763310A ANALYTICAL MECHANICS Exercise 10  Autumn 2016

1. Solution:

w3 N

a)

Let’s consider an object on the Earth’s surface in the location rop;. The
object is on the rest meaning r,,; = 0 and it is affected by the force mg
i.e.

MmYop; = Mg.

The formulae in the above include also fictitious forces due to rotating
coordinate system (the Earth) but of course also the normal external
forces F(®). In our system the only external force is gravitation:

F©) = mg, = —mgot.
The Earth is rotating with a constant angular velocity
w=wk=w=0.
Now from the lectures we get

Mmion; = F© —2mw x Fopy —m @ Xr —mw X (w X 1)
~—— —~ ~— ~
—mg = mgof 0 =0

=

g=—gor —w X (wXxr).



For the cross product we use cylinder coordinates
r=pp+z2z=rsinfp+ 2z

and thus
w X (wXxr)
=w X [wz X (rsinfp + 2z)]

=wz X [wrsinf (z X p)twz (z X z)]
——

~——
—p =0
= w?rsind (z x @)
——
=
o 2 . ~
= —w*rsindp.

So it is that
g = —got + rw?sin 6p.
b)
Let’s make the perturbation
r=rop+ry+---

where r; o< w’. We assumed a coordinate system where z is pointing to
the direction of —g:

z2=—g/go=1—w'sinfg,'p=1—OW?)p~rt,

because we neglect second order terms in the first order perturbation.
We start again from the formula

mi = —mgr — 2mw X I — mw X (w X r)

where we used w = 0. In the first order perturbation we get

mry + mr; = —mgr —2mw X ¥p —2mw X ;] —mw X (w X rg) —w X (w X 1r7).
~ ~ —— —— ~ — RN — 2
oxw? oxcw! oxwO ocw! oxcw? ocw?2 ocw3

The zeroth order equation is

1
Tg=—gr = —gz = 1) = (h — §gt2)i

where our initial conditions are #¢(0) = 0 and r¢(0) = h i.e. the object
start to fall from the height h. The second order equation is

.I;l = —2w XI"O

—2w(cos 0z — sin 0x) x (—gtz)
= —2wgtsinf (x X z)

H’A—/
=y

= 2wgt sin Oy



and the solution is
s
r = gwgt sin 0y .
So our second-order perturbation gives the result
I o\. 1 4. .
rrg+r;=|h-— §gt zZ + gwgt sin 0y .
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The density function is

(r) = M/abe, |z|<%Uly| <iuUlz] < ¢
p 0, otherwise

Let’s denote py = M /abc = constant and x; = x, o = y and z3 = 2.
The definition of the moment of inertia is

I = / / / p(r)(0;7% — xizy)dPr.

First we study the diagonal elements of the inertia tensor (¢ = j) and
then we have

and



Now we get from the definition that

a/2 b/2 c/2
I = / / / po(2? + 1y + 22 — 2?)dzdyda
—a/2J-b/2J—c/2

a/2 b/2 c/2
= po/ dx/ / (y* + 2*)dzdy
—a/2 —b/2 J—c/2
:

b/2 c/2 1
= poa/ / {yQZ + —23} dy
b/2 3

T /2

b/2 ) 1 5
= poa/ {cy + ¢ }dy
b2 12

b/2

/ 1 3 4 1,

= ppac — —cC

£o 39 19 Yy
—b/2

1 1
— _b3 il Qb
poacLZ + 126 ]

o2
— p( 2 L &
poac (12 N 12)

M
= E(bz -+ 02)

because pg = M /abc = M = ppabe. In a similar way we get

M M
122 = E(CLZ + 02) and 133 = E(CL2 + 62)

The off-diagonal elements i # j = §;; = 0 are easy:

a/2 b/2 c/2
Iij = _)00/ / Ii$jd37" =0
—a/2 J=b/2 J—c/2

because integrals are odd, meaning that

Now we can construct our inertia tensor

B0+ ) 0 0
I= 0 M(a? + ) 0
0 0 2(a® +b%)

For a thin rod we have that b — 0 and ¢ — 0 and thus

0 O 0
Ma?
=0 Ma2

Ma?
0 O B




3. Solution:
Components of the moment of inertia tensor can be calculated using:

]i' = /d37”p(6ij7’2 — Tﬂ’j)

Now because our system consists of point masses of mass m, integral is
replaced by sum

4

Iij = Z m(d,-jri — n',arj,a) y

a=1

where a goes through all the mass points. Now using above formula and
the coordinates of the masses we get:

Iy =Y m(a? + 22) = m(a® + 0 + (~a)” + (~a)’) = dma®
Iz = I3y = —Zmyaza =0
I3 = Zm(xi +92) = 6ma’

Tensor of inertia is then:

2ma®  —2ma® 0
I=1—-2ma® 4ma? 0
0 0 6ma’

In order to find principal moments of inertia we must find a basis where

L, 0 0
I=10 I, O
0 0 Is

This can be done like in the lecture notes by solving eigenvalue equation:
(I -=X)a=0

