
763654S HYDRODYNAMICS Solutions 2 Autumn 2011

1. Show that ∫
V

(φ∇2ψ − ψ∇2φ) dV =

∫
S

(φ∇ψ − ψ∇φ) · dS.

Solution: In the previous exercise (4.b), it was shown that

∇ · (φ∇ψ) = (∇φ) · (∇ψ) + φ∇2ψ

By reordering this identity:

φ∇2ψ = ∇ · (φ∇ψ)− (∇φ) · (∇ψ) by interchanging φ↔ ψ

ψ∇2φ = ∇ · (ψ∇φ)− (∇ψ) · (∇φ) difference of these equations
φ∇2ψ − ψ∇2φ = ∇ · (φ∇ψ)−∇ · (ψ∇φ) = ∇ · (φ∇ψ − ψ∇φ) (1)

In course of Mathematics for physics, it was introduced the divergence theorem or Gauss’
theorem:∫

V

∇ · F dV =

∫
S

F · dS, where S is the boundary of the volume V. (2)

Combining equations (1) and (2) produces∫
V

(φ∇2ψ − ψ∇2φ) dV
(1)
=

∫
V

∇ · (φ∇ψ − ψ∇φ) dV (2)
=

∫
S

(φ∇ψ − ψ∇φ) · dS.

2. Calculate and describe particle paths and streamlines for the flow

v = (ay,−ax, b(t)) (3)

What could be modelled by the case b(t)=constant?
Solution:
Particle paths Notation: vx = dx

dt
= ẋ, vy = dy

dt
= ẏ and vz = dz

dt
= ż. The velocity in

the component form is

ẋ = ay, ẏ = −ax, ż = b(t).

The x and y components are connected but the z component depends only on the function
b(t):

dotz = b(t) ⇒ dz = b(t) dt ⇒
∫ z

z0

dz =

∫ t

0
b(τ) dτ ⇒ z(t) = z0 +

∫ t

0
b(τ) dτ.
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For the x and y, the trick of additional derivation works well:

ẋ = ay time derivative on both sides⇒ ẍ = aẏ = a(−ax)⇒ ẍ+ a2x = 0.

The last of the above equations is a standard differential equation, which has general
solution of

x(t) = A cos at+B sin at

From the eqn. y = ẋ
a
, the y component is

y(t) = −A sin at+B cos at

Coefficients A and B are solved from initial values (x(0), y(0)) = (x0, y0), and the general
particle paths of the flow (3) are

x(t) = x0 cos at+ y0 sin at y(t) = −x0 sin at+ y0 cos at z(t) = z0 +

∫ t

0

b(τ) dτ. (4)

In the xy-plane, the particle paths are origo-centered circles of radius
√
x20 + y20. The drift

in z direction from the initial point z0 is determined through the time integral
∫ t
0
b(τ) dτ .

If b(t) = c then there is a constant drift in z direction and a particle path is a helix.
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Figure 1: The particle paths of the equation group (4) with parameters (left figure): b(t) = 1,
z0 = 0, a = 2, x0 = 1, 2, 3, y0 = 0 and t ∈ [0, 2π], (right figure): b(t) = sin t, z0 = 0, a = 2,
x0 = 1, 2, y0 = 0 and t ∈ [0, 2π].

Streamlines Notation: p(s) = (x(s), y(s), z(s)) where the s is the arbitrary parametriza-
tion of the streamline p. Now from the lectures: the definition of the streamline

dp

ds
= v(p(s), t)
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dx(s)

ds
= ay(s),

dy(s)

ds
= −ax(s), dz(s)

ds
= b(t).

The solution of the x and y components is identical with the case of particle paths, but
now b(t) is constant with respect to the parameter s, and thus the streamlines are

x(s) = x0 cos as+ y0 sin as y(s) = −x0 sin as+ y0 cos as z(s) = z0 + b(t)s. (5)

Streamlines are at any time helices as in figure 1 (left). We have now demonstrated the
fact that the particle paths of the time-dependent velocity field v(t) are not the same as
streamlines. For example when vz(t) = b(t) = sin t, as in figure 1 (right), the particle
paths are closed curves but the streamlines are open helices.

3. Sketch streamlines for

(a) v = (a cosωt, a sinωt, 0),

(b) v = (x− V t, y, 0),

(c) vr = r cos
θ

2
, vθ = r sin

θ

2
, vz = 0, 0 < θ < 2π.

Solution:

(a) v = (a cosωt, a sinωt, 0)

dx(s)

ds
= a cosωt

dy(s)

ds
= a sinωt

dz(s)

ds
= 0

x(s) = x0 + sa cosωt y(s) = y0 + sa sinωt z(s) = z0 (6)

Evidently streamlines are constrained to the xy-plane at the z0-altitude. The
parametrization s is purely arbitrary, let’s try to eliminate it to express stream-
lines in more concrete form{

y − y0 = sa sinωt

x− x0 = sa cosωt
⇒ y − y0

x− x0
= tanωt (7)

Where x0, y0, z0 are the coordinates of the streamline at parametrization point s = 0.
The latter equation describe straight lines with time dependent slope tanωt, see
Fig. 2

(b) v = (x− V t, y, 0)

dx(s)

ds
= x(s)− V t dy(s)

ds
= y(s)

dz(s)

ds
= 0

±x(s) = Aes + V t y(s) = Bes z(s) = z0

±x(s) = (x0 − V t)es + V t y(s) = ±y0es z(s) = z0
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Figure 2: The streamlines of the equation group (7) with parameters (left figure): t = 1, z0 = 0,
a = 1, x0 = 0, y0 = −3,−2,−1, 0, 1, 2, 3 and s ∈ [−2, 2], (right figure): same as left figure put
t = 2.

