763310A ANALYTICAL MECHANICS Exercise 5 Autumn 2016

1. Solution:

a) The kinetic energy is

and the potential
V = kbx(z — 2)
so the Lagrangian is

1
L:T—V:§m¢2—6kx(x—2).

The equation of motion is

dafoLy o
dt \ 0z or
=

d
&(mx) + 6k(x — 2) + 6kx =0

=
ma + 12kx = 12k

The solution is x = xj, +xg, where x;, is the solution for the homogeneous
equation and xq is the solution for the special case. The homogeneous
solution is gotten by solving the homogeneous equation:

miy, + 12kx = 0.

The above equation is the equation of the harmonic oscillator and thus
the solution is

k
xp = acos(V12wt + ), where w=1/—.
m

The constant a and ¢ depend on the initial values. For the special solu-
tion, we make a trial function xqo = b = constant. Now we put this trial
into our original equation and solve the constant b:

mog + 12kxy = 12k
54
12kb = 12k

b=1.



The general solution for the equation of motion is the linear combination
of the homogeneous and special solution (the superpositon principle):

x(t) =z + o = acos(V12wt 4+ §) + 1.

b)
The kinetic energy is

1
T = 5m(;ic2 + 9% + %)
and the potential
1
V = §(k1$2 + k2y2 + k322)
so the Lagrangian is
1 1
L=T-V = §m(:i32 + g7 4 %) — §(k1:c2 + kot + k32?).
The equations of motion are
d /0L oL 0
dt \ 0z or
d /0L oL 0
dt \ dy oy

agony o,
dit \ 92 0z

=
mi+kix=0
mz+ksz =0

These equations are again equations of the harmonic oscillators and thus
solutions are already known:

x = ay cos(wit + 1)
y = as cos(wat + )
z = ag cos(wst + d3)

where

w; =14/ — 1=, 2.
m

In the vector notation the solution is

r = ay cos(wit + 1)1+ ag cos(wat + d2)j + ag cos(wst + d3)k.



2. Solution:
On the surface of the cylinder with radius R the location of the particle
is given as
r = Rcos¢i+ Rsin¢j + zk.
Now the particle has velocity
v = —R¢sin ¢i + R¢ cos ¢j + 2k
and thus it has the kinetic energy
T =—mv
= %m(R%Z sin? ¢ + R2p% cos® ¢ + 2?)
= %m(R%z + 2%).
The potential V' associated to the force F = —kr is
1

V= 516’7"2

1

= ék(r -T)
1

= §k(R2 cos® ¢ + R?sin? ¢ + 2?)
1

= —k(R* + 2%
2

and you can check that now holds F = —VV. Of course, you could

calculate the potential from the formula F = —VV. After this we can
write the Lagrangian

1 : 1
L=T-V= §m(R2(b2 + 2?) — 51«(1-22 + 22).

and the the equations of motion are
d /OL B oL 0
dt\gp/) 0o
da(ory _or_
dt \ 02 0z
~
d 9
a( R°¢) =0

d



<~
¢ =0
k
Z+—2z=0
m

The solution in the z-direction is clearly again

z(t) = Acos(wt + 6), W= \/%

and the angular equation is easy to solve:

¢(t) = th + ¢0.

The terms a, §, wy and ¢ are constants determined by the initial values.

3. Solution:

v
=

The line element is

ds = +/dx? + dy? = 1+—dx— vV 1+ y2de.
Thus the surface element is

dA = 27y/1 + 92da.



and the corresponding area is determined by integrating the surface ele-
ment

A:/ dA:27r/ yy/ 1+ y2de.

1 1

Like in the lectures we are looking for an extreme for the quantity

/ F (v, 2)da

where

[y, 9, 2) =y/1+ 92

Because f does not depend on the value x (f(y,y,2) — f(y,9)), the
formula in the lectures holds

L

C' = constant.

S

Now we insert our function f into the above formula:

- .0 .
y\/1+y2—ya—y(y 1+y%)=C

&
Yy
Wity ————=C
V1492
&

y(L+9°) —yi*

Vi+y
=
Y

—_=C
VIt

Now we show that

C

a

y(x) = acosh (x - b)

is the solution for the equation:

y acosh (£2) a cosh (£=2)
= =a.

TVIRE i () coh (5

The general solution can be acquired by solving the above differential



equation:
y=Cy1+9?
<~

v =C(1+ 9% let’s solve g

y==+1/= -1 it is a separable equationy = d_y
x

3 —1
dr = ( y_2 — 1) dy let’s integrate

<~
y? -
/dx = / < 2 1) dy make the change of the variabley = Cp = dy = Cdu
=

du / dp
r=0C | —]——— ———— = arccosh
/\/;ﬂ—l Vpr—1 4
=
xr = Carccosh%x) +D let’s solve y
-
- D

arccosh&g) = JET
<~

x—2D

y(x) = C cosh(

).



4. Solution:

a)

Let’s denote the path of the particle (ray) with s. Because the velociy is
constant in homogeneous matter, time spended by traveling the path s
is

s(T)

C

T =

Thus the minimization of the treduce to the minimization of the path.
In the lectures this minimization was done in the xy-plane and the result
was a straight line. But let’s do this minimization of the particle’s path
in the three dimension space:

T T dS T
S(T)=/ ds(t)=/ Edtz/ i? + 2 4 22dt,
0 0 0

where we use results

ds = \/dac2 + dy? + dz?

ds dz\? dy 2 dz\?
—==]) +=]) +=])-
dt dt dt dt




The integrand of the minimization is
f=Vi2+ 2+ 2=Vt

and using the last notation on the above our three Euler equations
(x,y, z) will become only one

of d[fof
or or
In the above formula we use a notation

of _of. of. of
or — o0 Tas Tk

where r = i + yj + zk. Now we do the minimization with our Euler

equation
of _d(ory _
or dt\or)

d(iﬁ—r) 0

d
&% =0, = VI - T = constant
r=20

that implies r = straight line.
b)

the reflection law

We minimize time spend between points Py and Ps:

81+ So _ \/92+22+ VY —y)?+ 22
C1 C

1

T1 —

We can think that points P; and P,y are fixed and then the only point
that can move is the reflection point. Thus our unknown variable is y
and we minimize respect to that. The minimalization requirement is

an
dy

1 Yy +1 y—y B
CL\y2 422 /(Y —y)?+ 22
v (y—vy)?

v+ (y—y)+

vy —y)+2% =+ )y —y)°
y't =2y —y')?

y=-y+y

y=3y



which means that the reflection point is exactly in the middle of P; and
P,. This implies that the income angle 6 and the refection angle 6’ are
same

the Snell refract law

This time we minimize time but from the point P; to the point Pj:

T s So /yz 422 \/(y// —y)2 42
2 -

= -4+ == +
c1 Co Cy C2
and thus
iz _
dy
1 Y 1 y—y’

-7 4 = —
C1 1/y2_|_Z2 Cy \/(y_y//>2+2//2
1 1y —"
y  ly=y
C1 S1 (6)) So

C1 Ca
sin 6 cy
sinf”  c¢o

Note: in the triangle OP;R the opposite cathetus of the angle 6 is OR
that has lenght y and the lenght of the hypotenuse P is s;. Thus sinf =
2. Correspondly in the triangle RP3S sin 0" = v,

’
52