This has a nonzero solution, if:

det(I — A1) =0
We therefore write:
2oma® — X —2ma? 0
det —2ma?  4Ama® — \ 0

0 0 6ma® — \



Determinant gives us:
(6ma® — \)(A\* — 6ma*\ + 4m?a*) = 0
Solutions to above equation are then the principal moments of inertia:
Lo = (3% V5)mad®
I3 = 6ma®

It then remains to be shown that smallest principal moment of inertia
corresponds to axis with polar angle 31.7°. To do this we need the
coordinate transition matrix from exercise 1:

2"\ [ cos¢ sing) [z
y' )]  \—sing cos¢) \y
Method 1:

Now we can calculate components of the inertia tensor in primed coor-
dinates. Components then become functions of the polar angle and we
can solve the angle by searching the critical points of the function. Lets
start with the first component:

Iy = Z m(y? +2%) = Z my’> =m Z(_%‘ sin @ + Yo, cos ¢)°
=sin® ¢ Z ma? + cos® ¢ Z my’ — 2sin ¢ cos ¢ Z ML Yo,
= sin® ¢lyy + cos® @111 + 2sin ¢ cos plyo

where we noticed that summations are actually same ones we encoun-
tered while calculating the tensor first time. Next we use following
trigonometric identities to make our result look nicer:

1 2
cos? ¢ = %ﬂﬁ

1—cos?2
sin ¢ = —CQOS ¢

2sin ¢ cos ¢ = sin 2¢

So we get:
L _g L ; 12 059 + Iy sin 26
Now we derivate this with respect to angle and set it equal to zero:
ag;, = (I, — I11) sin 2¢ + 21 cos 2¢ = 0
This then gives us
215
taln 2¢ = —W
- 12
Q= 5 tan~! R
= —tan”' dma® 31.7°

2 (4 — 2)ma?



Let’s check that this actually gives correct principal moment of inertia
by substituting this into our equation:

2 2 4 2 2 2 4 2
Iy =2 ’5 ma’ Zma 5 T co8(2 x 31.7) — 2ma®sin(2 x 31.7)

~ 0.763932 ~ 3 — /5

Smallest pmi is then given by axis with polar angle 31.7°. Lets have a
bit more fun and calculate also second pmi in primed coordinates:

Ly = Z m(m’? + z’f) = mZ(xi cos ¢ + y; sin ¢)?

= cos® ¢ Z ma; + sin” ¢ Z my; + 2sin ¢ cos ¢ Z MI;Y;
= cos? ¢log + sin® ¢, — 2sin ¢ cos ¢l
_ Iy + Iz n I — I

5 5 L cos 2¢ — I15sin 2¢

We then make a substitution and get:

oma® + dma?  4dma? — 2ma?
Ly — 21O AMAT | AMGT 7 SNAT (9 % 31.7) — (—2ma) sin(2 x 31.7)

2 2
~3+V5

which is exactly what we suspected. We can then safely say that smallest
principal moment of inertia corresponds to axis with polar angle 31.7°.

Method 2:
We can calculate the eigenvector corresponding to the smallest principal
moment of inertia I; = (34+/5)ma?. This is done by solving the problem

The normalized solution is

1

2 1
5—-5 5(_1;‘\/3)

€Tr =

Now we see if this is the same as a rotation of the z-axis:

(o) () = (o) =2 (i v)

Now
¢ = arccos (1 / ) 31.7°

1
= arcsi “(=1+V5) | ~31.7°
¢ = arcsin ( - \/32 ))




4. Solution:
The kinetic energy is

1 .
T = §MR2+T’

where R is the location of c.m (center of mass), M total mass and 7"
is the kinetic energy with respect to the c.m coordinate system. On the
other hand we can represent the kinetic energy with inertia tensor

3

3

1 1oy 1

3 y L} = S MR+ > I
1=1

i=1
where I’ is inertia tensor in the c.m coordinate system. If w = wi, then

R =0and ) = I]. If w=wj, then R = Lw and thus

2

1?2 M2 M2 1
I, = M| - Ih="—" +— =M
? (2) L I I TR

In a similar manner if w = wk, then

1
I; = §MZ2.
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5. Solution:

Let’s choose the axis such that the rod is rotating around the y-axis:

O .
w=|w w=~0.
0
We have already calculated the inertia tensor
0 0 0
I1=10 %le 0
0 0 iml?

3
So the kinetic energy is

1 1 1 .
T= B %:Wi]ijwj =3 zz: Liw? = gml292.
The potential energy is the the potential energy of the c.m:
l 1
[ 1
V= —/ mg— cos0dl' = —=mgl cos 6.
0 l 2
Thus the Lagrangian is
1 : 1
L=T-V = gml292 + §mgl cosf.
For small oscillations it holds that |§] << 1= cosf ~ 1 — 6%

1 . 1
L~ Eml292 — ngl&2 + constant.

Now the Lagrange’s equation is

oLy oL
dt \ 9é 00
&

1 5 1 B
gmlﬁ—l—imglﬁfo

=
iy299—
21 0



and its solution is
0 = Acos(Qt 4 6)

where A and § are constants and the angular velocity is



