
763310A ANALYTICAL MECHANICS Exercise 8 Autumn 2016

1. Solution:
In the lectures we have the formula

τ =
2π√

G(m1 +m2)
a3/2

but if m1 >> m2, we can approximate

τ ≈ 2π√
Gm1

a3/2.

Now we use this formula for two di�erent cases:

τEM ≈
2π√
GmE

a
3/2
EM the Earth-Moon pair

τES ≈
2π√
GmS

a
3/2
ES the Earth-Sun pair.

Thus the masses are

mE =
4π2

Gτ 2
EM

a3
EM

mS =
4π2

Gτ 2
ES

a3
ES

and now it is easy to calculate the ratio of the masses

mE

mS

=

(
τES
τEM

)2(
aEM
aES

)3

.

Using given values results to

mE

mS

≈ 2.97 ∗ 10−6

or in a similar way

mS

mE

≈ 337000 (real value ≈ 333000).

2. Solution:
The satellite either starts from the point 1 or 2 (±a) and it has gravitional
potential

V = − k
m

= −GMm

r
.



We know the eccentricity of the orbit

ε =

√
1 +

2El2

m′k2

where m′ is the reduced mass

m′ =
mM

m+M
=

m
m
M

+ 1
≈ m, m << M

and l is the angular momentum that is conserved, meaning that

l = lbeginning = mrv.

Now the eccentricity has a form

ε =

[
1 +

2(1
2
mv2 − GMm

r
)(mrv)2

m(GMm)2

]1/2

=

[
1− 2

rv2

GM
+

r2v4

G2M2

]1/2

=

√(
1− rv2

GM

)2

=

∣∣∣∣1− rv2

GM

∣∣∣∣.
We have di�erent orbits depending on di�erent eccentricities:
circle

ε = 0⇒ 1− rv2

GM
= 0⇒ v =

√
GM

r
,

parabola

ε = 1⇒ 1− rv2

GM
= ±1⇒ v =

√
2GM

r
or v = 0,



and hyperbola

ε > 1

⇒ 1− rv2

GM︸︷︷︸
>0︸ ︷︷ ︸

<1

> 1 or 1− rv2

GM
< −1

⇒ rv2

GM
> 2

⇒ v >

√
2MG

r
.

For an elliptic orbit the velocity has to be in the interval

0 < v <

√
2MG

r
.

Because the case v =
√

GM
R

is the circle orbit, the starting point of

the satellite is point 1, if
√
MG/r < v <

√
2MG/r, and point 2, if

0 < v <
√
MG/r.
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Figure 1: Di�erent orbits

.



3. Solution:
We start from the formula in the lectures

φ = φ0 ±
l√
2m

∫ r

r0

dr

r2
√
E − Ve�

. (1)

Now we are interested in an angular di�erence ∆φ that is the angle of
the two sequential extreme values of r. Let's substitute r = rmax and
r0 = rmin:

∆φ = φ− φ0 =
l√
2m

∫ rmax

rmin

dr

r2
√
E − Ve�

. (2)

The next problem is to �nd the extrema values of r. Naturally these
are points, where E − Ve� vanish (see the lectures). Let's assume that
r is close to r0. In this environment we can expand the potential Ve� as
Taylor series up to second-order

Ve�(r) ≈ Ve�(r0) + V ′e�(r0)︸ ︷︷ ︸
=0

(r − r0) +
1

2
V ′′e�(r0)(r − r0)2

and thus

E − Ve�(r) ≈ E − Ve�(r0))︸ ︷︷ ︸
≡E0

−1

2
V ′′e�(r0)(r − r0)2.

Now it is easy to solve

E − Ve�(rmin,max) = 0

meaning

rmin,max = r0 ±

√
2(E − E0)

V ′′e�(r0)
.

So our integration limits are for now checked. After this let's look the
integrand. Because

r
√
E − E0 = r0

√
E − E0 + (r − r0)︸ ︷︷ ︸

small

√
E − E0)︸ ︷︷ ︸
small

≈ r0

√
E − E0

we can replace r with r0. In the above we approximate that small times
small is zero. Our integral gets easier with changing variables:

r − r0 = s

√
2(E − E0)

V ′′e�(r0)
.

Now we have to check again the limits of the integral: when r = rmax, it
is clearly s = 1 and when r = rmin implies s = −1. Furthermore we have

dr =

√
2(E − E0)

V ′′e�(r0)
ds



and

E − Ve�(r) = (E − E0)(1− s2).

