
763310A ANALYTICAL MECHANICS Exercise 9 Autumn 2016

1. Solution:

The kinetic energy of the system is

T =
1

2
mẋ2

and potential energy is

V =
1

2
k(d− l0)2 =

1

2
k(
√
a2 + x2 − l0)2.

This means that the Lagrangian for the system is

L =
1

2
mẋ2 − 1

2
k(
√
a2 + x2 − l0)2.

In the limit of small oscillations meaning |x| << 1 we can approximate

√
a2 + x2 ≈ a+

1

2

x2

a

and thus the Lagrangian simpli�es as

L ≈ 1

2
mẋ2 − 1

2
k(a+

1

2

x2

a
− l0)2

=
1

2
mẋ2 − 1

2
k

[
(a− l0)2 + 2(a− l0)

x2

2a
+

1

4

x4

a2︸︷︷︸
≈0

]

=
1

2
mẋ2 − 1

2
k

(
1− l0

a

)
x2 − V0

where we denote V0 = 1
2
k(a − l0)

2. The force in the point x = 0 is
F = k(a− l0) implying

k(1− l0
a
) =

F

a
.



Now we can write the Lagrangian of small oscillations as

L =
1

2
mẋ2 − 1

2

F

a
x2

where we neglect V0 as a constant (does not a�ect on the equation of
motion). The Lagrange equation is

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

⇔

mẍ+
F

a
x = 0

that is again the equation of the harmonic oscillator. The solution is

x = A cos(ωt+ δ), A and δ are constant

where

ω2 =
F

ma
.

This can be also calculated using the lecture notes. From the notes we
know that the Lagrangian for small oscillations is

L =
1

2

∑
ij

[Aij η̇iη̇j − vijηiηj]− V0.

In our case i = j = 1 and the matrices reduce to scalar numbers. Com-
paring the Lagrangians we get A = m and v = F/a. Now using the
equation in the lectures we get the same answer as before:

v − ω2A = 0⇔ ω2 =
v

A
=

F

ma
.

2. Solution:
Let's denote the distance of the attachment points with d and the dis-
tance of the pendulum masses with s. The location of pendulum 1 is

r1 = l sin θ1i− l cos θ1j

and pendulum 2 has

r2 = (d+ l sin θ2)i− l cos θ2j.

So the system has kinetic energy

T =
1

2
mṙ21 +

1

2
mṙ22 =

1

2
ml2(θ̇21 + θ̇22)



and potential energy

V =
1

2
k(s− d)2 −mgl cos θ1 −mgl cos θ2,

where

s =
√

(d+ l sin θ2 − l sin θ1)2 + (l cos θ1 − l cos θ2)2.

Thus the Lagrangian is

L = T − V

=
1

2
ml2(θ̇21 + θ̇22) +mgl(cos θ1 + cos θ2)

− 1

2
k(
√

(d+ l sin θ2 − l sin θ1)2 + (l cos θ1 − l cos θ2)2 − d)2.

In the limit of small oscillations we can make a series representation of
the Lagrangian with respect to θ1 and θ2. We only take second-order
terms into account. Let the new parameters be η1 = l sin θ1 ≈ lθ1 and
η2 = l sin θ2 ≈ lθ2. We also need to know that cos θ ≈ 1− 1

2
θ2. Now the

distance d is

s2 = (d+ l sin θ2 − l sin θ1)2 + (l cos θ1 − l cos θ2)2

≈ (d+ lθ2 − lθ1)2 + l2(1− 1

2
θ21 − 1 +

1

2
θ22)

2

= d2 + 2dl(θ2 − θ1) + l2(θ2 − θ1)2 + l2
(1
2
θ22 −

1

2
θ21

)2
︸ ︷︷ ︸

≈0

≈ d2 + 2dl(θ2 − θ1) + l2(θ2 − θ1)2

= [d+ l(θ2 − θ1)]2

meaning that

s ≈ d+ l(θ2 − θ1) = d+ η2 − η1.



