763654S HYDRODYNAMICS Solutions 2 Autumn 2011

1. Show that
/V (¢V*) — pV2) dV = /S (6V) — V) - dS.
Solution: In the previous exercise (4.b), it was shown that
V- (V) = (V) - (Vi) + ¢V
By reordering this identity:

¢V*) =V - (V) — (V¢) - (Vop) by interchanging ¢ < 1
YV =V - (Vo) — (Vy) - (V¢) difference of these equations

VI — Vi =V (¢VY) = V- (V) = V- (¢VY — 9V ) (1)

In course of Mathematics for physics, it was introduced the divergence theorem or Gauss
theorem:

)

/ V- -FdV = / F - dS, where S is the boundary of the volume V. (2)
v S

Combining equations (1) and (2) produces

/ (6 — yV°6) AV & / V6V — oVe) dv 2 / (6V — 4Vg) - dS.
1% |4 S

2. Calculate and describe particle paths and streamlines for the flow

V= (aya —ax, b(t)) (3)
What could be modelled by the case b(t)=constant?
Solution:
Particle paths Notation: v, = ‘fl—f =2, v, = % =y and v, = % = Z. The velocity in

the component form is
T =ay, y=—axr, Z=D0(t).

The x and y components are connected but the z component depends only on the function
b(t):

dotz = b(t) = dz—=b(t)dt = / dz:/t b(r) dr = #(t) =Zo+/t b(r) dr.
20 0 0



For the x and y, the trick of additional derivation works well:
i = ay time derivative on both sides = # = ay = a(—ax) = i+ a’z =0,

The last of the above equations is a standard differential equation, which has general
solution of
z(t) = Acosat + Bsinat

From the eqn. y = f, the y component is
y(t) = —Asinat + Bcosat

Coefficients A and B are solved from initial values (x(0),y(0)) = (20, %o), and the general
particle paths of the flow (3) are

t
x(t) = zocosat + ypsinat  y(t) = —xgsinat + ypcosat  z(t) = zo + / b(t)dr. (4
0

In the zy-plane, the particle paths are origo-centered circles of radius y/x% + y3. The drift
in z direction from the initial point z, is determined through the time integral f(f b(T)dr.
If b(t) = c then there is a constant drift in 2z direction and a particle path is a helix.

Figure 1: The particle paths of the equation group (4) with parameters (left figure): b(t) = 1,
20 =0,a =2 290=1,2,3, yo =0 and t € [0,27], (right figure): b(t) = sint, zp = 0, a = 2,
ro=1,2, yo =0 and t € [0, 27].

Streamlines Notation: p(s) = (2(s),y(s), z(s)) where the s is the arbitrary parametriza-
tion of the streamline p. Now from the lectures: the definition of the streamline

dp _

= —o(p(s).1)



dx(s)
ds

dy(s)
ds

— —ax(s), dZiS) — b(1).

= ay(s),

The solution of the x and y components is identical with the case of particle paths, but
now b(t) is constant with respect to the parameter s, and thus the streamlines are

x(s) = xg cosas + yo sinas y(s) = —zgsinas + yo cos as 2(s) = zo + b(t)s. (5)

Streamlines are at any time helices as in figure 1 (left). We have now demonstrated the
fact that the particle paths of the time-dependent velocity field v(t) are not the same as
streamlines. For example when v,(t) = b(t) = sint, as in figure 1 (right), the particle
paths are closed curves but the streamlines are open helices.

. Sketch streamlines for

(a) v = (acoswt,asinwt,0),

(b) v = (l’ - Vt,y,()),

0 .
() v = reosy, vp =Tsing, v; = 0, 0 <8 <2r.
Solution:
(a) v = (acoswt,asinwt,0)
d d d
:fif) = acoswt Zis) = asinwt 2(88) =0
x(s) = zg + sacoswt y(s) = yo + sasinwt 2(s) = 2o (6)

Evidently streamlines are constrained to the xy-plane at the zp-altitude. The
parametrization s is purely arbitrary, let’s try to eliminate it to express stream-
lines in more concrete form

=
T — Xy = Sacoswt T — g

_ — ; t _
{y Yo = sasinw Y=Y _ (7)

Where g, 19, 20 are the coordinates of the streamline at parametrization point s = 0.
The latter equation describe straight lines with time dependent slope tanwt, see
Fig. 2

(b) v=(zx—-Vty,0)

dx(s) dy(s) dz(s)
T = x(s) — Vit 1o = y(s) 1e = 0
tx(s) = Ae®* + Vit y(s) = Be’ 2(s) = 2o
tx(s) = (zg — Vt)e* + Vi y(s) = £yoe’ z(s) = 2o
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Figure 2: The streamlines of the equation group (7) with parameters (left figure): ¢t = 1, zg = 0,
a=1,20=0,y0=-3,-2,-1,0,1,2,3 and s € [—2,2], (right figure): same as left figure put
t=2.

