray-scale runs from 0.51 (black) to

0.96 (white) for the magnitude and from -0.13 (black) to 0.61 (white) for the

argument. Notice that the scales differ from those in Figure 5.5.

the asymptotic resonance frequencies are larger in the simulations than in the

physical system. Moreover, the depths of the resonance peaks are smaller in the

simulations. However, this does not present a problem, because by changing

the parameter values one is able to alter these properties to the right direction.

The changes are well justified up to a certain limit because there always exists

some error when these kind of parameters are measured. So, in Figure 5.7 one

sees the effects of slightly adjusted parameter values. The anticipated shift

in the resonance frequency can be seen in the Figures at the critical power

Pc ≈ −100 dBm. Also, the simulated amplitude of the reflection coefficient

agrees qualitatively well with the measured one.

The simulations show that the effects of changing the parameter values

are as follows. A growth in the capacitance C increases the gap between the

two resonance peaks. It also results in lower resonance peaks. Moreover, if one

increases the inductance L, both of the peaks are shifted to smaller frequencies

by an equal amount. Also, the peaks are lowered. Similarly, the bigger is the

resistance R, the lower are the resonance peaks. The growing of the coupling

capacitance, however, leads to higher resonance peaks. It also shifts the peaks

to lower frequencies and lowers the critical power. In addition, if one reduces

the Josephson energy EJ one obtains higher and narrower peaks.
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Figure 5.8: Simulated magnitude (left) and argument (right) of the reflection

coefficient for Sample 2. The gray-scale for the magnitude plot runs from 0.54

(black) to 0.97 (white). For the argument plot the scale goes from -0.08 (black)

to 0.48 (white).

Figure 5.9: Measured magnitude of the reflection coefficient for Sample 2. The

inset shows the results obtained in Helsinki with the Aplac circuit simulator.
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When the same kind of calculations are applied to the parameters of the

Sample 2, the results look like Figure 5.8. The color scale for the magni-

tude runs from 0.54 (black) to 0.97 (white) and for the argument from -0.08

(black) to 0.48 (white). Again, the simulations can be compared with the mea-

surements. In Figure 5.9 one sees the measured magnitude of the reflection

coefficient obtained in Helsinki [49, 50]. When one examines the plot of Sam-

ple 2 one sees an interesting “hair”-like structure in the regime of high input

power. It is related to the resistance R. Namely, when R is small the hairs

are longer and vice versa. All in all, the simulations show for both samples

the anticipated resonance frequency shifts at the critical power and are also in

other respects in qualitatively good correspondence with the measurements.

However, there exist also some differences between the simulated and the mea-

sured data. The “satellite dips” on both sides of the resonance peak at f0
are not seen in the simulations. Moreover, the depth of the resonance peak is

constant in simulations with all power values. In the measurements the peak is

lower at small input powers than at high ones. Also, the measured resonance

frequency shift is discrete for Sample 2 even though it is clearly continuous in

simulations.

5.2.2 Effect of the Gate Capacitance

If one wishes to use the L-SET circuit as a charge detector, it is important that

the change in gate charge Qg has some effect in the reflected current. Because

in the weak coupling regime the supercurrent through the L-SET is dependent

on the gate charge, this effect could be expected in the Sample 2. As explained

before, the effects of the gate charge to the Josephson energy EJ(Vg) of the two

junction system can be taken into account by introducing the factor β(Vg), so

that EJ(Vg) = β(Vg)EJ . Here the EJ is the single junction Josephson energy.

The exact form of the factor β(Vg) is not derived here, but the simulations are

performed with linearly spaced β(Vg) values. So, the effect of gate voltage is

seen by plotting the magnitude and the argument of the reflection coefficient as

a function of incoming frequency ω with different values of β(Vg). The results

are shown in Figure 5.10. The depenedence of both, magnitude and argument,

on the fluctuations in the gate voltage can clearly be seen. This way one gets

information of the gate charge by measuring the magnitude or the argument

of the reflection coefficient. However, due to the lack of the exact form of the

β(Vg), one is not able to the tell details about the sensitivity of the device.
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Figure 5.10: The magnitude (left) and the argument (right) of the reflection

coefficient Γ of Sample 2 drawn as a function of f with different values of

β(Vg).

5.3 Discussion

“I have not failed. I have found 10.000 ways that do not work.”

-Benjamin Franklin

Based on the simulations made, it is obvious that the simple model derived

for the reflection coefficient is qualitatively in good agreement with the real

physical quantity. The dynamics of both, the magnitude and the argument,

were similar to those obtained from the experiments. Also, the dependence

of both of them on the gate charge was shown in the simulations. Therefore,

it is possible to measure the charge on the gate capacitor by measuring the

magnitude or the argument of the reflection coefficient. Because one is able to

measure them with extreme precision, one is therefore capable of measuring

the gate charge with similar accuracy. This way one might be able to build

very precise charge detectors using the inductive SSET structure presented

here.

The main defect in the model is the lack of correct way of the approximating

the effects of the gate voltage to the potential energy. The potential was

approximated quite brutally by connecting the two asymptotic limits in a

very simple way. The calculation of the correct potential would probably lead
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to better correspondence with the reality and should tell something about

the sensitivity of the device. All in all, the next steps should also include

the solving of the Schrödinger equation (4.23) and thereafter trying to find

the causes of the properties that were not discovered here. A similar kind of

theoretical results have also been obtained from Harmonic Balance simulations

done with Aplac circuit simulator by M. Sillanpää et al. [49, 50].

It is worthwhile also to mention, that the inductive SSET can be used

in the redefinition of the present current standard. Namely, nowadays the

definition of ampere needs a concept of an infinitely long wire, and therefore

is not practical for the realization of the unit of current. However, with the

help of single electron tunneling this problem could be circumvented [56].



Chapter 6

Conclusions

“There is a theory which states that if ever anybody discovers ex-

actly what the Universe is for and why it is here, it will instantly

disappear and be replaced by something even more bizarre and inex-

plicable. There is another theory which states that this has already

happened.”

-Douglas Adams

The purpose of this thesis was to present a new kind of way to measure charge.

It was done by introducing a device whose operational principle was similar to

the present state-of-the-art charge detector, RF-SET. The gadget was called

as the inductive superconducting SET. The illustration was started with the

fundamentals of the tunnel junctions and Josephson junctions. Thereafter, a

peak to the tunneling rates of a single junction was made. After that, the

structure of an ordinary SET was presented and theory was then developed to

cover also the SETs that are in the superconducting state. A short introduction

to quantum computing was also made to get some motivation for the following

treatments.

After this introductory part, the model of the new circuit was presented.

The system was handled both classically and quantum mechanically. Equiva-

lent circuit model of the system was formed before the numerical calculations

were made. The coupled linear first order differential equations were solved

with fourth order Runge-Kutta method. The reflection coefficient of the system

was determined by counting the Fourier component of the incoming current at

carrier frequency. The results of the simulations were compared with the mea-

surements and a qualitative correspondence was found. Also, the resonance
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frequency was found to be dependent on the gate charge in the weak coupling

regime, which is an essential feature if one wants to use the system in charge

measurements. The possible corrections to the model and future prospects

were discussed in the end.

In summary, a theory concerning the L-SET circuit has been presented.

Also, probable applications have been proposed. The theory has been put into

a test by simulating the reflection coefficient and comparing the results with

the measured ones. Even though the correspondence between the theory and

the measurements was quite good one should, however, not praise the theory

as the gospel truth, but merely as an explanation.

”That’s all I have to say about that.”

- Forrest Gump
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