Now we can see that in this case the approximation for small oscillations
means that we ignore the motion of the system in y-direction. The
gravitational potential has an approximate form as

−mgl(cos θ1 + cos θ2) ≈ −mgl
(
1− 1

2
θ21 + 1− 1

2
θ22

)
=
mg

2l
(η21 + η22)− 2mgl︸ ︷︷ ︸

=V0

where we can neglect V0 because it is just a constant (scaling factor).
After this the Lagrangian for small oscillations is

L =
1

2
m(η̇21 + η̇22)−

mg

2l
(η21 + η22)−

1

2
k(d+ η2 − η1 − d)2

=
1

2
m(η̇21 + η̇22)−

mg

2l
(η21 + η22)−

1

2
k(η22 + η21 − 2η1η2)

=
1

2
m(η̇21 + η̇22)−

(
mg

2l
+
k

2

)
(η21 + η22) + kη1η2

=
1

2
m(η̇21 + η̇22)−

1

2

(
mg

l
+ k

)
(η21 + η22) + kη1η2.

3. Solution:
First we present the Lagrangian in the form of

L =
1

2

∑
ij

Aijẋiẋj −
1

2

∑
ij

vijxixj.

For two variables η1 and η2 this is

L =
1

2
A11η̇

2
1 +

1

2
A12η̇1η̇2 +

1

2
A22η̇

2
2 −

1

2
v11η

2
1 −

1

2
v12η1η2 −

1

2
v22η

2
2

where we used the fact that the matrices Aij and vij are symmetric
meaning v12 = v21 and A12 = A21. The symmetry allows us to combine
the cross terms. Comparing this Lagrangian to the Lagrangian in the
previous problem we get

A =

(
m 0
0 m

)
and v =

(
mg
l
+ k −k
−k mg

l
+ k

)
.



To solve the eigenfrequencies we have to solve the eigenvalue problem

det
(
v − ω2A

)
= 0

⇔∣∣∣∣ (mg
l
+ k −k
−k mg

l
+ k

)
− ω2

(
m 0
0 m

) ∣∣∣∣ = 0

⇔∣∣∣∣ (mg
l
−mω2 + k −k
−k mg

l
+ k −mω2

) ∣∣∣∣ = 0

⇔(
mg

l
+ k −mω2

)2

− k2 = 0

⇔
mg

l
+ k −mω2 = ±k

⇔

ω2 = − 1

m

(
± k − k − mg

l

)
⇔

ω2 =
g

l
or ω2 =

2k

m
+
g

l
.

Because we have two eigenvalues we will have two di�erent, linearly
independent eigenvectors that are achieved by solving the equation

(v − ω2A)X = 0.

If we choose �rst (case 1)

ω2 =
g

l
and X = X1 =

(
x11
x12

)
we have

(v − ω2A)X1 = 0

⇔[(
mg
l
+ k −k
−k mg

l
+ k

)
−
(

mg
l

0
0 mg

l

)](
x11
x12

)
= 0

⇔

k

(
1 −1
−1 1

)(
x11
x12

)
= 0

⇔
x11 = x12.

Let's choose x11 = x12 =
1√
2
so that x211 + x212 = 1 and then

X1 =
1√
2

(
1
1

)



If we choose on the other hand (case 2)

ω2 =
2k

m
+
g

l
and X = X2 =

(
x21
x22

)
.

we have

(v − ω2A)X2 = 0

⇔[(
mg
l
+ k −k
−k mg

l
+ k

)
−
(
2k + mg

l
0

0 2k + mg
l

)](
x21
x22

)
= 0

⇔

k

(
−1 −1
−1 −1

)(
x21
x22

)
= 0

⇔
x21 = −x22.

Let's choose x11 = −x12 = 1√
2
and then

X2 =
1√
2

(
1
−1

)
.

The physical interpretation is that in the case 1 the pendulums are oscil-
lating to the same direction and with same amplitude. Thus the spring
does not a�ect on the oscillation of the system. In the case 2 the pen-
dulums are oscillating towards each other and the spring matters.


