- 1. A frame of reference which is accelerating (with respect to inertial frames) is used to describe an experiment. The acceleration has the constant value f in the **i** direction.
 - (a) Show that an 'inertial force' $-\rho f \mathbf{i}$ acts on a fluid (per volume) and that a potential fx may be used.
 - (b) Hence find the equilibrium water surface in an accelerated tank of water by taking into account also the gravity.

Hint: It will be shown in the next lecture that the liquid surface corresponds to potential Φ =constant.

Solution:

(a) Let O be an inertial frame and O' the accelerating frame. Let \mathbf{s} be the vector connecting the origins of the two frames at some instant. Then position vectors \mathbf{r} and \mathbf{r}' are related by $\mathbf{r} = \mathbf{s} + \mathbf{r}'$.

Newtons second law states that $\mathbf{F} = m \frac{d^2 \mathbf{r}}{dt^2}$. Thus

$$\mathbf{F} = m \frac{d^2 \mathbf{s}}{dt^2} + m \frac{d^2 \mathbf{r'}}{dt^2} = \mathbf{F}_i + \mathbf{F'},$$

or $\mathbf{F}' = \mathbf{F} - \mathbf{F}_i$. But now $\frac{d^2\mathbf{s}}{dt^2}$ is nothing but the given acceleration $\mathbf{a} = f\hat{\mathbf{i}}$, so the "inertial force" per unit volume is

$$-\frac{\mathbf{F}_i}{V} = -\frac{m}{v}f\hat{\mathbf{i}} = -\rho f\hat{\mathbf{i}}.$$

Since $-\nabla(fx) = -\hat{f}\mathbf{i}$, the corresponding potential is fx.

(b) The potential of the gravity is $\Phi_g = gz$ and the potential of the inertial force $\Phi_i = fx$. Using them, the water surface is given by

$$\Phi = \Phi_g + \Phi_i = gz + fx = \text{constant} = C \Rightarrow z = \frac{C}{g} - \frac{f}{g}x.$$

Figure 1: The surface of water in the tank.

2. Show that the relation $\delta A_1 = \mathbf{n} \cdot \mathbf{i} \delta A$ used in the lectures is valid.

Hint: Express $\mathbf{n}\delta A$ as a cross product of two vectors. Solution:

Figure 2: LEFT: Definition of vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , AB, and AC. RIGHT: The area of a parallelogram spanned by vectors \mathbf{A} and \mathbf{B} is $|\mathbf{A} \times \mathbf{B}| = AB \sin \theta$, where θ is the angle between the vectors. The area of a triangle spanned by \mathbf{A} and \mathbf{B} is half of this.

We define $\mathbf{a} = a\mathbf{i}$, $\mathbf{b} = b\mathbf{j}$, and $\mathbf{c} = c\mathbf{k}$, where *a* is the distance between points *A* and *P*, i.e. a = AP. Correspondingly b = BP, and c = CP. Now

$$\overrightarrow{AC} = -\mathbf{a} + \mathbf{c}$$
, and $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$.

From the "right-handed three-finger rule", we find for the surface normal of δA

$$\hat{\mathbf{n}} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}.$$

The area δA can be expressed as $\delta A = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$. Thus we have

$$\delta A\hat{\mathbf{n}} = \frac{1}{2}\overrightarrow{AB} \times \overrightarrow{AC} = \frac{1}{2} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -a & b & 0 \\ -a & 0 & c \end{vmatrix} = \frac{1}{2}(bc\mathbf{i} + ac\mathbf{j} + ab\mathbf{k}).$$

Now for the area δA_1

$$\delta A_1 = \frac{1}{2} |\mathbf{b} \times \mathbf{c}| = \frac{1}{2} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & b & 0 \\ 0 & 0 & c \end{vmatrix} = \frac{1}{2} bc = \delta A \hat{\mathbf{n}} \cdot \mathbf{i}.$$

3. Show that the normal component of the surface force vector is

$$\sigma_{ij}n_jn_i$$

per area, and find an expression for the tangential force on area dS (i.e. the force parallel to the surface).

The solution is written simultanous by using vector A and vector component A_i notation.

A tensor $\sum_{n=1}^{\infty}$ is thought to be constructed from two vectors: $\sum_{n=1}^{\infty} ab$, without dot product or anything. Now one can take dot products with the tensor from right and left:

$$\bar{\bar{\Sigma}} \cdot c = ab \cdot c$$
 $c \cdot \bar{\bar{\Sigma}} = c \cdot ab.$

The tensor $\overline{\Sigma}$ has ij component of form: $\Sigma_{ij} = a_i b_j$ and the above dot products reads as

$$\Sigma_{ij}c_j = a_i b_j c_j \qquad \qquad c_i \Sigma_{ij} = c_i a_i b_j.$$

You can see this construction also in $\nabla \boldsymbol{v}$ which is in component stands $\frac{\partial v_i}{\partial x_j}$. The surface element vector d \boldsymbol{S} has expression

in vector-matrix notation:	$\mathrm{d}\boldsymbol{S} = \mathbf{\hat{n}}\mathrm{d}S$
in coordinate notation:	$\mathrm{d}S_i = n_i \mathrm{d}S$

