
763654S HYDRODYNAMICS Solutions 3 Autumn 2011

1. Verify that the example flow v = (ax,−ay, 0) satisfies the continuity equation with
constant a and constant density. Determine the stream function ψ. Discuss the particle
paths based on ψ.
Solution:
Continuity equation: When density is constant ρ(t, r) = ρ, the continuity equation ∂tρ+
∇ · (ρv) = 0 reduces to ∇ · v = 0. In the case of the example flow v = (ax,−ay, 0), we
get that

∇ · v =

(
i
∂

∂x
+ j

∂

∂x
+ k

∂

∂x

)
· (axi+ ayj) = a− a = 0.

The stream function ψ is connected to the velocity components via the equations

ax = u =
∂ψ

∂y
−ay = v = −∂ψ

∂y
.

The first gives that ψ(x, y) = axy + f(x), which is plugged in to the second giving that
f ′(x) = 0. Thus, ψ(x, y) = axy + C, where C is a constant.
The stream lines: The stream function is constant along stream lines. Thus, by solving
equation ψ(x, y) = na+ C, we will find out the stream lines

y =
n

x
,

which is a set of hyperbolas similarly as in the exercise 1.4(a) (see Fig. 5 of the solution
set 1). The stream lines and the particle paths are the same thing now when the flow is
time-independent, that is, steady flow.

2.
(a) Using the method explained in the book or in the appendix of the lecture notes

calculate ∇ · (f(r)r̂) in a spherical system of coordinates.
(b) Let v = mr−2r̂ in a spherical system of coordinates. Show that ∇ · v = 0 except

at origin O. Let S be any smooth surface surrounding O. Show that volume flows
through S at rate 4πm. What is the corresponding result if O lies on S?

Solution:
(a) In the spherical coordinates, the nabla operator is

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ λ̂

1

r sin θ

∂

∂λ
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The unit vectors r̂, θ̂ and λ̂ are pointwise orthogonal but they depend on the
spherical coordinates r, θ and λ, as we have seen in the exercise 1.3.

∇ · (f(r)r̂) =
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ λ̂

1

r sin θ

∂

∂λ

)
· (f(r)r̂)

= r̂ · ∂(f(r)r̂)
∂r

+
1

r
θ̂ · ∂(f(r)r̂)

∂θ
+

1

r sin θ

∂(f(r)r̂)

∂λ

= f ′(r)r̂ · r̂+ f(r)

r
θ̂ · θ̂ +

f(r)

r sin θ
λ̂ · sin θλ̂

= f ′(r) +
f(r)

r
+
f(r) sin θ

r sin θ
= f ′(r) +

2f(r)

r
=

1

r2
∂r(r

2f(r))

On the third line, the identity derived in the exercise 1.3, ∂θr̂ = θ̂ and another
identity, which could have been derived in the same exercise, ∂λr̂ = sin θλ̂ are
applied.

(b) Using the above lemma, it is easy to show that ∇·v = 0 for the radially symmetric
velocity field v: ∇ · v = −2mr−3 + 2mr−3 = 0, except at the origin O, where the
vector field v diverges. Let S be any smoooth surface surrounding origin O. The
flow F through this surface reads

F =

∫
S

v · dS =

∫
V

∇ · vdV using Gauss’ theorem

= lim
r→0

∫
Vr

∇ · vdV +

∫
V \Vr
∇ · vdV︸ ︷︷ ︸
=0

Vr is r-radius ball around O

= lim
r→0

∫
Sr

v · dS Volume V \ Vr does not

contain the origin O: ∇ · v = 0

= lim
r→0

∫ π

0

dθ
∫ 2π

0

dλ
m

r2
sin θr2

= lim
r→0

4πm = 4πm

In the volume integration, one can divide the integrated volume in the two parts
as one can do in one dimensional integration:

∫
V
=
∫
V1
+
∫
V2

if V = V1 ∪ V2. The
Gauss’ theorem can be applied only for smooth surfaces.
If the origin O lies on the surface S, the procedure goes as above, but one cannot
draw full sphere around the O but a hemisphere. The result is then F = 2πm.

3.
(a) Calculate Dv/Dt for the steady two-dimensional circular flow v = f(r)θ̂. Does

your result fit in with particle dynamics?
(b) Water flows along a pipe whose area of cross-section A(x) varies slowly with the

coordinate x along the pipe. Express the mass flow at x using A(x), the density
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ρ and the velocity vave(x) ≈ vavei, which is averaged over the cross section of the
pipe. Use the conservation of mass to determine vave(x) in the pipe, and calculate
the acceleration of a particle moving with this averaged velocity.

Solution:
(a) In the polar coordinates, we have the circular flow v = f(r)θ̂ and the nabla operator
∇ = r̂ ∂

∂r
+ θ̂ 1

r
∂
∂θ
. The convective derivative operator is

D(·)
Dt

=
∂(·)
∂t

+ (v · ∇)(·).

