763310A ANALYTICAL MECHANICS Exercise 9  Autumn 2016

1. Solution:

The kinetic energy of the system is

1
T = —mi?
me

and potential energy is

1 1
V = 5]6((1 — lo)z = §k(v a? + 2 — lo)z.
This means that the Lagrangian for the system is
1 1
L= §m$2 — §k(v a? + x2 — lo)z.

In the limit of small oscillations meaning |z| << 1 we can approximate

2

1z
Va2 +r?~a+ -—

2a
and thus the Lagrangian simplifies as
1 1 122
L~ -mi*— —k — —1p)?
S = 5 (a+ 5 0)
1 1 2 12t
= imx2 — 5]{; (a—1p)"+2(a—1lo)=— + 12
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where we denote Vo = 1k(a — lp)®. The force in the point z = 0 is

F = k(a — ly) implying



Now we can write the Lagrangian of small oscillations as

1 1F
L= —mi?— =—2?
2 2a

where we neglect V; as a constant (does not affect on the equation of
motion). The Lagrange equation is

d (OL\ 0L _ 0
dt \ Oz or
~
mz + —x =0
a
that is again the equation of the harmonic oscillator. The solution is

r = Acos(wt+6), A and ¢ are constant

where

F
w=—.
ma
This can be also calculated using the lecture notes. From the notes we
know that the Lagrangian for small oscillations is

1 ..
L=3 > Aty = vigman] = V.
ij
In our case i = 7 = 1 and the matrices reduce to scalar numbers. Com-

paring the Lagrangians we get A = m and v = F/a. Now using the
equation in the lectures we get the same answer as before:
_F

vV—wWA=0s W=
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. Solution:
Let’s denote the distance of the attachment points with d and the dis-
tance of the pendulum masses with s. The location of pendulum 1 is

ri = [sinfi — [ cos ]
and pendulum 2 has
ro = (d + [sinfy)i — [ cos 0.

So the system has kinetic energy

1 1 1 . .
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and potential energy
1 2
V= 5/{(5 — d)* — mgl cos 0y — mgl cos s,

where

s =1/(d+1sinfy — sinf;)2 + (I cosf; — [ cos hy)2.
Thus the Lagrangian is
L=T-V

1 N
= imZQ(Gf + 63) + mgl(cos 61 + cos 0;)
1
2

k(\/(d +1sinfy — Isin ;)2 + (Icos B — [ cos )% — d)>.

In the limit of small oscillations we can make a series representation of
the Lagrangian with respect to 6, and 6,. We only take second-order
terms into account. Let the new parameters be 7, = [sin6; ~ [0, and
Ny = I sin By =~ 10y. We also need to know that cosf ~ 1 — %02. Now the

distance d is
s* = (d + Isinfy — Isin0,)* + (I cos ) — [ cos B)?

1 1
~ (d+ 10y — 16,)* + 1*(1 — 59% —1+ 5(93)2
1

1 2
0 . 200 N2 L 12 (1p2  Lp2

~0
=~ d2 + 2dl<02 — 91) + ZQ(QQ — 91)2
= [d+1(0y—6))]?

meaning that

s%d+l(02—91):d+n2—m.



Now we can see that in this case the approximation for small oscillations
means that we ignore the motion of the system in y-direction. The
gravitational potential has an approximate form as
—mgl(cos by + cosby) =~ —mgl| 1 — 162 +1-— 192 = @(772 +n3) — 2mgl
1 2 571 52 1 2

21
=V

where we can neglect V because it is just a constant (scaling factor).
After this the Lagrangian for small oscillations is

1 . _ mg 1
L= §m(77? +13) — g(nf +15) — =k(d+ 1o — 1 — d)?

2
1 . , mg 1
= 5mit +13) — z—l(nf +13) = k(3 + i — 2mnp)
1 . , mg k
= §m(77% +15) — (2_1 + 5) (0} +n3) + kmina

1 . . mg
= §m(nf +15) — = (— + k) (} + m3) + kmn.

3. Solution:
First we present the Lagrangian in the form of

1 1
L= 5 %:wall’] — 5 ;vija:ixj.

For two variables n; and 7y this is

1 ) 1 . 1 ) 1 1 1
L= 5141177% =+ §A12771772 + 51422773 - _Ulln% — V12112 — —022773

2 2 2
where we used the fact that the matrices A;; and v;; are symmetric
meaning vis = v9; and Ay = As;. The symmetry allows us to combine
the cross terms. Comparing this Lagrangian to the Lagrangian in the
previous problem we get

m 0 =+ k —k
Y
A—(O m> and v—< e ,,;g k)



To solve the eigenfrequencies we have to solve the eigenvalue problem

det (v — sz) =0

iS4
4+ ke —k m 0
e DR
=
(%—mcf%-k —k >‘_0
—k 2+ k— mw?
=

=

?—l—k—mcﬂ:ik
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2 1 mg

w'=—t+k—-k—-—7
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=

w2:€ or w2:% g
l m [

Because we have two eigenvalues we will have two different, linearly
independent eigenvectors that are achieved by solving the equation

(v —w?A)X =0.
If we choose first (case 1)

wQZ% and X =X, = <x11)

Z12

we have

Let’s choose x11 = 12 = \% so that 22, + :1:%2 =1 and then

=50



If we choose on the other hand (case 2)

2k
w2:—+g and X:ng(xm).
m

22

we have

( WQA)XQ =0

~
mg+k — 2]{34-% 0 T21 -0
mg+k 0 2]@—}-% T29 o

<~
(0 ) ()
1 T292
<~
T21 = —T22.
Let’s choose x11 = —x12 = \/Lﬁ and then

w5 ()

The physical interpretation is that in the case 1 the pendulums are oscil-
lating to the same direction and with same amplitude. Thus the spring
does not affect on the oscillation of the system. In the case 2 the pen-
dulums are oscillating towards each other and the spring matters.
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