
763654S HYDRODYNAMICS Solutions 6 Autumn 2011

1. Derive the formulae: a)
∫
S
fdS =

∫
V
∇fdV, and b)

∫
S
AijdSj =

∫
V

∂Aij

∂xj
dV . [Hint: Mul-

tiply by a constant vector and use the divergence theorem.] Solution: The (Gauss’)
divergence theorem states: ∫

s

A · dS =

∫
V

∇ ·A dV, (1)

or in the component form ∫
S

AidSi =

∫
V

∂Ai
∂xi

dV. (2)

a) (Version 1) If we choose Ai = f ∀i, i.e. A = fi+ fj + fk, then, using eq. (2), we
get seperately for each component i that∫

S

fdSi =

∫
V

∂f

∂xi
dV

which can be further written in the vector form as
∫
S
fdS =

∫
V
∇fdV,.

(Version 2) Let’s multiply f with a constant vector e, for this vector∫
S

(fe) · dS =

∫
V

∇ · (fe) dV =

∫
V

e · (∇f) dV

Now, we choose first e = i, then e = j and for the last e = k. This procedure gives
the end result

∫
S
fdSi =

∫
V

∂f
∂xi

dV .
b) (Version 1) Let vector A(i) = (Ai1, Ai2, Ai3). Now∫

S

Aij dSj =

∫
S

A(i) · dS (1)
=

∫
V

∇ ·A(i) dV =

∫
V

∂Aij
∂xj

dV, ∀i.

(Version 2) Let’s multiply tensor Aij from left by a constant vector ai, then we are
left with vector bj = aiAij. For that

ai

∫
S

AijdSj =

∫
S

aiAijdSj =

∫
S

bj dSj =

∫
S

b · dS

=

∫
V

∇ · b dV =

∫
V

∂(aiAij)

∂xj
dV = ai

∫
V

∂Aij
∂xj

dV

One must notice that there is a summation over i in the above relation, thus simply
dividing by ai is not allowed. Though, the above relation holds for every constant
vector, thus we can first choice ai = δ1i, then ai = δ2i and for the last ai = δ3i, after
which the relation

∫
S
AijdSj =

∫
V

∂Aij

∂xj
dV is proved for all i.
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2. A gutter is in the form of half a cylinder and is full of water (see figure).
a) Prove, by integrating surface forces, that the total force on the gutter is equal to the
weight of water in the gutter.
b) Calculate the moment, about the lowest level of the gutter, of the surface forces on
the half of the gutter on one side of this lowest line.
c) Calculate the force on one half of the gutter.
Solution:

We consider the case in the xy-plane and neglect
the z-direction.
Surface element is dS = −adθr̂ (pointed from
the solid into the fluid), where a is the radius
of the gutter. The pressure is p = p0 − ρgy =
p0−ρga sin θ (pressure increases with decreasing
y).

 
 

x 

y 

P 

A 

dF 

θθθθ    

a) (Version 1) The force per surface element is found from dFi = σijdSj = −pdSi. The
total force on the gutter is found by integrating over the surface S of the gutter

F = −
∫
S

p dS = −
∫
V

∇p dV = −ρV gŷ = −Mgŷ,

which equals the weight of water in the gutter. In the integral above we have used
the result of exercise 1 a).
(Version 2) The force per surface element (dS = dSn̂ = dSr̂ and dS = adθ) is found
in a point (a, θ) from

dF = −pdSr̂ = −ρgr sin θadθ(cos θx̂ + sin θŷ)

= ρga2dθ(− sin θ cos θx̂− (sin θ)2ŷ)

To get the total force F , dF is integrated over the surface of the gutter:

F =

∫ 2π

π

dF = ρga2

∫ 2π

π

(− cos θ sin θx̂− sin2 θŷ)dθ = −ρga2π

2
ŷ.

Taking into account the depth l of the gutter the total force is

F = −gρa2π

2
lŷ = −gM ŷ.

b) (Version 1) Next we calculate the moment about the lowest point, P , of the surface
forces on the left side of the gutter. From the figure, distance PA = −a cos θ, and
|dF| = −ρga2 sin θdθ. Thus the moment is

−
∫ 3π/2

π

ρga3 sin θ cos θ dθ =
1

2
ρga3.
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(p0 has been neglected as irrelevent.)
(Version 2) The moment dT has general definition: dT = r × dF . The vector r is
the radius vector from the point P to the point where force dF acts.

r = a cos θx̂ + (a+ a sin θ)ŷ dF = ρga2dθ(− sin θ cos θx̂− sin2 θŷ)

r × dF = ẑρga3dθ sin θ cos θ

The total moment with respect to the point P from the right hand side of the
gutter:

T =

∫ 3π/2

π

dT = ρga3

∫ 3π/2

π

ẑ sin θ cos θ dθ =
1

2
ρga2ẑ (3)

c) The force on the left half of the gutter is, (neglecting the air pressure p0)

F = −
∫
S

p dS =

∫ 3π/2

π

pa dθr̂

= −ρg
∫ 3π/2

π

a2 sin θ(cos θx̂ + sin θŷ) dθ = −ρga2

(
1

2
x̂ +

π

4
ŷ

)
.