The surface force vector $\mathrm{d} \boldsymbol{F}$ reads as

in vector-matrix notation
$$d\mathbf{F} = \overline{\sigma} \cdot d\mathbf{S} = \overline{\sigma} \cdot \mathbf{n} dS$$

in coordinate notation $dF_i = \sigma_{ij} dS_j = \sigma_{ij} n_j dS$

where $\overline{\sigma}$ is the stress tensor and $\hat{\mathbf{n}}$ the normal vector of the surface. The projection of a vector \mathbf{A} onto unit vector $\hat{\mathbf{n}}$ is given by dot product: $A^{(n)} = \hat{\mathbf{n}} \cdot \mathbf{A} = n_i A_i$. Thus the normal component $f^{(n)}$ of the surface force vector is

in vector-matrix notation
$$f^{(n)} = \hat{\mathbf{n}} \cdot \frac{\mathrm{d}\mathbf{F}}{\mathrm{d}S} = \hat{\mathbf{n}} \cdot \bar{\vec{\sigma}} \cdot \hat{\mathbf{n}}$$

in coordinate notation $f^{(n)} = n_i \frac{\mathrm{d}F_i}{\mathrm{d}S} = n_i \sigma_{ij} n_j = \sigma_{ij} n_i n_j$

The projection $f^{(n)}$ is just a bare number. Now the normal component of the surface force vector reads $\mathbf{f}^{(N)} = f^{(n)} \hat{\mathbf{n}}$ or $f_i^{(N)} = f^{(n)} n_i$ and the remaining part of the force is the tangential part

vector-matrix notation $\mathbf{f}^{(T)} = \mathbf{f} - \mathbf{f}^{(N)} = (\overline{\sigma} - f^{(n)} \overline{1}) \cdot \mathbf{\hat{n}}$ coordinate notation $f_i^{(T)} = f_i - f_i^{(N)} = \sigma_{ij}n_j - f^{(n)}n_i = \sigma_{ij}n_j - (n_k\sigma_{kl}n_l)n_i.$

- 4. Let us assume that the Earth's gravitational field is isotropic.
 - a) Show that due to Earth's rotation the ocean surface varies as

$$\delta r = \frac{\omega^2 R^2 \sin^2 \theta}{2g},\tag{1}$$

where R is the radius and ω is the angular velocity of Earth and θ is the polar angle.

- b) How could you justify the use of constant radius R in the right hand side of equation (1)?
- c) Compare the results with measured values

$$R_{pole} = 6\,356\,912\,\mathrm{m},$$

 $R_{equator} = 6\,378\,388\,\mathrm{m}.$

What could cause the difference?

Hint: Liquid surface corresponds to Φ =constant. Solution:

a) Let's consider a point r near the surface of Earth at the polar angle θ , and at distance $r = R + \delta r$ from Earth's center, see Fig. 3. Here, R is the (pole) radius of Earth, and δr is a small deviation.

The coordinate system at that point is such that r is perpendicular to the surface of Earth. Let's assume that the length scales considered are small respect the radius R of Earth. Then the gravitational force is $\mathbf{F}_g = -gr\hat{\mathbf{r}}$ and corresponding potential $\Phi_g = gr$, $(\mathbf{F}_g = -\nabla\Phi)$. If this were not the case, we would use 1/r gravitational potential.

Figure 3: Schematics of the notations

For the rotational potential, we notice that the axis of rotation is at distance $r \sin \theta = (R + \delta r) \sin \theta$ from the point considered (see Fig. 3). The rotation is taken into account by centrifugal force: $\mathbf{F}_r = \omega^2 r \mathbf{r}$ and $\Phi_r = -\frac{1}{2}\omega^2 r^2$ ($\mathbf{F}_r = -\nabla \Phi$). The total potential is $\Phi = gr - \frac{1}{2}\omega^2 r^2 \sin^2 \theta$. The surface of liquid follows a constant potential $\Phi = C$. We find the appropriate constant by considering the pole, $\theta = 0$, and setting there $r = R_{\text{pole}} (\delta r = 0)$, i.e. $C = gR_{\text{pole}}$. Inserting this to the expression for the total potential gives

$$\delta r = r - R_{\text{pole}} = \frac{\omega^2 r^2 \sin^2 \theta}{2g} \approx \frac{\omega^2 R^2 \sin^2 \theta}{2g}.$$
 (2)

b) In the last form, we have approximated $r \approx R + \delta r$. Here R can be taken to be R_{pole} , although it makes little difference if we use R_{equator} instead. Using $R \approx 6 \cdot 10^6$ m in (2) we get $\delta r = 10900 \text{ m} \approx 10^4 \text{ m}$ at the equator, so

$$(R + \delta r)^2 = R^2 + 2R\delta r + (\delta r)^2 = R^2 (1 + 2\frac{\delta r}{R} + \left(\frac{\delta r}{R}\right)^2)$$

$$\approx R^2 (1 + 3 \cdot 10^{-3} + 3 \cdot 10^{-4}) \approx R^2,$$

and corresponding change in δr is few tens of meters.

- c) From equation (2), we get at equator $\theta = \pi/2$ that $\delta r = r R_{\text{pole}} = \frac{\omega^2 R^2}{2g} = 10\,892$ m but from experimental values $R_{\text{eq}} R_{\text{pole}} = 21\,476$ m. Sources of error may be
 - (i) $g = MG/r^2$ is not constant, since the surface we consider is not a perfect sphere. We should use $\Phi_G = -\frac{MG}{r}$. This only causes a little difference.
 - (ii) Since the surface of Earth is not idealized sphere, the gravitational field is not isotropic : $\mathbf{F}_q \not\cong \hat{\mathbf{r}}$.

See more, for example, A. L. Fetter, and J. D. Walecka, *Theoretical Mechanics of Particles and Continua*, 2003, page 48.