Show to the course assistant latest on 28.10.

- 1. Let u = 3 + 2i and v = -2 2i. Calculate a) uv, b) u/v, c) $1/u^*$, d) $|uv^*|$.
- 2. Write in polar representation a) 2-2i, b) $-1 + \sqrt{3}i$, c) $-2\sqrt{3} - 2i$ and d) $\sqrt{2}i$. Show the location of the numbers on the complex plane.
- 3. Let $u = 2e^{i\pi/4}$ and $v = e^{-i3\pi/4}$. Show the location of the numbers on the complex plane, and calculate using the polar representation

a)
$$uv$$
, b) u^3v^{-2} , c) $\frac{u^8}{256}$

- 4. Find all roots for the equation $z^3 = 1, z \in C$.
- 5. Expand in Taylor series $\sum_{n} a_n x^n$ functions

a)
$$e^{2x+2}$$
 b) $x^3 e^{x^2}$, c) $\ln(2+x^2)$.

Hint: do not evaluate the derivatives directly, but use the known series for functions e^x and $\ln(1 + x)$. Convert the expressions to these forms using the known properties for exp and ln -functions and change of variables.