
763310A ANALYTICAL MECHANICS Exercise 12 Autumn 2016

1. Solution:
The proof is

[AB,C]PB =
∑
i

(
∂AB

∂qi

∂C

∂pi
− ∂C

∂qi

∂AB

∂pi

)
=
∑
i

[(
∂A

∂qi
B +

∂B

∂qi
A

)
∂C

∂pi
− ∂C

∂qi

(
∂A

∂pi
B +

∂B

∂pi
A

)]
=
∑
i

(
A
∂B

∂qi

∂C

∂pi
− A∂C

∂qi

∂B

∂pi
+B

∂A

∂qi

∂C

∂pi
−B∂C

∂qi

∂A

∂pi

)
= A

∑
i

(
∂B

∂qi

∂C

∂pi
− ∂C

∂qi

∂B

∂pi

)
+B

∑
i

(
∂A

∂qi

∂C

∂pi
− ∂C

∂qi

∂A

∂pi

)
= A[B,C]PB + [A,C]PBB.

2. Solution:
a)
If the Hamiltonian does not explicitly depend on time i.e.

∂H

∂t
= 0,

then it holds

dH

dt
= −[H,H]PB +

∂H

∂t︸︷︷︸
=0

=
∑
i

(
∂H

∂qi

∂H

∂pi
− ∂H

∂qi

∂H

∂pi

)
= 0.

b)
If the Hamiltonian has a property

∂H

∂qk
= 0,

then it holds that

dpk
dt

= −[H, pk]PB +
∂pk
∂t︸︷︷︸
=0

= −
∑
i

(
∂H

∂qi

∂pk
∂pi︸︷︷︸
=δki

− ∂pk
∂qi︸︷︷︸
=0

∂H

∂pi

)

= −
∑
i

δik
∂H

∂qi

= −∂H
∂qk

= 0.



3. Solution:
Our statement is

[Li, Lj]PB =
∑
k

εijk.

If i = j, then [Li, Li]PB = 0 and εiik = 0 because

εijk = −εjik ⇒ εiik = −εiik ⇒ εiik = 0.

Hence the statement holds. Furthermore, the statement is correct if we
change the indices (i, j) → (j, i), because [Li, Li]PB = −[Lj, Li]PB and
εijk = −εjik. Thus we have left only three cases to prove: (1, 2), (1, 3)
and (2, 3). We recall

L = r× p = (ypz − zpy)i+ (zpx − xpz)j+ (xpy − ypx)k = L1i+ L2j+ L3k.

If (i, j) = (1, 2), then

[L1, L2]PB =
∑
i

[
∂

∂qi
(ypz − zpy)

∂

∂pi
(zpx − xpz)−

∂

∂qi
(zpx − xpz)

∂

∂pi
(ypz − zpy)

]
=
∑
i

[(δi2pz − δi3py)(zδi1 − xδi3)− (δi3px − δi1pz)(yδi3 − zδi2)]

=
∑
i

[δ2i3pyx− δ2i3pxy]

= xpy − ypx
= L3

(note that terms e.g. δi1δi2, δi1δi3 ... sum up to zero) and the permutation
symbol gives∑

k

ε12k = ε121︸︷︷︸
=0

L1 + ε122︸︷︷︸
=0

L2 + ε123︸︷︷︸
=1

L3 = L3.

Others in a similar way:

[L1, L3]PB =
∑
i

[
∂

∂qi
(ypz − zpy)

∂

∂pi
(xpy − ypx)−

∂

∂qi
(xpy − ypx)

∂

∂pi
(ypz − zpy)

]
=
∑
i

[(δi2pz − δi3py)(xδi2 − yδi1)− (δi1py − δi2px)(yδi3 − zδi2)]

=
∑
i

[δ2i2pzx− δ2i2pxz]

= xpz − zpx
= −L2

and ∑
k

ε13k = ε131︸︷︷︸
=0

L1 + ε132︸︷︷︸
=−1

L2 + ε133︸︷︷︸
=0

L3 = −L2



and the last case

[L2, L3]PB =
∑
i

[
∂

∂qi
(zpx − xpz)

∂

∂pi
(xpy − ypx)−

∂

∂qi
(xpy − ypx)

∂

∂pi
(zpx − xpz)

]
=
∑
i

[(δi3px − δi1px)(xδi2 − yδi1)− (δi1py − δi2px)(zδi1 − xδi3)]

=
∑
i

[δ2i1pzy − δ2i1pyz]

= ypz − zpy
= L1

and ∑
k

ε23k = ε231︸︷︷︸
=1

L1 + ε232︸︷︷︸
=0

L2 + ε233︸︷︷︸
=0

L3 = L1.

Now we see that the statement holds for every index. Because

L2 =
∑
j

L2
j ,

direct calculation gives us

[L2, Li]PB =
∑
j

[L2
j , Li]PB

=
∑
j

(
Lj[Lj, Li]PB + [Lj, Li]PBLj

)
= 2

∑
j

Lj[Lj, Li]PB

= 2
∑
j

Lj
∑
k

εjikLk

= 2
∑
jk

εjikLjLk

= 0,

where we noticed∑
jk

εjikLjLk = −
∑
jk

εkijLkLj = −
∑
kj

εjikLjLk =
(∗) −

∑
jk

εjikLjLk

⇒
∑
jk

εjikLjLk = 0.

In the step (∗) we renamed the indices (j, k)→ (k, j).

