
763310A ANALYTICAL MECHANICS Exercise 4 Autumn 2016

1. Solution:
The Lagrangian for the whole system is the sum of the Lagrangians
L = L1 + L2: mass point 1 (mass m1) and mass point 2 (mass m2).

particle 1

Particle 1 (the attachment point) has the location

r1 = xi

and thus the kinetic energy

T1 =
1

2
m1ẋ.

We can choose that the particle 1 has potential V1 = 0.

particle 2

Particle 2 (the pendulum) has the location

r1 = (x+ l sinφ)i− l cosφj

and the velocity

v2 = ṙ2 = (ẋ+ l cosφφ̇)i+ l sinφφ̇j.

Thus the kinetic energy has the form

T2 =
1

2
m2v

2
2

=
1

2
m2v2 · v2

=
1

2
m2[(ẋ+ l cosφφ̇)2 + l2 sinφ2φ̇2]

=
1

2
m2[ẋ

2 + 2lẋφ̇ cosφ+ l2 cos2 φφ̇2 + l2 sin2 φφ̇2]

=
1

2
m2[ẋ

2 + 2lẋφ̇ cosφ+ l2φ̇2].

When we calculate the potential energy we have to remember our earlier
choice. Then the potential is

V2 = −m2gl cosφ.

Now the Lagrangian for the whole system is

L = L1 + L2

= T1 + T2 − (V1 + V2)

=
1

2
(m1 +m2)ẋ

2 +m2lẋφ̇ cosφ+
1

2
m2l

2φ̇2 +m2gl cosφ.



2. Solution:
The particle has the position

r1 = [a cosωt+ l sinφ]i+ [a sinωt− l cosφ]j

and thus the velocity is

v1 = [−aω sinωt+ lφ̇ cosφ]i+ [aω cosωt+ lφ̇ sinφ]j.

meaning that the kinetic energy is

T =
1

2
mv · v

=
1

2
m[(−aω sinωt+ lφ̇ cosφ)2 + (aω cosωt+ lφ̇ sinφ)2]

=
1

2
m[a2ω2 sin2 ωt− 2alωφ̇ cosφ sinωt+ l2φ̇2 cos2 φ

+ a2ω2 cos2 ωt+ 2alωφ̇ sinφ cosωt+ l2φ̇2 sin2 φ]

=
1

2
m[a2ω2 (sin2 ωt+ cos2 ωt)︸ ︷︷ ︸

=1

+2alωφ̇ (sinφ cosωt− cosφ sinωt)︸ ︷︷ ︸
=sin(φ−ωt)

+l2φ̇2 (sin2 ωt+ cos2 ωt)︸ ︷︷ ︸
=1

]

=
1

2
ma2ω2 +mlaωφ̇ sin(φ− ωt) + 1

2
ml2φ̇2

The potential energy is

V = mgy, y = a sinωt− l cosφ
= mg(a sinωt− l cosφ)
= mga sinωt−mgl cosφ.

Thus the Lagrangian is

L = T − V

=
1

2
ml2φ̇2 +mlaωφ̇ sin(φ− ωt) +mgl cosφ−mga sinωt+ 1

2
ma2ω2.

Let's denote

L0 = −mga sinωt+
1

2
ma2ω2.

Now we see that

∂L0

∂q̇
=
∂L0

∂q
= 0,

where in our case q = φ. So L0 does not contribute to the equation of
motion.

3. Solution:
Before proving anything, let's recall some useful results:

∇×∇φ ≡ 0



∇ · (∇×A) ≡ 0.

These results hold for an arbitrary scalar �eld φ and vector �eld A. Of
course, we assume that the needed derivates exist (this is usually the case
in physics). If you do not believe, you can prove the results by simple
calculations.
a)
Now we have

E = −∇φ− ∂tA

B = ∇×A.

Thus

∇ ·B = ∇ · ∇ ×A = 0

and

∇× E = ∇× (−∇φ− ∂tA)

= −∇×∇φ︸ ︷︷ ︸
=0

−∇× ∂t︸ ︷︷ ︸
=∂t∇×

A

= −∂t∇×A︸ ︷︷ ︸
=B

= −∂tB.

So the �elds E and B de�ned by the scalar �eld φ and the vector �eld
A produce two of the Maxwell equations

∇ ·B = 0

∇× E = −∂B
∂t
.

b)
Now we make a gauge transformation to the potentials i. e.

φ′ = φ− ∂tχ

A′ = A+∇χ

that de�nes new �elds E′ = −∇φ′ − ∂tA′ and B′ = ∇×A′. By simple
calcutations we get

E′ = −∇φ′ − ∂tA′

= −∇(φ− ∂tχ)− ∂t(A+∇χ)
= −∇φ+ ∂t∇χ− ∂tA− ∂t∇χ, (∂t∇ = ∇∂t)
= −∇φ− ∂tA
= E



and

B′ = ∇×A′

= ∇× (A+∇χ)
= ∇×A︸ ︷︷ ︸

=B

+∇×∇χ︸ ︷︷ ︸
=0

= B.

So we see that the gauge transformation does not change the �elds. We
call that the �elds are gauge invariants.

4. Solution:
We have a charged particle (the mass m and the charge q) in a magnetic
�eld B = Bk. Let's choose a potential as A = −Byi. Now

∇×A = ∇× (−By)i = Bk = B.

So our potential gives the correct magnetic �eld.
The velocity of the particle is v = ẋi + ẏj + żk. The potential energy
using the result from lectures is

V = q(φ− v ·A)

= −q(ẋi+ ẏj+ żk) · (−By)i
= qBẋy

Note that one can always choose the scalar potential to be zero φ ≡ 0
(because of the result of previous question 3b). Now the kinetic energy

T =
1

2
mv2 =

1

2
m(v · v) = 1

2
m(ẋ2 + ẏ2 + ż2).

Thus the Lagrangian of the particle is

L = T − V =
1

2
m(ẋ2 + ẏ2 + ż2)− qBẋy.

The equation of motion for the particle is given by the Lagrange equation:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0.

x-direction

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0⇔ mẍ− qBẏ = 0

y-direction

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0⇔ mÿ + qBẋ = 0



z-direction

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0⇔ mz̈ = 0

The equation of motion in z-direction is easy to solve:

z̈ = 0⇒ z(t) = z(0) + ż(0)t.

This result means that the particle in the z-direction is moving with a
constant velocity. In the xy-plane we have to solve a set of equations:

ẍ =
qB

m
ẏ ⇒ ẍ = −ωẏ

ÿ = −qB
m
ẋ⇒ ÿ = ωẋ

where we use a notation

ω = −qB
m
.

The equations can be solved by many ways. One method is

ẍ = −ωẏ
⇔
d

dt
ẍ = −ω d

dt
ẏ, ÿ = ωẋ

⇔
...
x = −ω2ẋ, notation vx = ẋ

⇔
v̈x + ω2vx = 0, harmonic oscillator

⇔
vx = A sin(ωt+ φ0)

x =

∫
vxdt = −

A

ω
cos(ωt+ φ0) + x0

and thus

ẍ = −ωẏ
⇔

ẏ = − 1

ω
ẍ = −A cos(ωt+ φ0)

⇔

y =

∫
ẏdt = −A

ω
sin(ωt+ φ0) + y0.

Now let's denote

r0 ≡ −
A

ω
.



Thus our solution is

x = r0 cos(ωt+ φ0) + x0

y = r0 sin(ωt+ φ0) + y0.

where these six free parameters r0, φ0, x0, y0, z(0) and ż(0) are deter-
mined by the initial values.


