
763654S HYDRODYNAMICS Solutions 8 Autumn 2011

1. Plane Couette flow
Consider fluid between parallel planes. The wall at y = 0 is fixed, and the wall at y = a
moves with steady speed V in its own plane. Solve the Navier-Stokes equations for the
case ρ = constant to show that a possible flow is

v =
V y

a
i.

Calculate the stress on both walls.
Solution:
Modeling: An obvious choice for the velocity field of the fluid is v = v(y) = U(y)i. The
inner pressure of the fluid is assumed constant, thus ∇p = 0. Also it is assumed that no
volume forces are present: ρf = 0. The situation also seems to be static so that partial
derivative of the velocity vanishes: ∂v/∂t = 0.

Figure 1: Schematics of the plane Couette flow: The lower boundary is fixed and the upper
boundary moves with velocity V to right.

Boundary conditions: The upper plane, at y = a, is moving to the direction of i with
velocity V . The boundary condition for velocity of the fluid v at y = a is then

v(y = a) = U(a)i = V i.

This condition says that the upper wall sees the fluid at rest. The second boundary
condition says that also the lower wall sees the fluid at rest:

v(y = 0) = 0.

Solution: The equation of motion, that is, the Navier-Stokes equation, stands as

ρ
Dv

Dt
= ρf −∇p+ µ∇2v

and reduces to the form
ρ(v · ∇)v = µ∇2v
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from which one sees that the left hand side also vanishes since v·∇v = U(y)∂U(y)/∂x = 0.
The equation

0 =
∂2U(y)

∂y2

is solved with function U(y) = Dy + E. The second boundary condition reduces the
solution to the form U(y) = Dy and the first boundary condition further to the form

v(y) = U(y)i = V
y

a
i.

Stress on the walls: The force per area unit, stress, is calculated from the stress tensor

dFi

dS
= σijnj,

where nj is the normal vector of the surface. The stress tensor

σij = −pδij + σ
′

ij

= −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij
vk
xk

)
+Kδij

vk
xk
,

which is just

σij = −pδij + µ
V

a
(δi2δj1 + δi1δj2) .

The surface normal points towards the fluid: at the upper to negative y direction n̂↑ = −j
and at the lower plane to positive y direction n̂↓ = j. Thus the stress is

dFx

dS
= ∓σxyny = ∓µ

V

a

dFy

dS
= ∓σyyny = ±p

(upper sign for upper plane).

2. Flow down a slope (solving this problem gives double points)
A liquid of constant density flows down a plane which slopes at angle α to the horizontal,
as indicated in the figure below. The free surface of the liquid is at a uniform distance
from the plane, has pressure p0 and no shear stress. For this flow you need to keep the
gravitational field in the Navier-Stokes equation, as it is now dynamically active. Set up
and solve equations for U(y), and verify that the forces on a length l of the fluid layer
are in equilibrium.
Solution:
Modeling: We have an equilibrium situation, where the fluid velocity v = U(y)i and it
does not change in time. The gravitational acceleration in the chosen coordinate system
is

g = g(i sinα− j cosα),

whose x-component is responsible for the motion of the fluid, while the y-component
generates the hydrostatic pressure as we’ll see soon. It is not applied external pressure
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Figure 2: Schematics of the flow down a slope

gradient over the free ends of the liquid, so the pressure varies only in the y-direction
such that p(h) = p0, where h is the height of the fluid layer.
Solution of the Navier-Stokes equation: Using f = g, the full Navier-Stokes equation

ρ
Dv

Dt
= ρf −∇p+ µ∇2v

reduces to the equilibrium condition in tha y- and x direction

−ρg cosα =
∂p

∂y
, (1)

0 = ρg sinα− ∂p

∂x
+ µ

∂2U(y)

∂y2
(2)

Now there is no pressure gradient in x-direction, so ∂p/∂x = 0. The pressure on the free
surface of the fluid is just the air pressure p(y = h) = p0. Integrating eq. (1), we get

p(y) = −ρg cosαy + a,

and from the boundary condition p(h) = p0 we get a = p0 + ρg cosαh. The pressure is

p = ρg cosα(h− y) + p0. (3)

From eq. (2), we now get

−ρg sinα = µ
∂2U

∂y2
⇒ U(y) = −ρg sinα

2µ
y2 + by + c,

where b and c are integration constants, which can be identified from the boundary con-
ditions. On the solid surface the fluid velocity is zero, U(0) = 0, implying c = 0. On the
free surface there is no shear stress apart from the pressure p0, so σxy = 0 at y = h, from
which we get the second condition for the velocity. From the expression

σxy = µ

(
∂U

∂y

)
= −ρg sinαy + µb
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we find at y = h that

b =
−ρg sinαh

µ
.

Finally:

U(y) =
ρg sinα

2µ
(2hy − y2).

The velocity field U(y) is analogous to the fluid flow between walls, that is, to the example
7.1 of the lectures. Now, the velcity profile is parabolic, ρg sinα acts as an pressure
gradient and the smaller viscosity µ the faster flow on the tilted plane.
Force balance: Next, we will verify that the forces on a portion of fluid, sketched in Fig. 2,
are in equilibrium. We consider a volume V = lwh, where l is the length, w the width,
and h the height of the fluid. The gravitation is the only volume force acting to this fluid
element:

F (V ) = V f = lwhg.

The second class of forces are the shear (surface) forces. Thus, we use the equation
dFi = σijnj dS for the force on the fluid element due to the stress tensor. The normal
vectors point out of the fluid element. Now, the components of the stress tensor are

σxy = ρg sinα(h− y) σxx = σyy = −p = −ρg cosα(h− y)− p0

We first calculate the surface forces acting on the boundaries (1) and (3) of the fluid
element, shown in Fig. 2.
First for the boundary (1), the surface element is now dSj = −wdy δxj and thus the force

F (1) =

∫
S1

iσxkdSk +

∫
S1

jσykdSk =

∫ h

0

iσxx(y)(−wdy ) +
∫ h

0

jσyx(y)(−wdy ).

For the boundary (3), the surface element points to the opposite direction (dSj = wdy δxj)
but otherwise the expression for the force is the same, that is, F (3) = −F (1). At the
topmost surface, the shear stress vanishes (σxy = 0) and it acts only the air pressure

F (2) = −lwp0j.

The force on the fluid volume through the solid surface (4) is

F (4) = jσyy(y = 0)(−lw) + iσxy(y = 0)(−lw) = lw(p0 + hgρ cosα)j − lwρg sinαi

The total force acting through the surfaces is sum over all the surface forces yielding

F (S) =
4∑

k=1

F (k) = lwhρ(− sinαgi+ cosαgj) = −lwhρg.

Finally, we see that the volume forces are balanced by the surface forces

F = F (V ) + F (S) = 0

Thus, the flow is static.
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