
763310A ANALYTICAL MECHANICS Exercise 3 Autumn 2016

1. Solution:
The velocity in the polar coodinates can be presented as

r = rr̂ ⇒ v = ṙr̂ + rθ̇θ̂

and thus the kinetic energy in the polar coordinates is

T =
1

2
mv2 =

1

2
mv · v =

1

2
m(ṙ2 + r2θ̇2).

Denoting the potential with V (r, θ), we get the Lagrangian

L = T − V =
1

2
m(ṙ2 + r2θ̇2)− V (r, θ).

The partial derivatives are

∂L

∂ṙ
= mṙ,

∂L

∂r
= mrθ̇2 − ∂V

∂r
∂L

∂θ̇
= mr2θ̇,

∂L

∂θ
= −∂V

∂θ
.

The Lagrange equations are

d

dt

(∂L
∂q̇i

)
− ∂L

∂qi
= 0 qi = r, θ

the radial equation

d

dt

(∂L
∂ṙ

)
− ∂L

∂r
= 0

⇔
d

dt
(mṙ)−mrθ̇2 + ∂V

∂r
= 0

⇔
d

dt
(mṙ) = mrθ̇2 − ∂V

∂r

the angular equation

d

dt

(∂L
∂θ̇

)
− ∂L

∂θ
= 0

⇔
d

dt
(mr2θ̇) = −∂V

∂θ
.



Now we notice

Lz = (r×mṙ)z

= m(r× ṙ)z

= m[rr̂ × (ṙr̂ + rθ̇θ̂)]z

= m[rṙ (r̂ × r̂)︸ ︷︷ ︸
=0

+r2θ̇ (r̂ × θ̂)︸ ︷︷ ︸
=ẑ

]z

= (mr2θ̇ẑ)z

= mr2θ̇.

Furthermore the general force is

Qθ = F · ∂r
∂θ

= F · r ∂r̂

∂θ︸︷︷︸
=θ̂

= r (F · θ̂)︸ ︷︷ ︸
=Fθ

= rFθ = Nz,

where the last equality comes from the fact that

Nz = (r× F)z

= [rr̂ × (Frr̂ + Fθθ̂)]z, (F = Frr̂ + Fθθ̂)

= [rFr (r̂ × r̂)︸ ︷︷ ︸
=0

+rFθ (r̂ × θ̂)︸ ︷︷ ︸
=ẑ

]z

= (rFθẑ)z

= rFθ.

Thus

d

dt
(mr2θ̇) = −∂V

∂θ
⇒ L̇z = Nz.



2. Solution:

a)
Our initial values are

r(0) = 0⇒ x(0) = y(0) = 0

ṙ(0) = v0 ⇒
{
ẋ(0) = v0 cosα
ẏ(0) = v0 sinα.

The general coordinates:

q1 ≡ x and q2 ≡ y,

the kinetic energy

T =
1

2
mṙ2 =

1

2
m(q̇21 + q̇22),

the potential energy

V = mgy = mgq2

and thus our Lagrangian is

L =
1

2
m(q̇21 + q̇22)−mgq2.

The equations of motion are
x-direction

d

dt

( ∂L
∂q̇1

)
− ∂L

∂q1
= 0

⇔
d

dt
(mq̇1) = 0

⇔
mq̈1 = mẍ = 0

⇔
x(t) = v0 cosαt



y-direction

d

dt

( ∂L
∂q̇2

)
− ∂L

∂q2
= 0

⇔
d

dt
(mq̇2) +mg = 0

⇔
mq̈2 = mÿ = −mg
⇔

y(t) = v0 sinαt−
1

2
gt2.

So our solution is

x(t) = v0 cosαt

y(t) = v0 sinαt−
1

2
gt2.

b)
As said in the lecture notes, we cannot intoduce friction into the La-
grangian. The Lagrange equation is valid only for conservative systems
but let's look a few candidates for the friction term and prove that they
do not work. We can separate our Lagrangian as L = L0 + Li, where
the possible candidates are L1 = q2, L2 = q̇2 and L3 = qq̇. The term
L0 represents the Lagrangian without friction. Because of the linearity
in the Lagrange equation we can always multiply our terms Li with a
constant and we only need to calculate

d

dt

(∂L1

∂q̇

)
− ∂L1

∂q
= −2q

d

dt

(∂L2

∂q̇

)
− ∂L2

∂q
= 2q̈

d

dt

(∂L3

∂q̇

)
− ∂L3

∂q
= 0.

So no trial function gives us any terms just depending on the velocity q̇
and thus they do no produce friction to the equation of motion.



3. Solution:

The kinetic energy

T =
1

2
mṙ2 =

1

2
m(ṙr̂ + rθ̇θ̂)2 =

1

2
ml2θ̇2, (r = l⇒ ṙ = 0)

the potential energy

V = −mgy = −mgl cos θ

and the Lagrangian is

L = T − V =
1

2
ml2θ̇2 +mgl cos θ.

The equation of motion is

d

dt

(∂L
∂θ̇

)
− ∂L

∂θ
= 0

⇔
ml2θ̈ +mgl sin θ = 0

⇔

θ̈ +
g

l
sin θ = 0.

If we study small oscillations meaning θ << 1, then it holds that

sin θ = θ − 1

6
θ3 + · · · ≈ θ

but the angle must be in radians. Now our equation of motion simpli�es
as

θ̈ +
g

l
θ = 0

which is the equation of the harmonic oscillator. Thus the solution is

θ(t) = A cos(

√
g

l
t+ δ)

where A (describing the amplitude of oscillations) and δ (a phase con-
stant) are determinated by the initial conditions.



