1. Cosine power series expansion. Evaluate the cosine function at an arbitrary point x using a truncated power series expansion

$$\cos x \approx \cos^{(N)} x = \sum_{k=0}^{N} \frac{(-1)^k}{(2k)!} x^{2k}.$$
 (1)

For large x the series will converge too slowly. Still, you must somehow make the code applicable even in that case. Compare the values of your approximation to the correct values at $x = 0, \pi/5, \ldots, 100\pi$.

Implement the code as a separate C subroutine that takes as its arguments the value of x and the order of the expansion, n.

2. Polynomials. Evaluate an arbitrary polynomial

$$P_n(x) = \sum_{k=1}^{n} a_k x^{n-k}$$
 (2)

and its derivative P'(x) using the Horner's method. Your program should read the coefficients a_k from an external file and print it's value and derivative at points $x = 0, 1, \ldots, 200$. A sample file with the 250 first coefficients of the power series expansion of $\exp(x)$ is provided at

http://cc.oulu.fi/~tf/tiedostot/pub/atkIV/harjoitukset/Ex003/expc.txt.

Again, the the polynomial and the derivative are to be computed in a separate subroutine.

- 3. Polynomial interpolation. For any given four points there exists a unique polynomial that passes through each of these points. Evaluate this polynomial for points (1,1), (2,3), (3,6), (4,8) at x = 2.5. Do this by implenting the Neville's algorithm by hand and then by using the Numerical Recipes library function polint.
- 4. Chebyshev polynomial expansion. A function can be approximated by the Chebyshev polynomial expansion formula

$$f(x) \approx -\frac{1}{2}c_0 + \sum_{k=0}^{N-1} c_k T_k(x),$$
(3)

where coefficients c_i are

$$c_j = \frac{2}{N} \sum_{k=1}^{N} f\left(\cos\frac{\pi(k-1/2)}{N}\right) \cos\frac{\pi j(k-1/2)}{N}.$$
 (4)

Calculate the approximation for function tanh(x), where $-2 \le x \le 2$ for n = 3, 5, 10. Plot the approximations and compare them to the original function. Use Numerical Recipes routines chebft and chebev.

void polint(float xa[], float ya[], int n, float x, float *y, float *dy) Description

Evaluates the polynomial interpolating given points at a point

Arguments

float	xa[]	input	Array of <i>x</i> -coordinates
float	ya[]	input	Array of y -coordinates
int	n	input	Number of points
float	x	input	Point where to evaluate the polynomial
float	*y	output	Pointer to the value of the polynomial
float	*dy	output	Pointer to an error estimate

void chebft(float a, float b, float c[], int n, float (*func)(float)) Description

Generates the Chebyshev expansion coefficients of function func.

Arguments

float	a	input	Lower limit of the fit interval
float	b	input	Upper limit of the fit interval
float	c[]	output	Array of expansion coefficients c_k
int	n	input	Maximum degree
float, function	*func	input	Pointer to the function to be fitted

float chebev(float a, float b,float c[], int m, float x) Description

Evaluates an Chebyshev expansion

Arguments			
float	a	input	Lower limit of the fit interval
float	b	input	Upper limit of the fit interval
float	c[]	input	Array of expansion coefficients c_k , computed by chebft.
int	m	input	Number of coefficients
float	x	input	Point where expansion is evaluated