
763114P ATK1 – Basics of Programming 13.10.2008

Exercise 5

1. Consider the following functions. What would be an appropriate return
value type for each? What kind of arguments would they accept? Write
the functions, and write a main program where you test the functions.

a) A function which prints the message “Kilroy Was Here.” on the sc-
reen.

b) A function which asks the user for an integer and returns this number
to the main program.

c) A function which takes as argument a number x and returns the
number 1/(1 − x).

d) A function which asks the user for two numbers and returns the
greater of them.

e) A function which prints two given numbers in their order of magni-
tude.

f) A function which computes the value of ex sin(x) for a given x.

2. Write a program which calculates the growth of a bank deposit. The pro-
gram should ask the user for the initial deposit, the interest rate and
duration of the deposit.

Hint: Write a function which takes as arguments the data given by the

user and calculates the value of the deposit when the funds are withdrawn

from the account.

3. Write a function which calculates the sum

n
∑

k=0

xk

k!

for given values of x and n.

Hint: What arguments would the function receive? What would be its re-

turn value type? Write a separate function which calculates the factorial.

Make the sum function call the factorial function for each k.

4. Write a program which prints the values of the expressions

x, sin(x), x2.5, lnx

in a table, when x has the values −1 + 0.1i, i = 0, . . . , 31. Do this in two
ways:

a) Write a single function which does the whole thing.

1



b) Write a function which prints the headers of the table (i.e. x, sin(x),
etc.) and another function which takes as argument the value of x
and prints one row of the table.

5. Functions can also call themselves. This kind of functions are called recur-

sive. Write a recursive function which calculates the factorial of an integer
n.

Hint: The factorial n! of a nonnegative integer n is defined as

n! = n(n − 1) · · · 2 · 1.

Clearly

(n − 1)! = (n − 1)(n − 2) · · · 2 · 1,

so n! can be written in the form

n! =

{

1 when n ≤ 1
n((n − 1)!) when n > 1

2


