
763654S HYDRODYNAMICS Solutions 4 Autumn 2011

1. For applications later in this course, go through the solution of the Laplace equation given
in the appendix C of the lecture notes. Find φ(x, y) for the cases

a) f(y) = Cδ(y − a
2
),

b) f(y) = C sin πy
a
.

Hint: Function δ(y − a
2
) denotes Dirac delta (δ) function at y = a

2
. Generally, δ function

is defined with help of integration:∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0).

Solution:
Note that in the appendix the following result has been used:∫ a

0

sin(kny) sin(kmy) dy =
a

2
δnm,

where kn = nπ/a, which is obtained by change of variables from the more familiar orthog-
onality theorem ∫ π

−π
sin(nx) sin(mx) dx = πδnm.

Also note that the values of n are limited to n = 1, 2 . . ., and n = 0,−1,−2 . . . are NOT
accepted, since the exponential e−knx must vanish when x→∞.
Now, φ(x, y) can be presented as

φ(x, y) =
∞∑
n=1

Dne
−knx sin kny,

where
Dn =

2

a

∫ a

0

sin(kny)f(y) dy.

a) Now f(y) = Cδ(y − a
2
), where the delta function δ is such that∫ ∞
−∞

f(x)δ(x− x0) dx = f(x0)

for any (well behaving) function f(x). Using this we get

Dn =
2

a
C

∫ a

0

sin(kny)δ
(
y − a

2

)
dy =

2

a
C sin

(
n
π

2

)
.
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Figure 1: Contourplot of the solutions (1) and (2) at center and right panels, respectively. The
left panel is the scale, the distance of contourlines is 0.05. Parameters are C = 1 and a = 5. In
the center panel, there is seen oscillation near y-axis, it is unphysical and originates from the
truncation of the infinite

∑∞
n=0 up to first 400 terms. Plotting of infinite sum is hard.

For even n, sin(nπ
2
) = 0, while for odd n, we get sin(nπ

2
) = (−1)(n−1)/2. Thus, the

solution [visualized in Fig. 1(center)] is

φ(x, y) =
2

a
C
∞∑
n=1

(−1)n−1e−k2n−1x sin(k2n−1y). (1)

b) Now f(y) = C sin πy
a
, so

Dn =
2

a
C

∫ a

0

sin(kny) sin(k1y) dy = Cδn1,

i.e. D1 = C and Dn = 0 for n 6= 1. We then end up with

φ(x, y) = Ce−πx/a sin(π
y

a
), (2)

which is also visualized in Fig. 1(right).

2. Given the flow

v = (3z + 4x,−5y,−2x+ z),

calculate the vorticity and the symmetric and antisymmetric parts of ∂vi/∂xj.
Solution:
We denote v = (v1, v2, v3) (note that ∇ · v = 0). The vorticity is

∇× v =

∣∣∣∣∣∣
i j k
∂x ∂y ∂z
v1 v2 v3

∣∣∣∣∣∣ = (2 + 3)j = 5j.
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The symmetric (e) and antisymmetric (r) tensors are calculated from the equations

eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

rij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
.

First we calculate the tensor

∂vi
∂xj

=


∂v1
∂x

∂v1
∂y

∂v1
∂z

∂v2
∂x

∂v2
∂y

∂v2
∂z

∂v3
∂x

∂v3
∂y

∂v3
∂z

 =

 4 0 3
0 −5 0
−2 0 1

 .

It is then easy to calculate

eij =

 4 0 1
2
(3− 2)

0 −5 0
1
2
(−2 + 3) 0 1

 =

 4 0 1
2

0 −5 0
1
2

0 1

 ,

and

rij =

 0 0 1
2
(3 + 2)

0 0 0
1
2
(−2− 3) 0 0

 =

 0 0 5
2

0 0 0
−5

2
0 0

 .

3. Poiseuille flow in a pipe has velocity components

u = v = 0, w = b(a2 − x2 − y2),

where v = ui+ vj+ wk.
a) Calculate ∇ · v and ∇× v.

b) Calculate the symmetric and antisymmetric parts of ∂vi/∂xj.

c) Find the eigenvalues and (eigenvectors) principal axes of the symmetric part.

d) Express the vorticity in the cylindrical polar coordinates and discuss the direction
of the vorticity in terms of the slipping of layers of fluid over each other.

Solution:
a) Divergence of the velocity field v = ui+ vj + wj

∇ · v =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

Curl of the velocity field in the Cartesian coordinates

∇× v =

(
∂w

∂y
− ∂v

∂z

)
i+

(
∂u

∂z
− ∂w

∂x

)
j +

(
∂v

∂x
− ∂u

∂y

)
k

=
∂w

∂y
i− ∂w

∂x
j = −2byi+ 2bxj
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and in the cylindrical polar coordinates where y = r sin θ and x = r cos θ

∇× v = −2br sin θi+ 2br cos θj = 2br(− sin θi+ cos θj) = 2brθ̂.

b)

∇v =
∂vi
∂xj

=

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 =

 0 0 0
0 0 0
−2bx −2by 0


Symmetric part is defined as eij = 1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
and antisymmetric as rij =

1
2

(
∂vi
∂xj
− ∂vj

∂xi

)
thus they are

e =

 0 0 −bx
0 0 −by
−bx −by 0

 r =

 0 0 bx
0 0 by
−bx −by 0

 .

c) Eigenvalues λ and eigenvectors a solve the vector-matrix equation ea = λa which
has alternative formulation (e− Iλ)a = 0. This eigenvalue problem has nontrivial
solution (a 6= 0) iff det(e− Iλ) = 0 thus one have to solve equation∣∣∣∣∣∣

−λ 0 −bx
0 −λ −by
−bx −by −λ

∣∣∣∣∣∣ = 0 (3)

which reduces to the form −λ3 + λb2(x2 + y2) = 0 having solutions

λ0 = 0, λ1 = b
√
x2 + y2, λ2 = −b

√
x2 + y2.

