Show to the course assistant latest on 9.12.

1. Express the plane vector

$$\boldsymbol{A} = y\boldsymbol{i} - 2x\boldsymbol{j}$$

in polar coordinates, using the polar basis vectors.

- 2. Determine $\mathbf{A} \cdot \nabla \phi$ and $\mathbf{A} \times \nabla \phi$ in location (1,0,1), with scalar function $\phi(x, y, z) = 2z xy$ and vector $\mathbf{A} = x\mathbf{i} + yz\mathbf{j} + \mathbf{k}$.
- 3. Let us consider functions

$$F(x, y, z) = x^{2}z + e^{y/x}$$

$$G(x, y, z) = 2z^{2}y - xy^{2}.$$

What are $\nabla(F+G)$ and $\nabla(FG)$ in coordinate point (1, 0, -2)?

4. We know that the gradient of the function ϕ is

$$abla \phi = 2xyz^3 oldsymbol{i} + x^2z^3oldsymbol{j} + 3x^2yz^2oldsymbol{k}$$

and that $\phi(1, -2, 2) = 4$. What is the function ϕ ?

5. Determine the derivative of the function $P = 4e^{2x-y+z}$ along the direction of the vector -3i + 5j + 6k in coordinate point (1, 1, -1).