Show to the course assistant latest on 16.12.

- 1. Determine the gradients for the functions
 - a) $f(x, y, z) = x^2y + y^2z + z^2x$ in location (1, -1, 1) and
 - b) $f(x, y, z) = \cos(x + 2y + 3z)$ in location $(\pi/2, \pi, \pi)$.

Also determine on these points the tangent planes of the equivalue surfaces.

- 2. Let $r = |\mathbf{r}|$ be the length of the position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.
 - a) Calculate ∇r .
 - b) Show that $\nabla f(r) = f'(r) \frac{r}{r}$, when f(r) only depends on the length r.
- 3. Calculate also

$$\nabla^2 \frac{1}{r},$$

when r is the length of the position vector.

4. Calculate the divergences

a)
$$\nabla \cdot (2x^2 z \boldsymbol{i} - xy^2 z \boldsymbol{j} + 3yz^2 \boldsymbol{k})$$
, b) $\nabla \cdot (r^3 \boldsymbol{r})$ and c) $\nabla \cdot [r \nabla (1/r^3)]$.

Here \boldsymbol{r} is the position vector $\boldsymbol{r} = x\boldsymbol{i} + y\boldsymbol{j} + z\boldsymbol{k}$ and $r = |\boldsymbol{r}|$.