4. Solution:

s

l0

F

(a) The force needed to stretch a spring by length s from its equilibrium
length is

F = ks

where k is the spring constant. In order to determine the potential energy
of the spring, we calculate the work that is made when s is changed from
0 to s1 (the subindex 1 is used to distinguish the instantaneous stretching
from the �nal stretching),

W =

∫ s1

0

Fds

=

∫ s1

0

ksds

=
1

2
k
s1/
0

s2

=
1

2
ks21.

This gives the potential energy Vs =
1
2
ks2, where s is the strecthing of the

spring. Taking s negative (compressed spring) does not change anything
in the formulas above.
(b) A good choice for the generalized coordinate is the vertical coordinate
y measured from the lower end from the unstretched spring. The kinetic
energy is

T =
1

2
mẏ2,

and the potential energy is (as a constant term can be neglected)

V = Vs + Vg =
1

2
ky2︸ ︷︷ ︸

=the spring

+ mgy︸︷︷︸
=gravity

thus the Lagrangian is

L =
1

2
mẏ2 − 1

2
ky2 −mgy.



So the equation of motion is

d

dt

(∂L
∂ẏ

)
− ∂L

∂y
= 0

⇔
mÿ + ky +mg = 0

⇔

ÿ +
k

m
y + g = 0

⇔
ÿ + ω2y = −g,

where we have simpli�ed the equation of motion by using a notation

ω2 =
k

m
.

The new equation of motion is a perfect second-order linear constant
coe�cient ordinary di�erential equation. The general solution can be
found with the following procedure. The �rst step is to �nd the general
solution of the homogeneous equation (dropping −g on the right hand
side):

ÿh + ω2yh = 0⇒ yh = A cos(ωt+ δ)

The second step is to �nd a special solution y0 of the full equation. The
trial function for the special solution has to be the same order as the
term in the right-hand side in our original equation. In this case that
term is constant, so our trial is also a constant y0. This constant is

ω2y0 = −g ⇒ y0 = −
g

ω2
= −mg

k
.

Now the general solution is the sum of the two separate solutions

y = yh + y0 = A cos(ωt+ δ)− mg

k
.



5. Solution:
a)

Method 1

(in Cartesian system)
The coordinate vector in the spherical system is

r = r cosφ sin θi+ r sinφ sin θj+ r cos θk

and so the velocity is

v = [ṙ cosφ sin θ − rφ̇ sinφ sin θ + rθ̇ cosφ cos θ]i

+ [ṙ sinφ sin θ + rφ̇ cosφ sin θ + rθ̇ sinφ cos θ]j

+ [ṙ cos θ − rθ̇ sin θ]z.

Now our velocity has the form v = vxi+ vyj+ vzk. The kinetic energy is

T =
1

2
m(v2x + v2y + v2z),

that has components

v2x = ṙ2 cos2 φ sin2 θ + r2φ̇2 sin2 φ sin2 θ + r2θ̇2 cos2 φ cos2 θ

+ 2(−ṙrφ̇ cosφ sinφ sin2 θ + ṙrθ̇ cos2 φ sin θ cos θ

− r2φ̇θ̇ sinφ cosφ sin θ cos θ)

v2y = ṙ2 sin2 φ sin2 θ + r2φ̇2 cos2 φ sin2 θ + r2θ̇2 sin2 φ cos2 θ

+ 2(−ṙrφ̇ cosφ sinφ sin2 θ + ṙrθ̇ sin2 φ sin θ cos θ

− r2φ̇θ̇ sinφ cosφ sin θ cos θ)

v2z = ṙ2 cos2 θ − 2rṙθ̇ cos θ sin θ + r2θ̇2 sin2 θ.

Noting that some terms cancel each other and using the relation sin2 φ+
cos2 φ = 1 we get a result:

v2x + v2y + v2z = ṙ2 + r2φ̇2 sin2 θ + r2θ̇2

⇒ T =
1

2
m(ṙ2 + r2φ̇2 sin2 θ + r2θ̇2).

Method 2

(in spherical system)
This proof is based on the fact

dr̂ = sin θdφφ̂+ dθθ̂



which is illustrated in the last page �gures. Now

r = rr̂

⇒ v =
dr

dt

= ṙr̂ + r
dr̂

dt

= ṙr̂ + r
dθ

dt
θ̂ + r sin θ

dφ

dt
φ̂

= ṙr̂ + rθ̇θ̂ + r sin θφ̇φ̂

⇒ T =
1

2
mv2 =

1

2
m(ṙ2 + r2φ̇2 sin2 θ + r2θ̇2)

where we used the facts

r̂ · r̂ = φ̂ · φ̂ = θ̂ · θ̂ = 1

r̂ · φ̂ = r̂ · θ̂ = φ̂ · θ̂ = 0.

b)

The kinetic energy is the same as in a). The spring only depends on the
deviation from equilibrium, so the spring produces a potential

V1(r) =
1

2
k(r − r0)2

where r0 is the rest lenght of the spring. Furthermore gravity gives us
also a potential. Let's choose that gravity is parallel to the z-direction.
Then the gravitional potential is

V2(z) = mgz = mgr cos θ.

Thus the Lagrangian is

L = T − (V1 + V2)

=
1

2
m(ṙ2 + r2φ̇2 sin2 θ + r2θ̇2)− 1

2
k(r − r0)2 −mgr cos θ.




