
763654S HYDRODYNAMICS Solutions 9 Autumn 2011

1. Dimensioless Euler’s equation
The Euler equation for incompressible flow in a rotating system was given in the form

ρ
∂v

∂t
+ ρv ·∇v + 2ρΩ× v = −∇p

in the lectures. Write this in a dimensionless form.
Solution: Following the lectures, let’s choose the dimensions

t = t0T ∇ =
1

x0
∇R v = v0V =

x0
t0
V Ω =

1

t0
Ω̃ p = p0P = ρv20P

and density ρ is a constant. Notice the connected x0 = t0v0 and p0 = ρv20. With these
Euler equation reads as

ρ
v0
t0

∂V

∂T
+ ρ

v20
x0

V ·∇RV + 2ρ
v0
t0
Ω̃× V = −p0

x0
∇RP

ρ
v0
t0

(
∂V

∂T
+ V ·∇RV + 2Ω̃× V

)
= −p0

x0
∇RP

∂V

∂T
+ V ·∇RV + 2Ω̃× V = − p0

ρv20
∇RP

and as the unit of pressure were chosen to be ρv20. Thus, we have the dimensionless Euler
equation

∂V

∂T
+ V ·∇RV + 2Ω̃× V = −∇RP.

2. Paintbrush (solving this problem gives double points)
Consider a simple model of a paintbrush consisting of parallel planes with spacing b and
normal j.

For convenience, assume the wall in the x − y plane is
moving with constant velocity V i and that the brush is
stationary.
Determine the velocity of the paint between the brush
planes assuming the form v = U(y, z)i. (Use the method
of separation of variables.)
Calculate the total paint flow Q =

∫ b
0
dy
∫∞
0
dz U(y, z)

between two planes. Based on this deduce how thick is
the layer of paint left on the wall.
[Answer: Q = 8V b2

π3

∑∞
n=1(2n− 1)−3 ≈ 0.27V b2.]
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Solution:
Recap of the method of separtion of variables : Having v = U(y, z)i, we separate variables
by setting U(y, z) = Y (y)Z(z). The flow is now steady, that is, ∂v/∂t = 0. The velocity
is in the x-direction, but independent on x, that is why vk(∂vi/∂xk) = 0 for all i, and
(v ·∇)v = 0. Also, there is no pressure gradient, ∇p = 0, so the Navier-Stokes equation
simply becomes

∇2v = 0.

The x-component of this is

∇2U(y, z) =
∂2Y

∂y2
Z(z) + Y (y)

∂2Z

∂z2
= 0,

or
− 1

Y

∂2Y

∂y2
=

1

Z

∂2Z

∂z2
.

The left side depends on y only and the right side on z only, thus, they must both be
constant, say C. The velocity must vanish when z → ∞, so the appropriate solution of
∂2Z/∂z2 = cZ is

Z = Ae−kz,

where k2 = C, and k > 0. Correspondingly ∂2Y/∂y2 = −cY is solved by

Y = B cos ky + C sin ky.

The boundary conditions for the fluid flow are as usual: U(y, 0) = V , U(y, z) = 0 when
z → ∞ (which we already used), and U(mb, z) = 0, where m = 0, 1, 2, . . .. Note that
these two conditions are in contradiction at points where both z = 0 and y = mb, since
then the velocity should be V and 0 at the same time. We can relax the first condition
by demanding U(y 6= mb, 0) = V . In terms of Y and Z we thus have Y (mb) = 0 and
Z(0) = V .
The complete solution: Now, we see that B = 0, and from condition Y (b) = 0 we have
C sin kb = 0, so k = nπ/b, where n = 1, 2, . . .. We write the solution corresponding to
a single value of n as Un = AnCne

−knz sin kny, where kn = nπ/b. The full solution of
U(y, z) can now be written as the sum

U(y, z) =
∞∑
n=1

Dne
−knz sin kny,

where Dn = AnCn. The constants Dn can be found at z = 0 by multiplying the equation

U(y, 0) = V =
∞∑
n=1

Dn sin kny

by sin kmy and integrating over y. We find, by using the orthogonality of sines,

Dn =
2V

b

∫ b

0

sin knydy = −2V

b

1

kn

/b

0
cos kny = −2V

nπ
((−1)n − 1).
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This is 4V/(nπ) for any odd n, and zero for an even n. Thus, the full solution for the
velocity flow is

U(y, z) =
4V

π

∑
n=1

1

2n− 1
e−zk2n−1 sin k2n−1y. (1)
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The velocity profile of the fluid (1). The horizontal
axis is the y-axis, and z is in the vertical direction.
The darkness of the color indicates the magnitude of
velocity, black being the largest. The velocity U(y, z)
of the fluid drops exponentially with increasing z,
and is zero at the boundaries y = 0, y = b.

The total paint flow Q between the two planes is

Q =

∫ b

0

dy

∫ ∞
0

dz U(y, z) =
∞∑
n=1

b

2V
D2

2n−1
1

k2n−1

=
∞∑
n=1

b

2V
16

V 2

(2n− 1)2π2

b

(2n− 1)π
=

8b2V

π3

∞∑
n=1

1

(2n− 1)3
.

