
763310A ANALYTICAL MECHANICS Exercise 10 Autumn 2016

1. Solution:

a)

Let's consider an object on the Earth's surface in the location robj. The
object is on the rest meaning ṙobj = 0 and it is a�ected by the force mg
i.e.

mr̈obj = mg.

The formulae in the above include also �ctitious forces due to rotating
coordinate system (the Earth) but of course also the normal external
forces F(e). In our system the only external force is gravitation:

F(e) = mg0 = −mg0r̂.

The Earth is rotating with a constant angular velocity

ω = ωk⇒ ω̇ = 0.

Now from the lectures we get

mr̈obj︸ ︷︷ ︸
=mg

= F(e)︸︷︷︸
=−mg0r̂

−2mω × ṙobj︸︷︷︸
=0

−m ω̇︸︷︷︸
=0

×r−mω × (ω × r)

⇔
g = −g0r̂− ω × (ω × r).



For the cross product we use cylinder coordinates

r = ρρ̂+ zẑ = r sin θρ̂+ zẑ

and thus

ω × (ω × r)

= ω × [ωẑ× (r sin θρ̂+ zẑ)]

= ωẑ× [ωr sin θ (ẑ× ρ̂)︸ ︷︷ ︸
=ϕ̂

+ωz (ẑ× ẑ)︸ ︷︷ ︸
=0

]

= ω2r sin θ (ẑ× ϕ̂)︸ ︷︷ ︸
=−ρ̂

= −ω2r sin θρ̂.

So it is that

g = −g0r̂ + rω2 sin θρ̂.

b)

Let's make the perturbation

r = r0 + r1 + · · ·

where ri ∝ ωi. We assumed a coordinate system where ẑ is pointing to
the direction of −g:

ẑ = −g/g0 = r̂− ω2 sin θg−10 ρ̂ = r̂−O(ω2)ρ̂ ≈ r̂,

because we neglect second order terms in the �rst order perturbation.
We start again from the formula

mr̈ = −mgr̂− 2mω × ṙ−mω × (ω × r)

where we used ω̇ = 0. In the �rst order perturbation we get

mr̈0︸︷︷︸
∝ω0

+mr̈1︸︷︷︸
∝ω1

= −mgr̂︸︷︷︸
∝ω0

−2mω × ṙ0︸ ︷︷ ︸
∝ω1

−2mω × ṙ1︸ ︷︷ ︸
∝ω2

−mω × (ω × r0)︸ ︷︷ ︸
∝ω2

−ω × (ω × r1)︸ ︷︷ ︸
∝ω3

.

The zeroth order equation is

r̈0 = −gr̂ = −gẑ→ r0 =

(
h− 1

2
gt2
)
ẑ

where our initial conditions are ṙ0(0) = 0 and r0(0) = h i.e. the object
start to fall from the height h. The second order equation is

r̈1 = −2ω × ṙ0

= −2ω(cos θẑ− sin θx̂)× (−gtẑ)

= −2ωgt sin θ (x̂× ẑ)︸ ︷︷ ︸
=−ŷ

= 2ωgt sin θŷ



and the solution is

r1 =
1

3
ωgt3 sin θŷ.

So our second-order perturbation gives the result

r ≈ r0 + r1 =

(
h− 1

2
gt2
)
ẑ +

1

3
ωgt3 sin θŷ.

2. Solution:

The density function is

ρ(r) =

{
M/abc, |x| < a

2
∪ |y| < b

2
∪ |z| < c

2

0, otherwise

Let's denote ρ0 = M/abc = constant and x1 = x, x2 = y and x3 = z.
The de�nition of the moment of inertia is

Iij =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(r)(δijr
2 − xixj)d3r.

First we study the diagonal elements of the inertia tensor (i = j) and
then we have

δij = δii = 1

and

r2 = x2 + y2 + z2.



