763310A ANALYTICAL MECHANICS Exercise 3

Autumn 2016
1. Solution:

The velocity in the polar coodinates can be presented as
r=7rf = v =7F+rof
and thus the kinetic energy in the polar coordinates is

1 1 1 :
T = imv2 =gmv-v= 5m(7”2 +726%).

Denoting the potential with V' (r,0), we get the Lagrangian

L=T V= m(® + ) = V(r.0).

The partial derivatives are
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The Lagrange equations are
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the radial equation
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the angular equation
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Now we notice

L, = (rxmr),
=m(r Xr),
= m[ri x (i + r60)],
= mlri (7 x ) +120 (7 x 0)].
= (mr?62),
= mr?f

Furthermore the general force is

ngF-%:F-r % =r(F-0)=rF;=N,,
~ =Fy

=0
where the last equality comes from the fact that
N,=(rxF),
= [rf x (E.7 + Fyf)].,  (F = F.7 + Fyf)
= [rF, (7 x ) +7Fy (7 x 0)].
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2. Solution:

X
a)
Our initial values are
r(0)=0=z(0)=y(0)=0
B 2(0) = vg cos «
#(0) = vo = { 9(0) = vp sin «

The general coordinates:
Q= and @ =1,

the kinetic energy

the potential energy
V' =mgy = mgq

and thus our Lagrangian is

1 . )
L= §m(6ﬁ + 43) — mggo.

The equations of motion are
x-direction
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x(t) = vg cos at



y-direction

So our solution is

b)

As said in the lecture notes, we cannot intoduce friction into the La-
grangian. The Lagrange equation is valid only for conservative systems
but let’s look a few candidates for the friction term and prove that they
do not work. We can separate our Lagrangian as L = Ly + L;, where
the possible candidates are L, = ¢%, Ly = ¢*> and L3 = ¢¢. The term
Lg represents the Lagrangian without friction. Because of the linearity
in the Lagrange equation we can always multiply our terms L; with a

5(55) ~ 5 =
q2 q2

=
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&(qu) +mg =0
=

mgs = my = —mg
<~

1
y(t) = vgsinat — §gt2.

x(t) = vy cos at

1
y(t) = vgsinat — §gt2.

constant and we only need to calculate

So no trial function gives us any terms just depending on the velocity ¢
and thus they do no produce friction to the equation of motion.



3. Solution:
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The kinetic energy
1 o, 1 1 .
T:§mr zim(rerr@@) :§m19, (r=I0=7r=0)

the potential energy
V =—mgy = —mgl cost
and the Lagrangian is
L=T-V = %ml292 + mgl cos@.

The equation of motion is
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é%—%sin&z().

If we study small oscillations meaning § << 1, then it holds that
1.
sin0:0—693+---z9

but the angle must be in radians. Now our equation of motion simplifies
as

é+%0=0

which is the equation of the harmonic oscillator. Thus the solution is

0(t) = Acos(\/gt +9)

where A (describing the amplitude of oscillations) and § (a phase con-
stant) are determinated by the initial conditions.



4. Solution:

(a) The force needed to stretch a spring by length s from its equilibrium
length is
F=ks

where k is the spring constant. In order to determine the potential energy
of the spring, we calculate the work that is made when s is changed from
0 to s (the subindex 1 is used to distinguish the instantaneous stretching
from the final stretching),
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This gives the potential energy V; = %k‘s2, where s is the strecthing of the
spring. Taking s negative (compressed spring) does not change anything
in the formulas above.

(b) A good choice for the generalized coordinate is the vertical coordinate
y measured from the lower end from the unstretched spring. The kinetic
energy is

1

T =-my’
me7

and the potential energy is (as a constant term can be neglected)

1
V=V,+V,= §l<:y2 + mgy
~ =gravity

=the spring
thus the Lagrangian is

1 1
L= Emy'2 — §/€y2 — mgy.



So the equation of motion is
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y+—y+g=0
m

=

j+wly=—g,

where we have simplified the equation of motion by using a notation

The new equation of motion is a perfect second-order linear constant
coefficient ordinary differential equation. The general solution can be
found with the following procedure. The first step is to find the general
solution of the homogeneous equation (dropping —g on the right hand
side):

iin + w?yn = 0 =y, = Acos(wt +0)

The second step is to find a special solution yq of the full equation. The
trial function for the special solution has to be the same order as the
term in the right-hand side in our original equation. In this case that
term is constant, so our trial is also a constant y,. This constant is

9 myg
whio = —9 = yo = T2k

Now the general solution is the sum of the two separate solutions

Y = Yn + Yo = Acos(wt +9) —%.



5. Solution:

a)

Method 1

(in Cartesian system)
The coordinate vector in the spherical system is

r = rcos ¢sin i + rsin ¢ sin 0j + r cos 6k
and so the velocity is

v = [fcos ¢sin f — r¢sin ¢ sin 6 + ré cos ¢ cos 0]i
+ [fsin ¢ sin 6 + r¢ cos ¢ sin O + rf sin ¢ cos 0]j

+ [ cos @ — 76 sin 0]z.

Now our velocity has the form v = v,i+v,j+v.k. The kinetic energy is
T = 1m(v2 + 02 +v?)
- 2 x Yy 2/

that has components

v2 = 7% cos® psin® 0 + r?¢? sin? ¢ sin? § + r26* cos® ¢ cos® 0

+ 2(—7"7“4) cos ¢sin ¢ sin? 6 + 716 cos? ¢ sin 6 cos 6
— 240 sin ¢ cos ¢ sin 0 cos 0)
1); = 72 sin® ¢sin® 0 + 124? cos® ¢ sin® 0 + r?6% sin® ¢ cos® 6
+ 2(—7”7”923 cos ¢ sin ¢ sin’® 0 + 76 sin? ¢ sin 6 cos 6
— 1246 sin ¢ cos ¢ sin O cos 0)
v? = 72 cos? 0 — 2r76 cos 0 sin 6 + r26% sin? 0.

Noting that some terms cancel each other and using the relation sin® ¢+
cos? ¢ = 1 we get a result:

v2 +vp + 02 =72 + 127 sin® 0 + r?6°
L o, 2i9. 9 2,92
:>T:§m(r + r°¢”sin® 6 + r=6%).

Method 2

(in spherical system)
This proof is based on the fact

d7 = sin 0doo + doh



which is illustrated in the last page figures. Now

r=rr
N dr
vV=—
dt
o dr
=7 +r—
dt
dé - de -
:f’f—l—rEQersian—fqb
=77 4+ 1600 + rsin oo
1 1 . .
:>T:§mv2:§m(7'"2+7“2¢28in29+7“292)
where we used the facts
Per=¢-¢p=0-0=1
Fog=r-0=0¢-0=0.
b)
z
A
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The kinetic energy is the same as in a). The spring only depends on the
deviation from equilibrium, so the spring produces a potential

Vi(r) = %k(r 1)

where r( is the rest lenght of the spring. Furthermore gravity gives us
also a potential. Let’s choose that gravity is parallel to the z-direction.
Then the gravitional potential is

Va(2) = mgz = mgr cos 6.
Thus the Lagrangian is
L=T-(Vi+ V)

1 : : 1
- §m(7'"2 + r2¢? sin? 0 + r26?) — §k(T —19)% — mgr cos .
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