
763310A ANALYTICAL MECHANICS Exercise 5 Autumn 2016

1. Solution:
a) The kinetic energy is

T =
1

2
mẋ2

and the potential

V = k6x(x− 2)

so the Lagrangian is

L = T − V =
1

2
mẋ2 − 6kx(x− 2).

The equation of motion is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

⇔
d

dt
(mẋ) + 6k(x− 2) + 6kx = 0

⇔
mẍ+ 12kx = 12k

The solution is x = xh+x0, where xh is the solution for the homogeneous
equation and x0 is the solution for the special case. The homogeneous
solution is gotten by solving the homogeneous equation:

mẍh + 12kx = 0.

The above equation is the equation of the harmonic oscillator and thus
the solution is

xh = a cos(
√
12ωt+ δ), where ω =

√
k

m
.

The constant a and δ depend on the initial values. For the special solu-
tion, we make a trial function x0 = b = constant. Now we put this trial
into our original equation and solve the constant b:

mẍ0 + 12kx0 = 12k

⇔
12kb = 12k

⇔
b = 1.



The general solution for the equation of motion is the linear combination
of the homogeneous and special solution (the superpositon principle):

x(t) = xh + x0 = a cos(
√
12ωt+ δ) + 1.

b)
The kinetic energy is

T =
1

2
m(ẋ2 + ẏ2 + ż2)

and the potential

V =
1

2
(k1x

2 + k2y
2 + k3z

2)

so the Lagrangian is

L = T − V =
1

2
m(ẋ2 + ẏ2 + ż2)− 1

2
(k1x

2 + k2y
2 + k3z

2).

The equations of motion are

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

d

dt

(
∂L

∂ẏ

)
− ∂L

∂y
= 0

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0

⇔

mẍ+ k1x = 0

mÿ + k2y = 0

mz̈ + k3z = 0

These equations are again equations of the harmonic oscillators and thus
solutions are already known:

x = a1 cos(ω1t+ δ1)

y = a2 cos(ω2t+ δ2)

z = a3 cos(ω3t+ δ3)

where

ωi =

√
ki
m

i = x, y, z.

In the vector notation the solution is

r = a1 cos(ω1t+ δ1)i+ a2 cos(ω2t+ δ2)j+ a3 cos(ω3t+ δ3)k.



2. Solution:
On the surface of the cylinder with radius R the location of the particle
is given as

r = R cosφi+R sinφj+ zk.

Now the particle has velocity

v = −Rφ̇ sinφi+Rφ̇ cosφj+ żk

and thus it has the kinetic energy

T =
1

2
mv2

=
1

2
m(R2φ̇2 sin2 φ+R2φ̇2 cos2 φ+ ż2)

=
1

2
m(R2φ̇2 + ż2).

The potential V associated to the force F = −kr is

V =
1

2
kr2

=
1

2
k(r · r)

=
1

2
k(R2 cos2 φ+R2 sin2 φ+ z2)

=
1

2
k(R2 + z2)

and you can check that now holds F = −∇V . Of course, you could
calculate the potential from the formula F = −∇V . After this we can
write the Lagrangian

L = T − V =
1

2
m(R2φ̇2 + ż2)− 1

2
k(R2 + z2).

and the the equations of motion are

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= 0

⇔
d

dt
(mR2φ̇) = 0

d

dt
(mż) + kz = 0



⇔

φ̈ = 0

z̈ +
k

m
z = 0

The solution in the z-direction is clearly again

z(t) = A cos(ωt+ δ), ω =

√
k

m

and the angular equation is easy to solve:

φ(t) = ω0t+ φ0.

The terms a, δ, ω0 and φ0 are constants determined by the initial values.

3. Solution:

The line element is

ds =
√
dx2 + dy2 =

√
1 +

dx2

dy2
dx =

√
1 + ẏ2dx.

Thus the surface element is

dA = 2πy
√

1 + ẏ2dx.



and the corresponding area is determined by integrating the surface ele-
ment

A =

∫ x2

x1

dA = 2π

∫ x2

x1

y
√

1 + ẏ2dx.

Like in the lectures we are looking for an extreme for the quantity∫ x2

x1

f(y, ẏ, x)dx

where

f(y, ẏ, x) = y
√

1 + ẏ2.

Because f does not depend on the value x (f(y, ẏ, x) → f(y, ẏ)), the
formula in the lectures holds

f − ẏ ∂f
∂ẏ

= C = constant.