After all this we get

∆φ =
l√
2m

∫ 1

−1

1

r2
0

1√
E − E0

1√
1− s2

√
2(E − E0)

V ′′e�(r0)
ds

=
l

r2
0

√
mV ′′e�(r0)

∫ 1

−1

ds√
1− s2

=
lπ

r2
0

√
mV ′′e�(r0)

where the last integral can be solved with e.g. change of variables s =
sinα. Now we �x the potential and start to study a potential that has a
form V (r) = arn−1. This means that

Ve�(r) =
l2

2mr2
+ arn+1.

We can also calculate minimum at the point r0 where V
′
e�(r0) = 0 mean-

ing

V ′e�(r) = −2
l2

2mr3
+ a(n+ 1)rn.

The most useful thing is to solve the constant a

a =
l2

(n+ 1)mrn+3
0

.

The only thing we still need is V ′′e�(r0):

V ′′e�(r0) =
3l2

mr4
0

+ a(n+ 1)nrn−1
0

=
3l2

mr4
0

+
l2

(n+ 1)mrn+3
0

(n+ 1)nrn−1
0

=
3l2

mr4
0

+
l2n

mr4
0

=
l2

mr4
0

(n+ 3).

By substituting our result into the equation of ∆φ we get

∆φ =
π√

3 + n
.



4. Solution:



From the picture we notice that using trigonometic identies we get

sin
θ

2
=

b

R

and di�erentiating this leads us to (*)

1

2
cos

θ

2
dθ =

db

R

⇒ dθ =
2db

R cos θ
2

.

From the interval [b, b+db], meaning that particles coming from the area
2πbdb scatter to an angle [θ, θ + dθ] and thus they are leaving from the
scattering center through a circle that has an area

dA = rdθ ∗ 2πr sin(π − θ).

So the solid angle where the particles are scattering is

dΩ =
dA

r2
, the de�nition of the solid angle

= 2π sin(π − θ)dθ, sin(π − α) = α ∀α
= 2π sin θdθ, we know dθ

= 2π sin θ
2db

R cos θ
2

, sinα = 2 sin
α

2
cos

α

2

= 8π sin
θ

2

db

R
.

Furthermore, dσ = 2πbdb = 2πR sin(θ/2)db. Now the di�erential cross
section is

dσ

dΩ
=

2πR sin(θ/2)db

8π sin θ
2

db
R

=
R2

4
.

and the total cross section is

σ =

∫
Ω

dσ

dΩ
dΩ =

∫ 2π

0

∫ π

0

R2

4
sin θdθdφ =

R2

4
∗ 4π = πR2.

The second way of calculating the di�erential cross section is to notice
from the begin (*)

db

dθ
=

1

2
R cos

θ

2

and use the formula in the lectures

dσ

dΩ
=

b

sin θ

∣∣∣db
dθ

∣∣∣ =
1

2
R2 cos θ

2
sin θ

2

sin θ
=
R2

4
.



5. Solution:

The collision cross section is the area that a particle has to go through
to collide with the scatterer. Here our scatterer is a sphere. Thus the
area through which a particle collides is a disk meaning that it can be
presented as

σcol = πb2.

So our only problem is to solve what is b. Without gravity it is clear that
b would be R but now we have to notice gravity that pulls our particle
towards our sphere. Our requirement is that a particle leaving with
the impact parameter b will touch the sphere. Far, far a way from the
sphere gravitational potential is zero (approximately) and the particle
has energy

E =
1

2
mv2
∞.

The angular momentum is

L = mv∞b.

On the other hand in the point of the contact the gravitational potential
is

V = −GmM
R

and the energy is thus

E =
1

2
mv2 − GmM

R
.

In the point of contact the angular momentum is

L = mvR.



Because the angular momentum is a conserved, we have a relation

mv∞b = mvR⇒ v =
b

R
v∞.

Also particle's energy is conserved quantity:

1

2
mv2
∞ =

1

2
mv2 − GmM

R
⇔

b2 = R2 +
2GMR

v2
∞

.

So the cross section is

σcol = πb2 = πR2 +
2πGMR

v2
∞

.

This can be done also with the lecture notes. The hint tells that f −a =
R⇒ f = R + a. From the lectures one gets

b2 = f 2 − a2

= (R + a)2 − a2

= R2 − 2Ra

= R2 +
R|k|
E

= R2 +
2R|k|
mv2
∞

= R2 +
2RGM

v2
∞

,

where one uses from the lectures

a =
|k|
2E

, E =
1

2
mv2
∞ and |k| = GmM.


