
763310A ANALYTICAL MECHANICS Exercise 2 Autumn 2016

1. Solution:

We can choose without losing the generality that the particle is moving
in the xz-plane, so vy = 0.
First we use the conservation law of momentum in x-direction:

p sin θ = p′ sin θ′ ⇒ p′

p
=

sin θ

sin θ′
.

Then we use the conservation law of energy:

p2

2m
+ V =

p′2

2m
+ V ′ = E, because E = E ′

⇔{
p2

2m
+ V = E

p′2

2m
+ V ′ = E

⇒(p′
p

)2
=
E − V ′

E − V
⇔
p′

p
=

√
E − V ′
E − V

.



Now by combining the conservation laws one gets

sin θ

sin θ′
=
p′

p
=

√
E − V ′
E − V

=def.
n′

n

⇔
n sin θ = n′ sin θ′.

It is interesting to note that in this mechanical picture n is directly
proportional to the velocity of the particle, n ∝ v. This should be
contrasted to wave optics, where n = c/v, where c is the velocity of light
in vacuum and v in the medium. Thus in wave optics n is inversely

proportional to the velocity of the wave.

2. Solution:

Before the actual proof, let's check some relations: �rstly

R =

∑
imiri∑
i

mi︸ ︷︷ ︸
=M

⇒MR =
∑
i

miri

and secondly from the lectures

ṗi = F
(e)
i + F

(i)
i

and thus∑
i

(ri − r0)× ṗi =
∑
i

(ri − r0)× (F
(e)
i + F

(i)
i )

=
∑
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(ri − r0)× F
(i)
i +

∑
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(ri − r0)× F
(e)
i︸ ︷︷ ︸

=def.N′

= N′ +
∑
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ri × F
(i)
i︸ ︷︷ ︸

=0 look at the lectures

−r0 ×
∑
i

F
(i)
i︸ ︷︷ ︸

=0Newton's 3rd law

= N′.



Now the required proof:

d

dt
L′ =

∑
i

d

dt
[(ri − r0)]× (pi −miṙ0) +

∑
i

(ri − r0)×
d

dt
[(pi −miṙ0)]

=
∑
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(ṙi − ṙ0)× (pi −miṙ0) +
∑
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(ri − r0)× (ṗi −mir̈0)

=
∑
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mi (ṙi − ṙ0)× (ṙi − ṙ0)︸ ︷︷ ︸
=0

+
∑
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(ri − r0)× ṗi︸ ︷︷ ︸
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−
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)
× r̈0

= N′ +M(r0 −R)× r̈0.

If L̇′ = N′, then it has to be that

1. r0 = R, so we are in the C.M. coordinate system

2. r̈0 ≡ 0, so our coordinate system is an inertial system (= a system at
rest or a steadily moving system)

3. (R − r0)||r̈0 which means that the acceleration vector and the vector
(R− r0) are parallel.

3. Solution:
Our equation of motion is

mr̈ = −mgŷ − kṙ.

Let's substitute r(t) ≈ r0(t) + r1(t) and thus we get

m(r̈0 + r̈1) = −mgŷ − k(ṙ0 + ṙ1).

Now we match the zeroth- and the �rst-order terms in k:{
mr̈0 = −mgŷ
mr̈1 = −kṙ0.

The initial values are {
r0(0) = r(0) = 0
ṙ0(0) = ṙ(0) = v

and because the initial values are zeroth order, it holds ṙi = ri = 0 ∀i > 0.
The solution for the zeroth-oder is easily obtained by integrating twice:

r0(t) = r0(0) + ṙ0(0)t−
1

2
gt2ŷ



and using the initial values the solution in the component form is{
x0(t) = Vxt
y0 = Vyt− 1

2
gt2.

The process to solve the �rst-order equation is

r̈1(t) = −
k

m
ṙ0(t) = −

k

m
(ṙ0(0)− gtŷ)

⇒ ṙ1(t) =

∫ t

0

r̈1(t
′)dt′ = − k

m

[
ṙ0(0)t−

1

2
gt2ŷ

]
⇒ r1(t) =

∫ t

0

ṙ1(t
′)dt = − k

m

[
ṙ0(0)

t2

2
− 1

6
gt3ŷ

]

⇔


x1(t) = − k

2m
Vxt

2

y1 = − k
m

[
Vy

t2

2
− g

6
t3
]
.

Finally we can write the whole �rst-order perturbation solution r(t) ≈
r0(t) + r1(t):

x(t) ≈ x0(t) + x1(t) = Vxt−
k

2m
Vxt

2 = Vx

(
t− k

2m
t2
)

y(t) ≈ y0(t) + y1(t) = Vyt−
1

2
gt2 − k

m

[
Vy
t2

2
− g

6
t3
]
.

Now we solve the time for which y(t) = 0:

y(t) = Vyt−
1

2
gt2 − k

m

[
Vy
t2

2
− g

6
t3
]
= 0

⇔

t = 0 orVy −
1

2
gt− k

m

[
Vy
t

2
− g

6
t2
]
= 0.

We are not interested in the solution t = 0 and that is why we are trying
to solve the second equation.