These are the eigenvalues of the matrix e. Eigenvectors a(i) are solved from the
equation (e− Iλi)a

(i) = 0. It is also convenient to normalize eigenvectors such that
|a(i)| = 1. For the first, λ0 = 0 then 0 0 −bx

0 0 −by
−bx −by 0


a

(0)
x

a
(0)
y

a
(0)
z

 = 0

which has normalized solution

a(0) =

−
y√
x2+y2

+ x√
x2+y2

0

 =

− sin θ
+cos θ

0

 = sin θi+ cos θj = θ̂

and then λ1,2 = ±b
√
x2 + y2 = ±br then we have∓b

√
x2 + y2 0 −bx
0 ∓b

√
x2 + y2 −by

−bx −by ∓b
√
x2 + y2


a

(1,2)
x

a
(1,2)
y

a
(1,2)
z

 = 0
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which has normalized solutions

a(1,2) =
1√
2

∓
x√
x2+y2

∓ y√
x2+y2

1

 =
1√
2

∓ cos θ
∓ sin θ

1

 =
1√
2
(∓r̂+ k).

These eigenvectors a(1,2,3) are the wanted principal axes. The meaning of the princi-
pal axes: As λ1 = b

√
x2 + y2 = br > 0 a volume element stretches in the direction

of the principal axis a1 and as λ2 = −br < 0 the volume element squeezes in the
direction of a2. In the direction of vector a0, it happens no transformation, since
λ0 = 0. Note that direction of the eigenvectors is not fixed: an eigenvector −a = b
satisfies the equation eb = λb as well as eigenvector a = b.

d) The vorticity ∇× v = 2brθ̂ as is shown in (a).
Velocity profile in the x − z plane is upsidedown parabola, shown in the Fig. 2.
The minimum of the velocity is at the edge of the pipe r = a and the maximum at
the center r = 0. If approaching the center from the edge, the velocity increases as
the slope 2br of the parabola.
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Figure 2: Velocity profile at x− z plane.

Slipping of the flow layers If the pipe were split in circular shaped layers with
thickness dr and radius r, then the velocity in z dirction would increase when ap-
proaching the center. Neighbour layers have different velocity and they are slipping
with respect to each other. This is a similar to the case of shear flow discussed in
the lectures with the help of the rotation of the small cross, but now in cylindri-
cal coordinates. Similarly we can deduce that there is local rotation with angular
velocity w = brθ̂.
Differential operator nabla ∇ is at elementary level defined at a point r and
it’s small neighbourhood. In the physical language, ∇ operations give only local
information of the field they operate, ∇×v is the local vorticity of the flow. Global
rotation must be deduced from the local vorticity, e.g., by integration.
Gedanken experiment Consider that you are going to put a small paddle wheel
in the flow and fix only the point where the wheel stands. If the wheel starts to
rotate then the value of vorticity ∇ × v is non-zero. If the axis of the wheel is
freely moving, it will set to same direction than the vector ∇× v. By studying the

5



behaviour of the paddle wheel in the whole flow, one can deduce the vorticity field,
which in our case is 2brθ̂.

4. A vortex has the stream function ψ = −C ln r
a
. Calculate the vorticity outside of

the line (r = 0) to show that ∇× v = 0. Show, by using the Stokes’ theorem, that
the circulation κ =

∮
v · dl for vortex flow is the same for any simple curve once

around the origin (in the positive direction).
Solution: Vorticity : First, we calculate v from

v = (∇ψ)× k̂ =

(
−C
r
r̂

)
× k̂ =

C

r
θ̂.

Then, we calculate ∇ × v in the cylindrical coordinates outside of the center line
r = 0:

∇× v =

(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ k

∂

∂z

)
×
(
C

r
θ̂

)
= r̂×

(
−C
r2
θ̂

)
+ θ̂ ×

(
C

r2
∂θ̂

∂θ

)

= r̂×
(
−C
r2
θ̂

)
+ θ̂ ×

(
−C
r2
r̂

)
= 0.

The local vorticity outside the center line vanishes. This was elegantly demonstrated
in the video shown in the lectures by studying a small cross in a circular flow.
Circulation: Now we can calculate the circulation for a circular path `1 around
origin. For this we have dl = rθ̂dθ, and therefore

κ =

∮
`1

v · dl =
∫ 2π

0

vθrdθ = 2πC.

We will then show that the results is the same for an arbitrary path `2 once around
the origin. We will use the Stokes’ theorem, which states∫∫

A

∇× v · dA =

∮
l

v · dl.

We will construct a path ` that consists of the given path `2 in the positive direction,
a circular path `1 around the origin inside `2, and two straight lines `3 and `4 in
opposite directions, which connect `1 and `2, see Fig. 3. In other words∮

`

=

∮
`2

+

∫
`3

−
∮
`1

+

∫
`4

=

∮
`2

−
∮
`1

,

where the negative sign of
∮
`1

comes from the fact that it is now directed in the
negative direction, and the integrations over `3 and `4 cancel each other. Now the
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Figure 3: The path ` used in the integration.

area A inside the combined path ` does not contain the origin, so ∇× v = 0 inside
A, and from Stokes’ theorem we get∮

`

v · dl =
∮
`2

v · dl−
∮
`1

v · dl =
∫∫

A

∇× v · dA = 0,

or ∮
`2

v · dl =
∮
`1

v · dl = 2πC,

which is what we wanted to show. Alternatively, one could use the method similar
to that used in the previous exercise set, in connection of the Gauss’ theorem (or
vice versa).
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