763310A ANALYTICAL MECHANICS Exercise 12 Autumn 2016

1. Solution:
The proof is
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2. Solution:
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If the Hamiltonian does not explicitly depend on time i.e.
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3. Solution:
Our statement is

[Li, Lj]PB = Z €ijk-

!
If 1 = j, then [L;, L;]pg = 0 and €;; = 0 because
€ijk = —€jik = €k = —€iiky = €y = 0.

Hence the statement holds. Furthermore, the statement is correct if we
change the indices (¢,5) — (j,¢), because [L;, L;]pg = —|[L;, L;]pp and
€ijk = —€ji- Thus we have left only three cases to prove: (1,2), (1,3)
and (2,3). We recall

L=rxp=(yp. — 2py,)i+ (2px — 2p.)j + (xpy, — yps)k = L1i + Loj + Lsk.

If (7,j) = (1,2), then
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= Z 613py zSp:By]
= TPy — YDz
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(note that terms e.g. 0;10;2, 0;10;3 ... sum up to zero) and the permutation
symbol gives

E €12k = €121 L1 + €122 Lo + €123 Ly = L.
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Others in a similar way:
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and the last case

0 0 0 0
Lo, Lslps = » [a_qi(% - xpz)%(xpy — Yps) — a—qi(rcpy - ypx)a—pi(zm — zp,)
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= Z[((Si?)px - 51'1]91)(5175@'2 - yém) - (5z'1py - 5i2p:p)(25i1 - 9551'3)}
= [03py — 5py 7]
=YpP> — 2Py
and
262% = €231 L1 + €230 Lo + €233 L3 = L.
k =1 =0 =0

Now we see that the statement holds for every index. Because
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direct calculation gives us
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where we noticed

Z €jiwLliLy = — Z €kij Ll = — Z ejiwLi Ly, =) — Z €jinLj L,
jk jk kj Jk
= Z GjiijLk =0.
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In the step (%) we renamed the indices (j, k) — (k, 7).
If we consider a group of particles (IV particles) that has coordinates ¢
(a)
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and momenta p;’ with indices a =1,..., N and 7 = 1,2, 3, we have



where

Now we calculate
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it should be
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The above calculation proves this and is the reason why the many-
particle problem reduces to the single particle case:
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Because we already proved [L?, L;]pp for a single particle only using the
result [L;, Ljlpg = >, €Lk, we can prove the same result to a many-
particle case reducing the Poisson brackets to a single particle case using
the formula (x) and using result [L;, L;lpg = >, €k L.



4. Solution:
The Lagrangian is
1
L=T=-mi*
5ME

meaning that canonical momentum is

ot

p

and thus the Hamiltonian has a form

Hw.p) = pi — L= mi? — tma? = Lypa2 = 2
’ 2 2 2m’
The Hamilton equations say that
oH
i=2 mi=L
dp m
oH

and the solution for these equations is

p(t) = p(0)

x(t) Z%t + z(0).

Because L does not explicitly depend on time, the Hamiltonian is a con-
stant of motion and that is the reason why the solutions of the Hamilton
equations are contours for the Hamiltonian. Because the Hamiltonian
just depends on the momentum, the contours of the Hamiltonian are
parallel to the x-axis.
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The solution says that a point is moving with speed proportional to the
initial value of momentum along the line p = p(0). This implies that



the points in the base of the rectangle (p = 0) are staying still and the
points in the top are moving along x-axis with constant speed p(0)/m. Tt
is easy to see that the initial rectangle changes to a parallelogram when
time goes on. With a short calculation using the solution, we can notice
that the area A is the same in the rectangle as in the parallelogram. The
conservation of the area means that also density is constant and thus
Liouville’s theorem holds.
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5. Solution:
We can consider an arbitrary distribution p(z,t). Let’s denote an arbi-
trary interval with I = [z, 21] that does not depend on time. The mass
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M 1inside the interval I is
M = /p(m,t)dx.
I

The change of mass with time is

aM  d 9p
i E/Ip(x,t)dx— /Ia(x,t)dx.

On the other hand, there is mass flow going in and coming out in the
ending points of the interval. In the point x the mass flux to the positive
x-direction is

pl, ol 1),
Now we deduce that the mass change is the same as the net flux:

dM

S = plaw, (o, ) = plas, el )

= - 7/)(%‘, tyv(z, 1)

_ _/mo %[p(x,t)v(x,t)]dx.

Because our two representations for the mass change have to be same,
we have a relation

%(x’t)dx = — /I%[p(x,t)v(w,t)]dx

/,{%(l" t) + %[ﬂ(w,t)v(x, t)]} —0

Because our interval [ is arbitrary, the integrand must always be zero
ie.

%(m,t) + %[p(x, tyv(z,t)] =0
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%(w,t} + v(x, t)%(x, t) + p(m,t)j—i(x, t)=0
=

%(m,t) +o(x,t)—(x,t) = —p(x,t)j—v(x,t)