If we consider a group of particles (N particles) that has coordinates q
(a)
i

and momenta p
(a)
i with indices a = 1, . . . , N and i = 1, 2, 3, we have

L =
N∑
a=1

L(a),



where

L(a) = r(a) × p(a).

Now we calculate

[L
(a)
i , L

(b)
j ]PB =

N∑
c=1

3∑
k=1

(
∂L

(a)
i

∂q
(c)
k

∂L
(b)
j

∂p
(c)
k

−
∂L

(b)
j

∂q
(c)
k

∂L
(a)
i

∂p
(c)
k

)

=
∑
c

∑
k

(
δac
∂L

(a)
i

∂q
(a)
k

δbc
∂L

(b)
j

∂p
(b)
k

− δbc
∂L

(b)
j

∂q
(b)
k

δac
∂L

(a)
i

∂p
(a)
k

)

=

(∑
c

δacδbc

)
︸ ︷︷ ︸

=δab

∑
k

(
∂L

(a)
i

∂q
(a)
k

∂L
(b)
j

∂p
(b)
k

−
∂L

(b)
j

∂q
(b)
k

∂L
(a)
i

∂p
(a)
k

)
︸ ︷︷ ︸

=[L
(a)
i ,L

(b)
j ]PB

= δab[L
(a)
i , L

(b)
j ]PB.(∗)

Because L(a) only depend on q
(a)
i and p

(a)
i but not on q

(b)
i or p

(b)
i (a 6= b),

it should be

[L
(a)
i , L

(b)
j ]PB = 0 a 6= b.

The above calculation proves this and is the reason why the many-
particle problem reduces to the single particle case:

[Li, Lj]PB =

[∑
a

L
(a)
i ,
∑
b

L
(b)
j

]
PB

=
∑
ab

[L
(a)
i , L

(b)
J ]PB︸ ︷︷ ︸

=δab[L
(a)
i ,L

(b)
j ]PB

=
∑
ab

δab[L
(a)
i , L

(b)
j ]PB

=
∑
a

[L
(a)
i , L

(a)
j ]PB︸ ︷︷ ︸

=
∑

k εijkL
(a)
k

=
∑
a

∑
k

εijkL
(a)
k

=
∑
k

εijk (
∑
a

L
(a)
k )︸ ︷︷ ︸

=Lk

=
∑
k

εijkLk.

Because we already proved [L2, Li]PB for a single particle only using the
result [Li, Lj]PB =

∑
k εijkLk, we can prove the same result to a many-

particle case reducing the Poisson brackets to a single particle case using
the formula (∗) and using result [Li, Lj]PB =

∑
k εijkLk.



4. Solution:
The Lagrangian is

L = T =
1

2
mẋ2

meaning that canonical momentum is

p =
∂L

∂ẋ
= mẋ

and thus the Hamiltonian has a form

H(x, p) = pẋ− L = mẋ2 − 1

2
mẋ2 =

1

2
mẋ2 =

p2

2m
.

The Hamilton equations say that

ẋ =
∂H

∂p
⇒ ẋ =

p

m

ṗ = −∂H
∂x
⇒ ṗ = 0

and the solution for these equations is

p(t) = p(0)

x(t) =
p(0)

m
t+ x(0).

Because L does not explicitly depend on time, the Hamiltonian is a con-
stant of motion and that is the reason why the solutions of the Hamilton
equations are contours for the Hamiltonian. Because the Hamiltonian
just depends on the momentum, the contours of the Hamiltonian are
parallel to the x-axis.

The solution says that a point is moving with speed proportional to the
initial value of momentum along the line p = p(0). This implies that



the points in the base of the rectangle (p = 0) are staying still and the
points in the top are moving along x-axis with constant speed p(0)/m. It
is easy to see that the initial rectangle changes to a parallelogram when
time goes on. With a short calculation using the solution, we can notice
that the area A is the same in the rectangle as in the parallelogram. The
conservation of the area means that also density is constant and thus
Liouville's theorem holds.

5. Solution:
We can consider an arbitrary distribution ρ(x, t). Let's denote an arbi-
trary interval with I = [x0, x1] that does not depend on time. The mass



M inside the interval I is

M =

∫
I

ρ(x, t)dx.

The change of mass with time is

dM

dt
=

d

dt

∫
I

ρ(x, t)dx =

∫
I

∂ρ

∂t
(x, t)dx.

On the other hand, there is mass �ow going in and coming out in the
ending points of the interval. In the point x the mass �ux to the positive
x-direction is

ρ(x, t)v(x, t).

Now we deduce that the mass change is the same as the net �ux:

dM

dt
= ρ(x0, t)v(x0, t)− ρ(x1, t)v(x1, t)

= −
x1/
x0

ρ(x, t)v(x, t)

= −
∫ x1

x0

d

dx
[ρ(x, t)v(x, t)]dx.

Because our two representations for the mass change have to be same,
we have a relation∫

I

∂ρ

∂t
(x, t)dx = −

∫
I

d

dx
[ρ(x, t)v(x, t)]dx

⇔∫
I

{
∂ρ

∂t
(x, t) +

d

dx
[ρ(x, t)v(x, t)]

}
= 0

Because our interval I is arbitrary, the integrand must always be zero
i.e.

∂ρ

∂t
(x, t) +

d

dx
[ρ(x, t)v(x, t)] = 0

⇔
∂ρ

∂t
(x, t) + v(x, t)

dρ

dx
(x, t) + ρ(x, t)

dv

dx
(x, t) = 0

⇔
∂ρ

∂t
(x, t) + v(x, t)

dρ

dx
(x, t) = −ρ(x, t)dv

dx
(x, t).