3. The starting point for studying tides is to consider the Earth and the Moon circulating
around their center of mass with angular velocity Ω. Tides are caused by the effect of
the Moon’s gravitational potential φm = −γm/r′ (where r′ is the distance from Moon’s
center) on the surface of the Earth.

d

x

y 

m 

Center of mass

Moon Earth 

M

l

M and m are the masses of the
Earth and the Moon, respec-
tively, and d is the distance be-
tween the centers of the Earth
and the Moon. The rotation
axis of the Earth-Moon system
is perpendicular to the x–y
plane.

a) Determine the distance l of the center of mass from the center of the Earth.
b) Express the potential φm as a function of x, y and z.
c) By expanding φm in Taylor series up to second order in x/d, y/d and z/d, and

neglecting all constant and higher-order terms show that

φm =
γm

d2
x− γm

2d3
(2x2 − y2 − z2) (4)

d) We now argue that the term linear in x in (4) causes the centripetal acceleration
that keeps the Earth at constant distance from the center of mass. Show that this
leads to the condition Ω2d3 = γ(m+M).

e) Take into account also Earth’s gravitational potential near the surface φe = gh.
(Here h is the height and the g can also be expressed as g = γM/R2

e, where Re
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is the radius of the Earth.) Using this together with the quadratic terms in (4),
express the condition for the sea level in hydrostatic equilibrium, and calculate
numerically the maximum height of the tide. (Warning: assuming hydrostatic
equilibrium severely underestimates the tide near coastlines. Also other bodies,
especially the Sun, contribute to tides.)

Solution:

 
 

r’’ 
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a) The relations between vectors in the figure are

r′ = d i + r = (d+ x)i + yj,

r′′ = li + r = (l + x)i + yj.

The center of gravity is at distance

l =
M · 0 +md

M +m
=

m

m+M
d

from Earth (l ∼4565 km, i.e. it is actually inside Earth).
b) Writing r′ in terms of x, y and z, we get

φm = −γm
r′

= − γm√
(d+ x)2 + y2 + z2

= −γm
d

1√
1 + 2x/d+ x2/d2 + y2/d2 + z2/d2

c) Using the expansion (1 + x)−
1
2 = 1− 1

2
x+ 3

8
x2 − . . . we get the potential

φm = −γm
d

[
1− 1

2

(
2x

d
+
x2

d2
+
y2

d2
+
z2

d2

)
+

3

8

(
2x

d
+
x2

d2
+
y2

d2
+
z2

d2

)2
]

= −γm
d

[
1− 2xd+ x2 + y2 + z2

2d2
+

3

8

(
2x

d

)2
]

+O3

= −γm
(

1

d
− x

d2
+

2x2 − y2 − z2

2d3

)
+O3.
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Neglecting the constant and O3 terms, we get

φm =
γm

d2
x− γm

2d3
(2x2 − y2 − z2).

d) Argue that the linear term in x in (4), in other words γmx/d2, causes the cen-
tripetal acceleration. The potentials are φlinear

m = γmx/d2 and φΩ = −1
2
Ω2x2. The

corresponding forces are

Fm = −∇φlinear
m = −γm/d2i

FΩ = −∇φΩ = Ω2xi.

The total force at the center of the Earth (x = l) is

Fm + FΩ = −
(
γm

d2
− Ω2 m

m+M
d

)
i.

This must vanish for Earth to stay in orbit, which leads to

γm

d2
= Ω2 m

m+M
d

⇒ Ω2d3 = γ(m+M).

e) Earth’s gravitational potential near the surface is φe = gh = γMh/R2
e, where Re

is the radius of the Earth. Taking into account the quadratic terms in φm, the total
potential is

φ = φe + φquadratic
m

=
γM

R2
e

h− γm

2d3
(2x2 − y2 − z2)

=
γM

R2
e

h− γm

2d3
(3x2 − x2 − y2 − z2)

=
γM

R2
e

h− γm

2d3
(3 cos2 θ − 1)R2

e

where r = Re near the surface of the Earth. The potential at the maximum of the
tide, for example θ = 0 where h = hx, and at the minimum of the tide, for example
θ = π/2 where h = hy, is

φx =
γM

R2
e

hx −
γm

2d3
2Re

φy =
γM

R2
e

hy −
γm

2d3
(−R2

e).
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In case of hydrostatic equilibrium, φ = constant, and thus φx = φy. Then

γM

R2
e

hx −
2R2

eγm

2d3
=

γM

R2
e

hy +
R2
eγm

2d3

⇒ hx − hy =
3mR4

e

2d3M
.

Using masses m = 7.348× 1022 kg and M = 5.974× 1024 kg for the Moon and the
Earth, respectively, and the radius of Earth Re = 6371 km and the distance of the
Moon from the Earth d = 384400 km,

hx − hy ≈ 0.5 m.

The mean observed tide height is of order 8 m. The tides are actually a dy-
namic phenomenon, not static as assumed here. (For more information on tides,
see http://scienceworld.wolfram.com/physics/Tide.html)
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