Let us calculate

Dv

Dt
=
∂v

∂t
+ (v · ∇)v

=
∂(f(r)θ̂)

∂t
+

(
f(r)θ̂ ·

(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ

))
f(r)θ̂

=

(
f(r)

r

∂

∂θ

)
f(r)θ̂ =

f 2(r)

r

∂θ̂

∂θ
= −f

2(r)

r
r̂ = −|v|

2

r
r̂

The solution Dv
Dt

= − |v|
2

r
r̂ fits very well with particle dynamics in a circular flow: Dv

Dt

is the acceleration that the particles experience and − |v|
2

r
r̂ is the central acceleration

know from the mechanics.
(b) The mass flow at x: In general, the velocity may depend on coordinates (x, y, z) in

the pipe, e.g. the velocity is probably highest in the center of the pipe and vanishes
near the pipe walls. The local mass flow is m(x, y, z) = ρ(x, y, z)v(x, y, z). We
are now interested in the total mass flow M , calculated as the integral of the local
mass flow m over the the cross section A of the pipe:

M (x) =

∫∫
A

ρ(x, y)v(x, y, z)dy dz

= ρ

(∫∫
A

dy dz

) ∫
A
v(x, y, z)dy dz∫∫

A
dy dz

= ρA(x)vave = ρA(x)vavei

The pipe is assumed to be aligned along the x-axis and that the fluid is incompress-
ible, i.e. constant ρ(x, y, z) = ρ.
The averaged velocity: Consider a section of the pipe between x0 and x, with volume
V surrounded by the surface S, which consists of the walls of the pipe and of the
cross-sectional surfaces A0 = A(x0) and A = A(x). Having incompressible fluid, no
flow trough the walls of the pipe and the averaged mass flow in the x-direction, we
express the conservation of the mass as

−M(x0) +M (x) = 0.
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The flow into the volume must come out. Then, the expression for the averaged
velocity reads

vave(x) =
A0v0
A(x)

i.

In the other words, the mass flow M is constant in the pipe, M (x) = ci.
Acceleration of a particle moving with the averaged velocity v(x):

a(x) =
Dvave

Dt
=
∂vave

∂t
+ (vave · ∇)vave

=

(
A0v0
A(x)

∂

∂x

)
A0v0
A(x)

i = −A
2
0v

2
0A
′(x)

A3(x)
i = −v2ave

A′(x)

A(x)
i

A note about the continuity equation and the conservation of the mass:
In the lectures, several equivalent forms of the continuity equation were given:

Global formulation
dMv(t)

dt
= −

∫
S

ρv · dS

Local formulation
∂ρ

∂t
+∇ · (ρv) = 0.

Global formulation describes the conservation of the mass in global sense: the
change of the mass dMv(t)/dt in some volume V must be equal to the flow −

∫
S
ρv ·

dS through surface S into V . On the other hand, the local formulation considers
the mass flow ρv and change of the density at a specific point x: the derivatives with
respect to time ∂t and spatial coordinates ∇ are calculated in the neighborhood of
the point x, and the equation must hold at all points. In the solution above, we
used the global formulation of the mass conservation in one dimension.

4. A flow around a cylinder can be described by the stream function

ψ = U

(
r − a2

r

)
sin θ,

where U is a constant and a denotes the radius of the cylinder.
(a) Show that there is no flow through the surface r = a of the cylinder.
(b) Calculate the tangential velocity vθ on the surface of the cylinder.
(c) Find the stream lines corresponding to ψ = naU (n integer) by calculating their

positions when x→∞ and at x = 0, and sketching the rest.
Solution:
(a) The situation should be considered in principle in three dimensional cylindrical polar

coordinates, but there is no dependence on the z component in the stream function
or in the flow, thus the sitation is reduced to the two dimensional polar coordinates.
As shown in lectures the flow v is written using stream function ψ = U(r− a2

r
) sin θ:

v(r, θ) = r̂
1

r

∂ψ

∂θ
− θ̂∂ψ

∂r
= U

(
1− a2

r2

)
cos θr̂− U

(
1 +

a2

r2

)
sin θθ̂

= vr(r, θ)r̂+ vθθ̂
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The flow through the surface of the cylinder is reduced to the flow through a circle of
radius a. The radial part of the flow vanishes at the surface of the circle: vr(a, θ) = 0,
thus there is no flow through the cylinder
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4

Figure 1: The streamlines around and, for the curiosity, inside the radius 1 cylinder.

F =

∫
Sa

v · dS =

∫ 2π

0

v · (adθr̂) =
∫ 2π

0

vr(a, θ)adθ = 0 (1)

(b) Above, we notice that vθ(r, θ) = −U(1 + a2

r2
) sin θ. Thus, on the surface of the

cylinder r = a and
vθ(r = a, θ) = −2U sin θ.

The message is that tangential velocity does not vanish on the surface of the cylinder
and this flow cannot be realistic near the cylinder.

(c) We will now use the fact that the stream function ψ is constant along a stream line.
We can choose this constant rather arbitrarily, and in this exercise we have taken it
to be naU , where n is integer. We solve the trajectories along which ψ is constant.
Stream lines at x = 0 correspond to θ = π/2 and r =

√
x2 + y2 = y using these:

anU = ψ ⇒ anU = U

(
r − a2

r

)
sin θ ⇒ an = y − a2

y
⇒

y2 − any − a2 = 0 ⇒ y = a

(
n

2
±
√(n

2

)2
+ 1

)
n = 0, 1, 2, 3, . . .

We should also considered the possibility that θ = −π/2 and sin θ = −1 but it gives
just symmetric result for y < 0.
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Stream lines at x =∞ correspond to sin θ = y
r
and r →∞.Using these:

anU = ψ ⇒ anU = U

(
r − a2

r

)
sin θ ⇒ an =

(
r − a2

r

)
y

r
⇒

an = y − a2

r2
⇒ y = na n = 0, 1, 2, 3, . . .
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