763654S HYDRODYNAMICS Solutions 10  Autumn 2011

1. Transient flow between parallel planes (double points)
Fluid is at rest in a long channel with rigid walls y = 4+a when a pressure gradient —G
is suddenly imposed at ¢t = 0.

a)

b)

c)

Show that the velocity U(y, t)¢ satisfies the equation
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for ¢t > 0, and state the boundary and initial conditions for this flow.

As t — oo we expect to get the flow appropriate for a pressure gradient in a channel
Ui(y) = %(a2 — y?) so seek a solution in the form U(y,t) = U(y) + V (y,t) what
equation and boundary values does V' satisfy?

Show that V' (y,t) may be found by separation of variables. How long does it take
for the flow U; to be established? Explain this answer physically.

Solution:

a)

Since the velocity field is of the form of v = U(y, t), the term (v - V)v vanishes
similarly as in the previous exercises. Let us, in addition to that, assume that there
is no dynamical forces f present. The Navier-Stokes equation is reduced to the
desired form:
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Initial condition: At ¢ = 0 the fluid is at rest, imposing U(y,t = 0) = 0.

Boundary condition: At the rigid walls y = =a, the velocity must vanish, thus
Uy = £a,t) =0.

Let us first consider the initial and boundary conditions for V (y, t) = U(y,t)—Ui(y).
At the initial time ¢t = 0,

V(y,t=0)=Uly,t =0) = Ui(y) = =Ui(y). (2)
And for the boundaries y = +a,
V(y = ta,t) = U(y = +a,t) — Uy(y) = 0. (3)
In addition to these, we demand that lim; ., U(y,t) = U;(y), which means that

lim V(y,t) = 0. (4)
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By plugging U(y,t) = V(y,t) + %((f —y?) into the actual Navier-Stokes equation,
we get the equation
ov._ o0V 5
ar Vo (5)
c) By expressing V as a product V(y,t) = Y (y)T(t), Eq. (5) becomes separated:
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This is split to two equations
T'(t) = —k*vT(t), Y"(y) = k*Y (y) = 0.

The choice K = —k? for the common coefficient guarantees that the solution for
the T'(t) — 0 when t — oo, this is, Eq. (4). A solution for these equations is

T(t) = Ae ¥, Y (y) = Bcos(ky) + C sin(ky).

The consideration of the boundary condition (3) at y = £a implies that C' = 0 and
k, = m(2n 4+ 1)/2a, n = 0,1,2,.... Thus, the full solution is superposition of all
possible solutions:

V(y,t) = Z Bue 5 cos(kpy). (6)
n=0

The coefficients B, are solved from the initial condition V(y,0) = —U;(y) by using
the orthogonality

/ cos(kya) cos(kya)dy = dmpa.

So we get by multiplying the initial condition V(y,0) = —U,(y) by cos(k,,y) and
integrating that
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Now, we write the the complete solution
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V(y,t) = — R kmm
() = = 2 e costhu)

which is visualized in Fig. 1.

Transient time: The function V(y,t) reduces roughly to its e'® part in time 7 =
1/k2v. The other factors e vt vanish faster than the zeroth one (n = 0). Thus,
the transient time is
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Figure 1: The flow V (y,t) visualized. The darker color the larger is the velocity —V (y,t).

Intuitively, the transient time is inversely proportional to viscosity. But quite a
surprisingly, the time does not depend on the pressure gradient G but it depends
on the separation 2a of the planes. But this is in agreement with the discussion
in the lectures: The thickness of the separation layer is d ~ /v7. Now, one can,
for example, think that the flow V' (y,t) represents a imaginary flow generated in
between the planes such that the planes are moving to direction —z before time
t = 0, but the planes stop moving at ¢ = 0. The information of the stopping
diffuses from both planes obeying the thickness relation d ~ /vT.

2. Vortex pair near a wall
Consider a pair of vortices, A and B, of circulations —x and k, respectively, approaching
a wall. The boundary condition for the normal component of the velocity at the wall,
v,(0,y) = 0, can be satisfied by adding two “image vortices” C and D, with circulations
k and —k, respectively, behind the wall.

a) Calculate the velocity at A induced by vortices B, solid wall ¥
C and D. \,\

b) Formulate a differential equation for the path of C :::) Q A
vortex A. images actual vortices

c¢) Show that its solution is % + y% =L+ %, and X
sketch the trajectory. ’ ’ D (:) 0 B

Solution:

a) As derived in the lectures, the line vortex (at origin) with circulation x has the

the potential ¢ = —J-In’, and velocity vy = 3%, where r is the distance from

the vortex line. Now, as seen from the figure, vortices C and B have circulation in
the positive direction (counter-clockwise), while D and A in the negative direction
(clockwise). If the vortex A is at point (x,y) (at the moment ¢), then B is at (z, —y),
Cisat (—z,y), and D is at (—z, —y).
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The distance from B to A is 2y, so the velocity due to vortex B at A is
— K >
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(vp is in the direction of 0’ in a coordinate system where the origin is at B. Now,
looking from B, the point A is at #' = 7/2, and 0 = —sinf'i+cos@'j = —i. Similar
reasoning is used for other points.)
The distance from C to A is 2x, so the velocity due to vortex C at A is
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The distance from D to A is 2r, where r = /22 + 32, and the velocity vp due to

A

vortex D at A is in the —@-direction. Using @ = — sin 64 + cos 0 = —Zi+ 23, we
get
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The total velocity at A is then
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The differential equation for the motion of vortex A is obtained from the fluid
velocity v Eq. (7) at the point A as
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from which we get the differential equation:
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The equation is solved by separating the 4
variables and integrating from y, — y and ol
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This is an equation for a hyperbola shown
in figure. The solution (8) visualized with zo — oo
and yy = 2



