763310A ANALYTICAL MECHANICS Exercise 2

Autumn 2016

1. Solution:
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We can choose without losing the generality that the particle is moving
in the xz-plane, so v, = 0.
First we use the conservation law of momentum in x-direction:
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Then we use the conservation law of energy:
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Now by combining the conservation laws one gets
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It is interesting to note that in this mechanical picture n is directly
proportional to the velocity of the particle, n o< v. This should be
contrasted to wave optics, where n = ¢/v, where ¢ is the velocity of light
in vacuum and v in the medium. Thus in wave optics n is inversely
proportional to the velocity of the wave.
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Before the actual proof, let’s check some relations: firstly
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and secondly from the lectures
p,=F + FY
and thus
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Now the required proof:
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If I = N/, then it has to be that
1. ro = R, so we are in the C.M. coordinate system

2. ¥p = 0, so our coordinate system is an inertial system (= a system at
rest or a steadily moving system)

3. (R — rg)||fo which means that the acceleration vector and the vector
(R — rg) are parallel.

3. Solution:
Our equation of motion is

my = —mgy — kr.
Let’s substitute r(¢) =~ ro(t) + ri(¢) and thus we get
m(¥o + ¥1) = —mgy — k(o + 11).
Now we match the zeroth- and the first-order terms in k:

mig = —mgy
mi‘l = —k)I‘O
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{ ro(0) = E(O) = S

and because the initial values are zeroth order, it holdsr; = r; = 0Vi > 0.
The solution for the zeroth-oder is easily obtained by integrating twice:
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and using the initial values the solution in the component form is

{ xo(t) = Vit

Yo = Vyt — 39t%.

The process to solve the first-order equation is

Bu(1) =~ k(1) = - (5(0) ~ 1)
h1(0) = [ 100 =~ [ro(0) ~ 507

Finally we can write the whole first-order perturbation solution r(t) ~
ro (t) + 1 (t)
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Now we solve the time for which y(t) = 0:
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o0 = Vit = 598 = - Vig = G = 0
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We are not interested in the solution ¢ = 0 and that is why we are trying
to solve the second equation.

Method 1

(recommended)
Let’s make again a first-order perturbation but for time ¢ ~ ¢ty +¢;. Thus
the throwing time is
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Remember that we are only interested in the zeroth- and first-order terms
and t; oc k. The first-oder term is easy to solve
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and by using the recently solved time ¢, we get
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So our solution for the first-order perturbation problem is
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Method 2
Of course, we can solve the earlier equation exactly
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Now it gets a little bit more difficult. We notice that our wanted time
is the one with the minus sign in front of the square root. We need
only to take the zeroth- and first-order terms and then it is enough to
approximate

1 1
v1+x%1+§x—§x2.
So taking all the relevant terms gets us to
3 kV, 1, 2kV, KV7 12k,
t= m[g+—y—g(1 (2 +55%) -5
kg 2m 2 2° 3mg ¢*m?’ 8
3m[2k;V 2k2v2}
kg L3 m 9 m?g
AL
g 3mg?>

—ye)]

3 mg



The result is as before but this method will not always work as method
1 will.
The last thing we calculate is the length of the throwing

k
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and now we insert the solved time taking only the right orders
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. Solution:
a)
From the potential U(x) we get
1 2 1 4 3
U(z) = §kx - ymex = Fy(z) = —VU(z) = —kz + emx

and we have an external force
Fi(t) = mAcos(wt).
Newton’s 2nd law gives
p= ZF = mi = Fy(x) + Fi(t) = —kz + ema® + mA cos(wt)
and using w? = k/m result the equation of motion
i = —wir + ex® + Acos(wt),
which is a special case of the Duffing oscillator.
b)
Let’s denote x(t) = xo(t) + x1(t) + --- where x;, = O(e¥). Because
we are only interested up to first-order, so we only put a power series
z(t) = xo(t) + x1(t) + O(€?) to the equation of motion from a):
T = i’o + fil + 0(62)
= —wi(zo + 11 + O(2)) + € (2o + 71 + 0(62))?:+A cos(wt)

.

::rg:O(e)
= —wizo + Acos(wt) — wizy + exp + O(?).

Now we match the zeroth- and first-order terms in € and forget all other
corrections:

To = —wirg + Acos(wt) zeroth order
iy = —wizy +exd first oder.



Now we put the trial solution xy = B cos(wt) to the upper equation and
assume w? # w2

= —w?B cos(wt) = —wj B cos(wt) + A cos(wt) Vi
& —w’B=—-w;B+ A
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and for the lower equation we also need z; = C cos(wt) + D cos(3wt)

= —w?C cos(wt) — (3w)?D cos(3wt) = —wi[C cos(wt) + D cos(3wt)] + eB? cos®(wt)
& —w?C cos(wt) — 9w? D cos(3wt) = —wiC cos(wt) — wi D cos(3wt)
3 1 .

+ ZEB?) cos(wt) + Z—LEBS cos(3wt)
o —wC = —wiC + 2eB?
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1 A3
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Thus the solutions are

=5 cos(wt)

5 A cos(wt) + ! A
4 (wg — w2)4€ 4 (wg — w?)3 (w2 — 9w?)

Ty = € cos(3wt).

The solution of the equation of the motion should be continuous but

our approximation diverges in certain points and so the approximation
breaks down:

1. w = wy the first order term diverges (1:1 resonance)

1

2. w = 3w then the external force diverges (overharmonic resonance).



Figure 1: Parameters B (blue),C (dotted red) ja D (dashed orange). A = 1,
W = 1.



