
Cosmology: Homework 8. Solutions.
1: Oldness problem. There are many ways of doing this. Here is one:

The initial energy density is
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Because this is 0.99 times the critical density, the initial Hubble rate is
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First, we note that

Ω ∝ a−2,

so to go from Ω = 0.99 to Ω = 0.001, the scale factor should grow by a factor af/a0 =
√

990.
Now integrate the Friedmann equation
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Similarly for redshifting until T = 2.7K. We use that T ∝ 1/a, and so we need
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Then we get
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= 5.28 × 108,

which is t = 1.5 × 109M−
pl1 and still tiny!

2: Baryon symmetric Universe.

Decoupling takes place when the mean free path is longer than the horizon,

H−1 < 1/nN〈σv〉.
Now assume radiation domination
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and that the nucleons are non-relativistic.

nN = gN

(

mNT

2π

)3/2

e−mN /T .

Then with mN = 938MeV, 〈σv〉 = 1352MeV2, g∗ ≃ 10, gN = 4, we find Tdec ≃ 14.1MeV.
At that temperature, the baryon-to-photon ratio is
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= 7.3 × 10−27.

and it is conserved till this day (assuming no large entropy production in-between. (Actually,
the decoupling temperature is around 22MeV, in which case one gets 10−19 for the ratio. It’s
all still much smaller than the observed 6 × 10−11.)
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