
763654S HYDRODYNAMICS Solutions 10 Autumn 2011

1. Transient flow between parallel planes (double points)
Fluid is at rest in a long channel with rigid walls y = ±a when a pressure gradient −G
is suddenly imposed at t = 0.

a) Show that the velocity U(y, t)i satisfies the equation

∂U

∂t
= ν

∂2U

∂y2
+
G

ρ

for t > 0, and state the boundary and initial conditions for this flow.
b) As t→∞ we expect to get the flow appropriate for a pressure gradient in a channel

U1(y) =
G
2µ
(a2 − y2) so seek a solution in the form U(y, t) = U1(y) + V (y, t) what

equation and boundary values does V satisfy?
c) Show that V (y, t) may be found by separation of variables. How long does it take

for the flow U1 to be established? Explain this answer physically.
Solution:

a) Since the velocity field is of the form of v = U(y, t)i, the term (v · ∇)v vanishes
similarly as in the previous exercises. Let us, in addition to that, assume that there
is no dynamical forces f present. The Navier-Stokes equation is reduced to the
desired form:

ρ
∂v

∂t
+ ρv · ∇v = ρf −∇p+ µ∇2v ⇒

∂U

∂t
=
G

ρ
+ ν

∂2U

∂y2
. (1)

Initial condition: At t = 0 the fluid is at rest, imposing U(y, t = 0) = 0.
Boundary condition: At the rigid walls y = ±a, the velocity must vanish, thus
U(y = ±a, t) = 0.

b) Let us first consider the initial and boundary conditions for V (y, t) = U(y, t)−U1(y).
At the initial time t = 0,

V (y, t = 0) = U(y, t = 0)− U1(y) = −U1(y). (2)

And for the boundaries y = ±a,

V (y = ±a, t) = U(y = ±a, t)− U1(y) = 0. (3)

In addition to these, we demand that limt→∞ U(y, t) = U1(y), which means that

lim
t→∞

V (y, t) = 0. (4)
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By plugging U(y, t) = V (y, t) + G
2µ
(a2 − y2) into the actual Navier-Stokes equation,

we get the equation
∂V

∂T
= ν

∂2V

∂t2
. (5)

c) By expressing V as a product V (y, t) = Y (y)T (t), Eq. (5) becomes separated:

1

νT (t)

∂T (t)

∂t
=

1

Y (y)

∂2Y (y)

∂y2

This is split to two equations

T ′(t) = −k2νT (t), Y ′′(y)− k2Y (y) = 0.

The choice K = −k2 for the common coefficient guarantees that the solution for
the T (t)→ 0 when t→∞, this is, Eq. (4). A solution for these equations is

T (t) = Ae−k
2νt, Y (y) = B cos(ky) + C sin(ky).

The consideration of the boundary condition (3) at y = ±a implies that C = 0 and
kn = π(2n + 1)/2a, n = 0, 1, 2, . . .. Thus, the full solution is superposition of all
possible solutions:

V (y, t) =
∑
n=0

Bne
−k2nνt cos(kny). (6)

The coefficients Bn are solved from the initial condition V (y, 0) = −U1(y) by using
the orthogonality ∫ a

−a
cos(kma) cos(kna)dy = δmna.

So we get by multiplying the initial condition V (y, 0) = −U1(y) by cos(kmy) and
integrating that

Bm =
1

a

∫ a

−a
− G
2µ

(a2 − y2) cos(kmy)dy = (−1)m+12G

µ
k−3m .

Now, we write the the complete solution

V (y, t) =
2G

µ

∞∑
n=0

(−1)m+1

k3m
e−k

2
nνt cos(kmy),

which is visualized in Fig. 1.
Transient time: The function V (y, t) reduces roughly to its eth part in time τ =
1/k20ν. The other factors e−k2nνt vanish faster than the zeroth one (n = 0). Thus,
the transient time is

τ =
1

k20ν
=

4

π2

a2

ν
.
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Figure 1: The flow V (y, t) visualized. The darker color the larger is the velocity −V (y, t).

Intuitively, the transient time is inversely proportional to viscosity. But quite a
surprisingly, the time does not depend on the pressure gradient G but it depends
on the separation 2a of the planes. But this is in agreement with the discussion
in the lectures: The thickness of the separation layer is d ≈

√
ντ . Now, one can,

for example, think that the flow V (y, t) represents a imaginary flow generated in
between the planes such that the planes are moving to direction −i before time
t = 0, but the planes stop moving at t = 0. The information of the stopping
diffuses from both planes obeying the thickness relation d ≈

√
ντ .

2. Vortex pair near a wall
Consider a pair of vortices, A and B, of circulations −κ and κ, respectively, approaching
a wall. The boundary condition for the normal component of the velocity at the wall,
vx(0, y) = 0, can be satisfied by adding two “image vortices” C and D, with circulations
κ and −κ, respectively, behind the wall.

a) Calculate the velocity at A induced by vortices B,
C and D.

b) Formulate a differential equation for the path of
vortex A.

c) Show that its solution is 1
x2

+ 1
y2

= 1
x20

+ 1
y20
, and

sketch the trajectory.

y

x

C 

D B

A

actual vortices images

solid wall 

Solution:
a) As derived in the lectures, the line vortex (at origin) with circulation κ has the

the potential ψ = − κ
2π

ln r
a
, and velocity vθ = κ

2πr
, where r is the distance from

the vortex line. Now, as seen from the figure, vortices C and B have circulation in
the positive direction (counter-clockwise), while D and A in the negative direction
(clockwise). If the vortex A is at point (x, y) (at the moment t), then B is at (x,−y),
C is at (−x, y), and D is at (−x,−y).
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The distance from B to A is 2y, so the velocity due to vortex B at A is

vB = − κ

4πy
i.

(vB is in the direction of θ̂′ in a coordinate system where the origin is at B. Now,
looking from B, the point A is at θ′ = π/2, and θ̂′ = − sin θ′i+cos θ′j = −i. Similar
reasoning is used for other points.)
The distance from C to A is 2x, so the velocity due to vortex C at A is

vC =
κ

4πx
j.

The distance from D to A is 2r, where r =
√
x2 + y2, and the velocity vD due to

vortex D at A is in the −θ̂-direction. Using θ̂ = − sin θi + cos θj = −y
r
i + x

r
j, we

get
vD =

κ

4π

( y
r2
i− x

r2
j
)
.

The total velocity at A is then

v(x, y) = vB + vC + vD =
κ

4π

[
−
(
1

y
− y

r2

)
i+

(
1

x
− x

r2

)
j

]
=
C

2

(
− x2

yr2
i+

y2

xr2
j

)
. (7)

b) The differential equation for the motion of vortex A is obtained from the fluid
velocity v Eq. (7) at the point A as

vx =
dx

dt
= − κ

4π

x2

yr2
,

vy =
dy

dt
=

κ

4π

y2

xr2
,

from which we get the differential equation:

dy

dx
=

dy
dt
dx
dt

= −y
3

x3
.

c)

The equation is solved by separating the
variables and integrating from y0 → y and
x0 → x:

dy

y3
= −dx

x3
⇒ 1

y2
+

1

x2
=

1

y20
+

1

x20
(8)

This is an equation for a hyperbola shown
in figure.
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The solution (8) visualized with x0 → ∞
and y0 = 2
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