Now we get from the de�nition that

I11 =

∫ a/2

−a/2

∫ b/2

−b/2

∫ c/2

−c/2
ρ0(x

2 + y2 + z2 − x2)dzdydx

= ρ0

∫ a/2

−a/2
dx︸ ︷︷ ︸

=a

∫ b/2

−b/2

∫ c/2

−c/2
(y2 + z2)dzdy

= ρ0a

∫ b/2

−b/2

c/2/
−c/2

[
y2z +

1

3
z3
]
dy

= ρ0a

∫ b/2

−b/2

[
cy2 +

1

12
c3
]
dy

= ρ0ac

b/2/
−b/2

[
1

3
y3 +

1

12
c2y

]

= ρ0ac

[
1

12
b3 +

1

12
c2b

]
= ρ0acb

(
b2

12
+
c2

12

)
=
M

12
(b2 + c2)

because ρ0 = M/abc⇒M = ρ0abc. In a similar way we get

I22 =
M

12
(a2 + c2) and I33 =

M

12
(a2 + b2).

The o�-diagonal elements i 6= j ⇒ δij = 0 are easy:

Iij = −ρ0
∫ a/2

−a/2

∫ b/2

−b/2

∫ c/2

−c/2
xixjd

3r = 0

because integrals are odd, meaning that∫
xidxi = 0, ∀i.

Now we can construct our inertia tensor

I =

M
12

(b2 + c2) 0 0
0 M

12
(a2 + c2) 0

0 0 M
12

(a2 + b2)


For a thin rod we have that b→ 0 and c→ 0 and thus

I =

0 0 0

0 Ma2

12
0

0 0 Ma2

12





3. Solution:
Components of the moment of inertia tensor can be calculated using:

Iij =

∫
d3rρ(δijr

2 − rirj)

Now because our system consists of point masses of mass m, integral is
replaced by sum

Iij =
4∑

α=1

m(δijr
2
α − ri,αrj,α) ,

where α goes through all the mass points. Now using above formula and
the coordinates of the masses we get:

I11 =
∑

m(y2α + z2α) = m(a2 + (−a)2) = 2ma2

I12 = I21 = −
∑

mxαyα = −m(a2 + (−a)2) = −2ma2

I13 = I31 = −
∑

mxαzα = 0

I22 =
∑

m(x2α + z2α) = m(a2 + a2 + (−a)2 + (−a)2) = 4ma2

I23 = I32 = −
∑

myαzα = 0

I33 =
∑

m(x2α + y2α) = 6ma2

Tensor of inertia is then:

I =

 2ma2 −2ma2 0
−2ma2 4ma2 0

0 0 6ma2


In order to �nd principal moments of inertia we must �nd a basis where

I =

I1 0 0
0 I2 0
0 0 I3


This can be done like in the lecture notes by solving eigenvalue equation:

(I − λ1)a = 0

This has a nonzero solution, if:

det(I − λ1) = 0

We therefore write:

det

2ma2 − λ −2ma2 0
−2ma2 4ma2 − λ 0

0 0 6ma2 − λ





Determinant gives us:

(6ma2 − λ)(λ2 − 6ma2λ+ 4m2a4) = 0

Solutions to above equation are then the principal moments of inertia:

I1,2 = (3±
√

5)ma2

I3 = 6ma2

It then remains to be shown that smallest principal moment of inertia
corresponds to axis with polar angle 31.7o. To do this we need the
coordinate transition matrix from exercise 1:(

x′

y′

)
=

(
cosφ sinφ
− sinφ cosφ

)(
x
y

)
Method 1:
Now we can calculate components of the inertia tensor in primed coor-
dinates. Components then become functions of the polar angle and we
can solve the angle by searching the critical points of the function. Lets
start with the �rst component:

I1′1′ =
∑

m(y′
2
α + z′

2
α) =

∑
my′

2
α = m

∑
(−xα sinφ+ yα cosφ)2

= sin2 φ
∑

mx2α + cos2 φ
∑

my2α − 2 sinφ cosφ
∑

mxαyα

= sin2 φI22 + cos2 φI11 + 2 sinφ cosφI12

where we noticed that summations are actually same ones we encoun-
tered while calculating the tensor �rst time. Next we use following
trigonometric identities to make our result look nicer:

cos2 φ =
1 + cos 2φ

2

sin2 φ =
1− cos 2φ

2
2 sinφ cosφ = sin 2φ

So we get:

I1′1′ =
I11 + I22

2
+
I11 − I22

2
cos 2φ+ I12 sin 2φ

Now we derivate this with respect to angle and set it equal to zero:

∂I1′1′

∂φ
= (I22 − I11) sin 2φ+ 2I12 cos 2φ = 0

This then gives us

tan 2φ = − 2I12
I22 − I11

φ =
1

2
tan−1− 2I12

I22 − I11

=
1

2
tan−1

4ma2

(4− 2)ma2
≈ 31.7o



Let's check that this actually gives correct principal moment of inertia
by substituting this into our equation:

I1′1′ =
2ma2 + 4ma2

2
+

2ma2 − 4ma2

2
cos(2× 31.7)− 2ma2 sin(2× 31.7)

≈ 0.763932 ≈ 3−
√

5

Smallest pmi is then given by axis with polar angle 31.7o. Lets have a
bit more fun and calculate also second pmi in primed coordinates:

I2′2′ =
∑

m(x′
2
i + z′

2
i ) = m

∑
(xi cosφ+ yi sinφ)2

= cos2 φ
∑

mx2i + sin2 φ
∑

my2i + 2 sinφ cosφ
∑

mxiyi

= cos2 φI22 + sin2 φI11 − 2 sinφ cosφI12

=
I11 + I22

2
+
I22 − I11

2
cos 2φ− I12 sin 2φ

We then make a substitution and get:

I2′2′ =
2ma2 + 4ma2

2
+

4ma2 − 2ma2

2
cos(2× 31.7)− (−2ma2) sin(2× 31.7)

≈ 3 +
√

5

which is exactly what we suspected. We can then safely say that smallest
principal moment of inertia corresponds to axis with polar angle 31.7o.

Method 2:
We can calculate the eigenvector corresponding to the smallest principal
moment of inertia I1 = (3±

√
5)ma2. This is done by solving the problem

(I − I11)x = 0 .

The normalized solution is

x =

√
2

5−
√

5

 1
1
2
(−1 +

√
5)

0

 .

Now we see if this is the same as a rotation of the x-axis:(
cosφ − sinφ
sinφ cosφ

)(
1
0

)
=

(
cosφ
sinφ

)
=

√
2

5−
√

5

(
1

1
2
(−1 +

√
5)

)
.

Now

φ = arccos

(√
2

5−
√

5

)
≈ 31.7o

φ = arcsin

(√
2

5−
√

5

1

2
(−1 +

√
5)

)
≈ 31.7o



4. Solution:
The kinetic energy is

T =
1

2
MṘ2 + T ′

where R is the location of c.m (center of mass), M total mass and T ′

is the kinetic energy with respect to the c.m coordinate system. On the
other hand we can represent the kinetic energy with inertia tensor

1

2

3∑
i=1

Iiω
2
i =

1

2
MṘ2 +

1

2

3∑
i=1

I ′iω
2
i

where I ′ is inertia tensor in the c.m coordinate system. If ω = ωi, then
Ṙ = 0 and I1 = I ′1. If ω = ωj, then Ṙ = l

2
ω and thus

I2 = M

(
l

2

)2

+ I ′2 =
Ml2

4
+
Ml2

12
=

1

3
Ml2.

In a similar manner if ω = ωk, then

I3 =
1

3
Ml2.



5. Solution:

Let's choose the axis such that the rod is rotating around the y-axis:

ω =

0
ω
0

 ω = θ̇.

We have already calculated the inertia tensor

I =

0 0 0
0 1

3
ml2 0

0 0 1
3
ml2

 .

So the kinetic energy is

T =
1

2

∑
ij

ωiIijωj =
1

2

∑
i

Iiiω
2
i =

1

6
ml2θ̇2.

The potential energy is the the potential energy of the c.m:

V = −
∫ l

0

mg
l′

l
cos θdl′ = −1

2
mgl cos θ.

Thus the Lagrangian is

L = T − V =
1

6
ml2θ̇2 +

1

2
mgl cos θ.

For small oscillations it holds that |θ| << 1⇒ cos θ ≈ 1− 1
2
θ2:

L ≈ 1

6
ml2θ̇2 − 1

4
mglθ2 + constant.

Now the Lagrange's equation is

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

⇔
1

3
ml2θ̈ +

1

2
mglθ = 0

⇔

θ̈ +
3

2

g

l
θ = 0



and its solution is

θ = A cos(Ωt+ δ)

where A and δ are constants and the angular velocity is

Ω =

√
3

2

g

l
.