The streamlines are now represented with parametrization s ∈ [−∞,∞], let’s make
new parametrization r = ±es ∈ [−∞,∞].

x(s) = (x0 − V t)r + V t y(s) = y0r are combined as

x =
x0 − V t
y0

y + V t (8)

which represents a straigth line x = x(y) with time-dependent slope (x0 − V t)/y0.
The crossing point (x = V t) of the x-axis travels with time to right with speed V
and lines rotate counterclockwise as the slope (x0−V t)/y0 decreases with time, see
Fig. 3.
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Figure 3: The streamlines of the equation group (8) with parameters (left figure): t = 1, z0 = 0,
V = 3, x0 = 5, y0 = −6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6 and r ∈ [0, 15]; (right figure): same
as left figure put t = 5.

(c) This is a bit more tricky exercies than the previous ones. vr = r cos θ
2
, vθ =

r sin θ
2
, vz = 0, 0 < θ < 2π First, one should know what is v in cylindrical polar

coordinates:

v =
dr

dt
=

d

dt
(rr̂+ zk) = ṙr̂+ r

d ˆr(θ)

dt
+ żk = ṙr̂+ r

dr̂

dθ

dθ

dt
+ żk

= ṙr̂+ rθ̇θ̂ + żk

= vrr̂+ vθθ̂ + vzk
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Now, it is easy to identify relations vr = ṙ, vθ = rθ̇ and vz = ż. Transforming these
to s-parametrization:

dr(s)

ds
= r cos

θ

2
r
dθ(s)

ds
= r sin

θ

2

dz(s)

ds
= 0

dr(s)

ds
= r cos

θ

2

dθ(s)

ds
= sin

θ

2
z(s) = z0

To sketch the streamlines in polar coordinates, our idea is to express the variable r
as function of θ as we did with the previous streamlines, where y was expressed as
a function of x. Let’s study

dr

dθ
=
dr/ds

dθ/ds
=
r cos θ

2

sin θ
2

θ 6= 0 ⇒

dr

r
= 2

1
2
cos θ

2

sin θ
2

dθ ⇒∫
dr

r
= 2

∫ 1
2
dθ cos θ

2

sin θ
2

Remembering formula
∫

f ′

f
= ln |f |+ C we find out

ln |r| = 2 ln sin
θ

2
+ C ⇒ r = r0 sin

2 θ

2
(9)

where r0 = r(π).
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Figure 4: The streamlines of the equation (9) with parameters: r0 = 2, 3, 4, z0 = 0, and
θ ∈ [0, 2π]

4. Find streamlines and particle paths for the two-dimensional flows

(a) v = (xt,−yt, 0),
(b) v = (xt,−y, 0).

Solution: (a) v = (xt,−yt, 0)
Solution procedure goes simoultanous in three columns
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Particle paths

ẋ = xt ẏ = −yt ż = 0

dx

x
= tdt

dx

y
= −tdt z(t) = z0

ln |x| = 1

2
t2 + C ln |y| = −1

2
t2 + d z(t) = z0

x(t) = ±x0e
1
2
t2 y(t) = ±y0e−

1
2
t2 z(t) = z0

xy = ±x0y0 ⇒ y = ±x0y0
x

z = z0 (10)

Streamlines

dx

ds
= xt

dy

ds
= −yt dz

ds
= 0

x(s) = ±x0est y(s) = y0e
−st z(s) = z0

xy = ±x0y0 ⇒ y = ±x0y0
x

z = z0 (11)
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Figure 5: Particle paths (10) and streamlines (11) with intital values x0 = 1 and y0 =
−5,−4,−3,−2.− 1, 0, 1, 2, 3, 4, 5

(b) v = (xt,−y, 0)
Particle paths

ẋ = xt ẏ = −y ż = 0

dx

x
= tdt

dx

y
= −dt z(t) = z0

x(t) = ±x0e
1
2
t2 y(t) = ±y0e−t z = z0 (12)
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Figure 6: (left) Particle path (12) with parameters: x0 = 1,y0 = −10, ,−6,−2, 2, 6, 10, z0 = 0,
streamlines (13) at (center) t = 0.01 (right) t = 1 with same initial values for x0, y0 and z0.

Streamlines

dx

ds
= xt

dy

ds
= −y dz

ds
= 0

±x(s) = x0e
st ±y(s) = y0e

−s z(s) = z0

±x(s) = x0e
st s = − ln

y

y0
z = z0

±x(y) = x0e
−t ln(y/y0) =

x0y
t
0

yt
(13)
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