Method 1

(recommended)
Let's make again a �rst-order perturbation but for time t ≈ t0+t1. Thus
the throwing time is

Vy −
(1
2
g +

kVy
2m

)
(t0 + t1) +

kg

6m
(t20 + 2t0t1 + t21) = 0

⇔

Vy −
1

2
gt0 = 0 the zeroth order

− kVy
2m

t0 −
1

2
gt1 +

kg

6m
t20 = 0 the �rst order.



Remember that we are only interested in the zeroth- and �rst-order terms
and ti ∝ ki. The �rst-oder term is easy to solve

t0 =
2Vy
g

and by using the recently solved time t0 we get

− kVy
2m

t0 −
1

2
gt1 +

kg

6m
t20 = 0

⇔

− kVy
2m

2Vy
g
− 1

2
gt1 +
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6m

(2Vy
g

)2
= 0

⇔

t1 = −
2

3

kV 2
y

mg2
.

So our solution for the �rst-order perturbation problem is

t ≈ t0 + t1 =
2Vy
g
− 2

3

kV 2
y

mg2
.

Method 2

Of course, we can solve the earlier equation exactly

Vy −
1

2
gt− kVy

2m
t+

gk

6m
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[
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2m

+
g

2
±
√
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4m2
+
gkVy
2m

+
g2

4
− 2gkVy

3m
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+
g

2
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2

√
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3gm
+
k2V 2

y

g2m2


Now it gets a little bit more di�cult. We notice that our wanted time
is the one with the minus sign in front of the square root. We need
only to take the zeroth- and �rst-order terms and then it is enough to
approximate

√
1 + x ≈ 1 +

1

2
x− 1

8
x2.

So taking all the relevant terms gets us to
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2
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2
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=
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=
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.



The result is as before but this method will not always work as method
1 will.
The last thing we calculate is the length of the throwing

x = Vxt−
k

2m
Vxt

2

and now we insert the solved time taking only the right orders

x = Vxt0 + Vxt1 −
k

2m
Vxt

2
0

= 2
VxVy
g
− 8

3

k

mg2
VxV

2
y .

4. Solution:
a)
From the potential U(x) we get

U(x) =
1

2
kx2 − 1

4
mεx4 ⇒ F0(x) = −∇U(x) = −kx+ εmx3

and we have an external force

F1(t) = mA cos(ωt).

Newton's 2nd law gives

ṗ =
∑

F⇒ mẍ = F0(x) + F1(t) = −kx+ εmx3 +mA cos(ωt)

and using ω2
0 = k/m result the equation of motion

ẍ = −ω2
0x+ εx3 + A cos(ωt),

which is a special case of the Du�ng oscillator.
b)
Let's denote x(t) = x0(t) + x1(t) + · · · where xk = O(εk). Because
we are only interested up to �rst-order, so we only put a power series
x(t) = x0(t) + x1(t) +O(ε2) to the equation of motion from a):

ẍ = ẍ0 + ẍ1 +O(ε2)

= −ω2
0(x0 + x1 +O(ε2)) + ε (x0 + x1 +O(ε2))3︸ ︷︷ ︸

=x30+O(ε)

+A cos(ωt)

= −ω2
0x0 + A cos(ωt)− ω2

0x1 + εx30 +O(ε2).

Now we match the zeroth- and �rst-order terms in ε and forget all other
corrections:{

ẍ0 = −ω2
0x0 + A cos(ωt) zeroth order

ẍ1 = −ω2
0x1 + εx30 �rst oder.



Now we put the trial solution x0 = B cos(ωt) to the upper equation and
assume ω2 6= ω2

0

⇒ −ω2B cos(ωt) = −ω2
0B cos(ωt) + A cos(ωt)∀t

⇔ −ω2B = −ω2
0B + A

⇔ B =
A

ω2
0 − ω2

and for the lower equation we also need x1 = C cos(ωt) +D cos(3ωt)

⇒ −ω2C cos(ωt)− (3ω)2D cos(3ωt) = −ω2
0[C cos(ωt) +D cos(3ωt)] + εB3 cos3(ωt)

⇔ −ω2C cos(ωt)− 9ω2D cos(3ωt) = −ω2
0C cos(ωt)− ω2

0D cos(3ωt)

+
3

4
εB3 cos(ωt) +

1

4
εB3 cos(3ωt)

⇔
{
−ω2C = −ω2

0C + 3
4
εB3

−9ω2D = −ω2
0D + 1

4
εB3

⇔
{

(ω2
0 − ω2)C = 3

4
εB3

(ω2
0 − 9ω2)2D = 1

4
εB3

⇔subst. B


C = 3

4
A3

(ω2
0−ω2)4

ε

D = 1
4

A3

(ω2
0−ω2)3(ω2

0−9ω2)
ε.

Thus the solutions are

x0 =
A

ω2
0 − ω2

cos(ωt)

x1 =
3

4

A3

(ω2
0 − ω2)4

ε cos(ωt) +
1

4

A3

(ω2
0 − ω2)3(ω2

0 − 9ω2)
ε cos(3ωt).

The solution of the equation of the motion should be continuous but
our approximation diverges in certain points and so the approximation
breaks down:

1. ω = ω0 the �rst order term diverges (1:1 resonance)

2. ω = 1
3
ω0 then the external force diverges (overharmonic resonance).



Figure 1: Parameters B (blue),C (dotted red) ja D (dashed orange). A = 1,
ω0 = 1.


