Show to the course assistant latest on 4.11.

1. Write in polar coordinate form

a)
$$-2i$$
 b) $-1+i$ c) $1+\sqrt{3}i$
d) $\sqrt{3}+i$ e) -15 f) 0

- 2. Find all cubic roots of u = 2 + 2i, in other words, solutions of the equation $z^3 = u$.
- 3. Show that if $z \in C$, where in polar coordinates $z = re^{i\phi}$, complex logarithm function can be defined as follows:

$$\ln z = \ln r + i\phi + i2\pi n, \qquad n \in \mathbb{Z}.$$

Hint: ln is the inverse function of exponent function. Thus, show that $e^{\ln z} = z$. Function $\ln z$ is an example of a multivalued complex function.

- 4. Study if
 - a) $y = \sin x + x^2$ a solution of $\frac{d^2 y}{dx^2} + y = x^2 + 2$, b) $x = \cos t - 2\sin t$ a solution of x'' + x = 0, c) $\theta = 2e^{3t} - e^{2t}$ a solution of $\frac{d^2\theta}{dt^2} - \theta \frac{d\theta}{dt} + 3\theta = -2e^{3t}$ and d) $y = 3\sin 2x + e^{-x}$ a solution of $y'' + 4y = 5e^{-x}$?
- 5. Are the differntial equations
 - a) $(ye^{xy} + 2x)dx + (xe^{xy} 2)dy = 0$
 - b) xydx + dy = 0
 - c) $(3r \theta 1)d\theta + \theta dr = 0$

separable, exact or linear? The equations can belong to more than one category.