We can write
∞∑
n=1

1

(n− 1)3
=
∞∑
n=1

1

n3
−
∞∑
n=1

1

(2n)3
=

7

8

∞∑
n=1

1

n3
.

Now, we are amazed by our good luck, as we immediately notice that the sum
∑∞

n=1
1
n3

is, in fact, nothing but the Riemann zeta-function at 3,

ζ(3) =
∞∑
n=1

1

n3
≈ 1.202.

This gives that the total flow Q = 7ζ(3)
π3 b2V ≈ 0.27b2V .

Thickness of the paint layer: Now, as the paint brush moves forward, it leaves behind it a
layer of paint. Immediately behind the brush, there may be some complicated behavior of
the paint, but far from it the paint forms a layer of uniform thickness h, see figure below.
Considering a section of width b of the paint layer, corresponding to the slit between two
planes of the brush, we see that the volume of this section increases by hbV as the brush
moves forward. This amount must be equal to the paint flow Q, so we get

h =
Q

bV
=

7b

π3
ζ(3) ≈ 0.27b.
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We see that the thickness of the paint layer depends only on the distance b between the
planes on the brush (in this approximation). In real world, the viscosity of the fluid may
affect the boundary conditions between the brush planes and the paint, and between the
wall and the paint. Also, the thermodynamic properties of the paint affect the form it
assumes after it has left the brush. The velocity of the brush, on the other hand, affects
the dynamics of the fluid flow through the Reynolds number (the fluid may become
turbulent).

 

Wall 

Brush 

h paint 

V A schematic view of the situation. We have
now chosen the coordinate system so that
the brush moves to the right. The height
of the fluid column just behind the brush is
much higher than the final fluid layer thick-
ness h far from the wire. However, the ve-
locity of the fluid drops exponentially with
increasing z, as indicated in the figure.

3. Oscillating plane
The plane y = 0 oscillates transversally with velocity iV cos(ωt). Show that the velocity
of fluid v = U(y, t)i above the plane (y > 0) has the form

U(y, t) = <[V eiωt−(1+i)y/δ],

where δ =
√
2ν/ω, i is the imaginary unit (i2 = −1) and < means the real part. Calculate

the real part and discuss its form. Why is δ called ”penetration depth“?

[Hint: Use ansatz U = V eiωt−ky to solve the Navier-Stokes equations. This gives a
complex solution but the real part of this corresponds to the physical solution.]
Solution: This exercise is somewhat similar to the boundary layer calculation in the
beginning of the lecture note chapter 7.4. There is now at y = 0 a plane oscillating in i
direction as cosωt. The velocity of the plane is

V (t) = V cosωt.

Situation is uniform in x-direction and thus velocity alternates only in y-direction. Nat-
urally velocity field is time dependent. We write then

v = U(y, t)i

and deduce approriate boundary conditions

U(0, t) = V (t), U(∞, t) = 0. (2)

The full Navier-Stokes

ρ
∂v

∂t
+ ρv ·∇v = −∇p+ µ∇2v
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reduces now to form
∂U(y, t)

∂t
= ν

∂2U(y, t)

∂y2
(3)

which we are going to solve with the ansatz

U(y, t) = Re[V eiωt−ky].

Let’s first check that the ansatz is resonable in the sense of boundary conditions. First
at the plate y = 0:

U(0, t) = Re[V eiωt] = V cosωt OK

and far from the moving plate

lim
Y→∞

U(Y, t) = lim
Y→∞

Re[V eiωt−kY ] = lim
Y→∞

Re[V eiωt−iIm(k)Y ]e−Re(k)Y .

The boundary condition U(∞, t) = 0 is satisfied if Re(k) > 0, with this in our mind we
proceed further. By plugging the ansatz to the reduced Navier-Stokes (3), one arrives
with equation

k2 = iω/ν

and with notation k = Re(k) + iIm(k) = kr + iki it is rewritten in the form of

k2r − k2i + i2krki = iω/ν

having solutions kr = ±
√

ω
2ν
, ki = ±

√
ω
2ν

but the positive sign is only possibility due to
the second boundary condition. The solution of the problem reads now

U(y, t) = Re[V eiωt−(1+i)y
√
ω/2ν ] = V exp

(
− y√

2ν/ω

)
cos

(
ωt− y√

2ν/ω

)
.

Figure here illustrates this function. It is seen
that solution oscillates both in time t and space
y. The oscillation amplitude is damped by expo-
nential term which goes to its eth part when y
increses by length of

√
2ν/ω. The δ =

√
2ν/ω

sets the scale how the motion of the plate pene-
trates in the fluid. At the distance of a couple of
penetration depths from the plate the fluid stands
still.
Penetration depth is inverse propotional to the
radial frequency of the oscillation, the faster oscil-
lation the thinner boundary layer. In other words,
low frequency disturbancies penetrate deeper into
the fluid. Depth δ is propotional to the kinematic
viscosity ν of the fluid, which is natural since the
viscosity is responsible for the whole diffusion phe-
nomenon. In low viscosity fluids, the boundary
layer is thin.
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The figure shows U(y, t) plotted at five dif-
ferent time instances: t = 0 (blue), ωt =
π/4 (red), ωt = π/2 (black), ωt = 3π/4
(green), and ωt = π (purple)
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