
Cosmology: Homework 1. Solutions.
1: Olber’s paradox.

We have an inifinite, eternal, unchanging Universe. Consider a spherical shell of thickness
dr and radius r. There are

4πr2drn∗

stars in it, covering a fraction

drn∗r
2
⊙π

of the sky. Integrating all these spherical shells up to a distance Rmax, we get a “fraction of
angle”

πr2
⊙Rmaxn∗.

This

• a) eventually becomes larger than 1, ie stars cover the whole sky,

• b) goes to a half when Rmax = 1
2πr2

⊙
n∗

= 3.1 × 1018Mpc.,

• c) means that if the Universe is instead 4.6×109 years old, only a fraction πr2
⊙Rmaxn∗ =

2.3 × 10−16 of the sky is covered by stars. The energy density of radiation would be
age×power×density of stars which translates into 2.1 × 10−33kg/m3.

• d) For galaxies, the same equation gives 50 percent coverage for Rmax = 5.3 × 105Mpc.

The equation above does not actually make sense for large values of Rmax, sice the coverage can
never go above 1. This is because we haven’t taken into account that stars will start shading
off each other.

Note the more elegant solution (thank you, Timo!) which avoids this problem: consider the
cylinder of length r with crosssection πr2

⊙. If there are no stars inside that cylinder, the line of
sight corresponding to the axis of the cylinder does not meet the surface of a star.

Inside the volume 4π/3r3, there are n∗4π/3r3 stars, randomly distributed, and so the prob-
ability of not having any inside the cylinder is

(

1 − πr2
⊙r

4π/3r3

)n∗4π/3r3

.

For large value of r, this approaches the exponential function

→ eπr2

⊙n∗r,

and so the probability of having a star in the cylinder is

P (star in cylinder) = 1 − e−πr2

⊙n∗r.

This expression is less than 1 always, and to first order reproduces our more naive result above,

P (star in cylinder) = 1 − (1 − πr2
⊙n∗r +

1

2
(πr2

⊙n∗r)
2) − ...
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When πr2
⊙n∗Rmax = 1/2, we make an error of (1/2)3 by keeping only the first order term.

2: Newtonian cosmology. In Newtonian gravity, we have a cloud of galaxies expanding.
The gravitational force is as if all the mass inside the sphere is located at the origin, and so

v̇ = Ḣr + Hṙ = (Ḣ + H2)r = −GM/r2.

Note that M = ρ(t)4π/3r3(t) is constant for a given galaxy at distance r(t). If r(t) = a(t)r0,
we have

(Ḣ + H2) = −G4πρ(t)/3, H = (̇a)/a,

which is independent of r0. This is equivalent to

ä

a
= −4πGρ(t)/3.

(This is the 2nd Friedmann equation!).
The total energy of a galaxy is

κ =
1

2
mH2r2 − GMm/r,

and so we have that

K =
2κ

r2
0

= m
(

H2a2 − 8πGρ0/3a
)

,

which is again independent of r0. This can be rewritten

H2 =
8πGρ

3
+

K

ma2
.

(This is the first Friedmann equation!)
We see that the critical values for H and ρ are

H =

√

8πGρ

3
, ρc(t) =

3H2(t)

8πG
.

For H = 70km/s/Mpc, we get ρc = 9.2 × 10−27kg/m3.

3: Curved space. We wish to find the area of a spherical shell in a cruved space, at distance
s from the origin. In flat space K = 0 this is just

A0 = 4πs2.

In curved space, we use the equation for the distance

s(r) =
a√
K

χ, K > 0,

s(r) =
a

√

|K|
χ, K < 0,

where χ is a function of r which will turn out to not matter (sin or sinh). Then we want to find

Ads =

∫ π

0

dθ

∫ 2π

0

dφ

∫ χ(s+ds)

χ(s)

dχ sin(h)2χ sin θ.
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We have used the inverted relation for χ(s) to specify the limits of the integral. Also, we allow
for K < 0, K > 0 in the sin vs. sinh prescription Calculating and expanding in ds to first
order, we get

A> =
4πa2

K

1

2
(1 − cos(2c)) , K > 0,

A< =
4πa2

K

1

2
(cosh(2c) − 1) , K < 0,

c is here s/rc =
√

Ks/a, for the various examples in the question. These are

c = 0.1, A>

A0

= 0.9967,
A<

A0
= 1.0033,

c = 1, A>

A0

= 0.708,
A<

A0
= 1.381,

c = 3, A>

A0

= 0.0022,
A<

A0
= 11.15,

c = 10, A>

A0

= 0.0030,
A<

A0
= 1210000,
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