763310A ANALYTICAL MECHANICS Exercise 8 Autumn 2016

1. Solution:
In the lectures we have the formula
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but if m; >> msy, we can approximate
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Now we use this formula for two different cases:
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Thus the masses are

the Earth-Moon pair

TEs ~ the Earth-Sun pair.
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and now it is easy to calculate the ratio of the masses

2 3
mg (TES) (aEM)
mg TEM aEs

Using given values results to
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or in a similar way

5~ 337000 (real value ~ 333000).
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2. Solution:
The satellite either starts from the point 1 or 2 (+a) and it has gravitional
potential

V:_EI_GMm.
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We know the eccentricity of the orbit
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where m' is the reduced mass
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and [ is the angular momentum that is conserved, meaning that
[ = lbeginning = mrv.

Now the eccentricity has a form

We have different orbits depending on different eccentricities:
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and hyperbola
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For an elliptic orbit the velocity has to be in the interval
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Because the case v = ,/G—M is the circle orbit, the starting point of

the satellite is point 1, if \/MG/r < v < \/2MG/r, and point 2, if
0<v<+/MG/r.
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Figure 1: Different orbits



3. Solution:

We start from the formula in the lectures
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\/Qm ro TQ\/E — ‘/éﬁ‘.

Now we are interested in an angular difference A¢ that is the angle of
the two sequential extreme values of r. Let’s substitute » = r,, and
To = Tmin-
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The next problem is to find the extrema values of r. Naturally these
are points, where E — Vg vanish (see the lectures). Let’s assume that
r is close to ry. In this environment we can expand the potential V g as
Taylor series up to second-order
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Now it is easy to solve
E — Vet (Tminmax) = 0
meaning
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So our integration limits are for now checked. After this let’s look the
integrand. Because
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we can replace r with ry. In the above we approximate that small times
small is zero. Our integral gets easier with changing variables:
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Now we have to check again the limits of the integral: when r = 7.y, it
is clearly s = 1 and when r = r,;, implies s = —1. Furthermore we have
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and
E —Veg(r) = (E — Ep)(1 — s?).
After all this we get
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where the last integral can be solved with e.g. change of variables s =
sin a. Now we fix the potential and start to study a potential that has a
form V(r) = ar"'. This means that
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We can also calculate minimum at the point o where V(1) = 0 mean-
ing
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The most useful thing is to solve the constant a
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The only thing we still need is VJ/z(ro):
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By substituting our result into the equation of A¢ we get
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4. Solution:
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From the picture we notice that using trigonometic identies we get
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and differentiating this leads us to (*

From the interval [b, b+ db], meaning that particles coming from the area
27bdb scatter to an angle [0,0 + df] and thus they are leaving from the
scattering center through a circle that has an area

dA = rdf * 277 sin(mw — 6).

So the solid angle where the particles are scattering is
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Furthermore, do = 27wbdb = 27 Rsin(0/2)db. Now the differential cross
section is
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and the total cross section is
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The second way of calculating the differential cross section is to notice
from the begin (*)
db 1 0
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and use the formula in the lectures
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5. Solution:

3
S

<o)
-
\ 4

LT e

_— e s .

The collision cross section is the area that a particle has to go through
to collide with the scatterer. Here our scatterer is a sphere. Thus the
area through which a particle collides is a disk meaning that it can be
presented as

Oeol = TH2.

So our only problem is to solve what is b. Without gravity it is clear that
b would be R but now we have to notice gravity that pulls our particle
towards our sphere. Our requirement is that a particle leaving with
the impact parameter b will touch the sphere. Far, far a way from the
sphere gravitational potential is zero (approximately) and the particle
has energy
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The angular momentum is
L = mugb.

On the other hand in the point of the contact the gravitational potential
is
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and the energy is thus
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In the point of contact the angular momentum is

L =muvR.



Because the angular momentum is a conserved, we have a relation
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Also particle’s energy is conserved quantity:
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This can be done also with the lecture notes. The hint tells that f —a =
R = f = R+ a. From the lectures one gets
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where one uses from the lectures
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