Now we insert our function f into the above formula:

y
√

1 + ẏ2 − ẏ ∂
∂ẏ

(y
√
1 + ẏ2) = C

⇔

y
√

1 + ẏ2 − yẏ2√
1 + ẏ2

= C

⇔
y(1 + ẏ2)− yẏ2√

1 + ẏ2
= C

⇔
y√

1 + ẏ2
= C

Now we show that

y(x) = a cosh

(
x− b
a

)
is the solution for the equation:

C =
y√

1 + ẏ2
=

a cosh
(
x−b
a

)√
1 + sinh2

(
x−b
a

) =
a cosh

(
x−b
a

)
cosh

(
x−b
a

) = a .

The general solution can be acquired by solving the above di�erential



equation:

y = C
√
1 + ẏ2

⇔
y2 = C(1 + ẏ2) let's solve ẏ

⇔

ẏ2 =
y2

C2
− 1

⇔

ẏ = ±
√
y2

C2
− 1 it is a separable equation ẏ =

dy

dx
⇔

dx =

(√
y2

C2
− 1

)−1
dy let's integrate

⇔∫
dx =

∫ (√
y2

C2
− 1

)−1
dy make the change of the variable y = Cµ⇒ dy = Cdµ

⇔

x = C

∫
dµ√
µ2 − 1

∫
dµ√
µ2 − 1

= arccoshµ

⇔

x = Carccosh
y(x)

C
+D let's solve y

⇔

arccosh
y(x)

C
=
x−D
C

⇔

y(x) = C cosh(
x−D
C

).



4. Solution:

a)

Let's denote the path of the particle (ray) with s. Because the velociy is
constant in homogeneous matter, time spended by traveling the path s
is

T =
s(T )

c
.

Thus the minimization of the treduce to the minimization of the path.
In the lectures this minimization was done in the xy-plane and the result
was a straight line. But let's do this minimization of the particle's path
in the three dimension space:

s(T ) =

∫ T

0

ds(t) =

∫ T

0

ds

dt
dt =

∫ T

0

√
ẋ2 + ẏ2 + ż2dt,

where we use results

ds =
√

dx2 + dy2 + dz2

ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

.



The integrand of the minimization is

f =
√
ẋ2 + ẏ2 + ż2 =

√
ṙ · ṙ

and using the last notation on the above our three Euler equations
(x, y, z) will become only one

∂f

∂r
− d

dt

(
∂f

∂ṙ

)
= 0.

In the above formula we use a notation

∂f

∂r
≡ ∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k,

where r = xi + yj + zk. Now we do the minimization with our Euler
equation

∂f

∂r
− d

dt

(
∂f

∂ṙ

)
= 0

0− d

dt

(
1

2

1√
ṙ · ṙ

2ṙ

)
= 0

d

dt

ṙ

C
= 0, C =

√
ṙ · ṙ = constant

r̈ = 0

that implies r = straight line.

b)

the re�ection law

We minimize time spend between points P1 and P2:

T1 =
s1 + s2
c1

=

√
y2 + z2

c1
+

√
(y′ − y)2 + z2

c1
.

We can think that points P1 and P2 are �xed and then the only point
that can move is the re�ection point. Thus our unknown variable is y
and we minimize respect to that. The minimalization requirement is

dT1
dy

= 0

1

c1

y√
y2 + z2

+
1

c1

y − y′√
(y′ − y)2 + z2

= 0

y2

y2 + z2
=

(y − y′)2

(y − y′)2 + z2

y2
[
(y − y′)2 + z2

]
= (y2 + z2)(y − y′)2

y2z2 = z2(y − y′)2

y = −y + y′

y =
1

2
y′



which means that the re�ection point is exactly in the middle of P1 and
P2. This implies that the income angle θ and the refection angle θ′ are
same

the Snell refract law

This time we minimize time but from the point P1 to the point P3:

T2 =
s1
c1

+
s2
c2

=

√
y2 + z2

c1
+

√
(y′′ − y)2 + z′′2

c2

and thus

dT2
dy

= 0

1

c1

y√
y2 + z2

+
1

c2

y − y′′√
(y − y′′)2 + z′′2

= 0

1

c1

y

s1
+

1

c2

y − y′′

s2
= 0

1

c1

y

s1
=

1

c2

y′′ − y
s2

sin θ

c1
=

sin θ′′

c2
sin θ

sin θ′′
=
c1
c2

Note: in the triangle OP1R the opposite cathetus of the angle θ is OR
that has lenght y and the lenght of the hypotenuse P1 is s1. Thus sin θ =
y
s1
. Correspondly in the triangle RP3S sin θ′′ = y′′−y

s2
.