The streamlines are now represented with parametrization s € [—o0, o], let’s make
new parametrization r = +e® € [—00, 00].
x(s) = (xg —Vt)r + Vit y(s) = yor are combined as
To — Vit
Yo

xr = y+Vt (8)
which represents a straigth line z = z(y) with time-dependent slope (zo — V't)/yo.
The crossing point (r = V't) of the z-axis travels with time to right with speed V'

and lines rotate counterclockwise as the slope (zg — Vt)/yo decreases with time, see
Fig. 3.

Figure 3: The streamlines of the equation group (8) with parameters (left figure): t = 1, 2z = 0,
V =3,290=5,yo=—6,-5,—-4,-3,-2,—-1,0,1,2,3,4,5,6 and r € [0, 15]; (right figure): same
as left figure put t = 5.

(¢c) This is a bit more tricky exercies than the previous ones. v, = rcosg, vy =
rsin g, v, =0, 0 < 6 < 27 First, one should know what is v in cylindrical polar

coordinates:
dr d, . . de(®) . dido
U—E—a(rr—i—zk)—rr—l—r o +zk—rr+rdedt+zk
=7t 4100 + zZk
:vrf'+vgé—|—vzk



Now, it is easy to identify relations v, = r, vy = rf and v, = 2. Transforming these
to s-parametrization:

d 7 df 7 d
:i(j) =reosy r d<sS) = rsin 3 Zf) =0
dr(s) 7 do(s) . 0 B
0 = Teosy 7. = sing z(s) = zo

To sketch the streamlines in polar coordinates, our idea is to express the variable r
as function of 6 as we did with the previous streamlines, where y was expressed as
a function of x. Let’s study

0
dr dr/ds rcos3

— = = 0#0 =
dg — df/ds  sin? 7
vt
r sin 5
/ﬁ :2/%dﬁcosg
r sing
Remembering formula [ f?/ = In|f| + C we find out
. 9 .. 92 9
ln|r\:2lnsm§—|—0:> r=rosin o 9)

where 9 = (7).

Figure 4: The streamlines of the equation (9) with parameters: ry = 2,3,4, zp = 0, and
0 € [0, 27]

4. Find streamlines and particle paths for the two-dimensional flows

(a) v = (xt,—yt,0),
(b) v =(xt,—y,0).

Solution: (a) v = (xt, —yt,0)
Solution procedure goes simoultanous in three columns
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Particle paths
T =uxt
d
R
x

1
In |.§L’| = §t2 + C
x(t) = +xpe2”

ry = £x0Yo =

Streamlines
dz B
ds

x(s) = £xge™

xt

ry = £x0Yo =

y(t) = £yoe 2
_ ZoYo
dy
2 — _yt
ds Y
y(s) = yoe™™*
_iwoyo
X

z=0
2(t) = 2o
z(t) = 2o
z(t) = 2o
Z = 20
dz
“ oo
ds
2(s8) = 2o
Z =20

(10)

(11)

Figure 5: Particle paths (10) and streamlines (11) with intital values zp = 1 and y, =

—5,—4,-3,-2.—1,0,1,2,3,4,5

(b) v = (xt,—y,0)
Particle paths

y=-y
d
gt
y
y(t) = £yoe ™

z2=0
z(t) = 2o
Z =20

(12)
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Figure 6: (left) Particle path (12) with parameters: xy = 1,50 = —10,,

—6,-2,2,6,10, 2 = 0,

streamlines (13) at (center) ¢ = 0.01 (right) ¢ = 1 with same initial values for zg, yo and zo.

Streamlines

i _
ds
+2(s) = zpe®

+2(s) = xge™

xt

dy B dz 0

ds ds
+y(s) = yoe * z(s) = 20

_ Y _
s=—In= zZ =2

Yo
SCoyé
Yt (13)



