
763654S HYDRODYNAMICS Solutions 12 Autumn 2011

1. Channel flow
Consider water flow in a channel, where the bottom has a smooth hump z = a(x). Using
mass conservation and Bernoulli equation (simplest at the surface), calculate the rise b(x)
of the free surface z = H + b(x) of the water. Assuming both a and b much smaller than
H, solve the coefficient c in the linear relation b(x) = ca(x). Is c always positive?
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Solution: The Bernoulli equation along the free surface of the water is
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0 + gH +
p0

ρ
=
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2
U(x)2 + g[H + b(x)] +

p0

ρ
⇒ U(x)2 = U2

0 − 2gb(x). (1)

The conservation of mass gives

U0H = U(x)[H − a(x) + b(x)]. (2)

We solve U(x) from equation (2)

U(x) = U0

(
1 +

b− a
H

)−1

Squaring this and plugging into Eq. (1) gives

U2
0

(
1−

(
1 +

b− a
H

)−2
)

= 2gb.

Now, we expand (1 + (b− a)/H)−2 to first order in b/H and a/H by exploiting the
formula (1 + x)α = 1 + αx+ . . . for small x:
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)
= a⇒ b(x) =
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1− gH/U2
0

.
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Is c always positive? No, since c is negative, if gH > U2
0 , i.e. the if the height of water

is large enough with respect to the fluid velocity: H > U2
0/g; or if the fluid velocity is

small enough: U0 <
√
gH. Consider, for example a river with U0 = 1 m/s, H = 2 m;

thus, using g = 9.81 m/s2, the factor c = (1 − gH/U2
0 )−1 ≈ −0.05, so that an elevation

of 20 cm on the bottom of the river would cause a decrease in the surface of the order 1
cm. Notice that the linear [b(x) = ca(x)] approximation breaks down at values U2

0 ≈ gH.
Notice that the function a(x) can also model a small pit of the channel bottom.

2. Complex potential
Show that φ = A(x2 − y2) satisfies ∇2φ = 0 and that ψ = 2Axy gives the same velocity
field. Show that φ and ψ in this case are real and imaginary parts of the complex function
A(x+ iy)2.
Solution: Now ∇2φ = ( ∂2

∂x2
+ ∂2

∂y2
)φ = A(2 − 2) = 0. The velocity is obtained from the

velocity potential φ by taking the gradient,

v = ∇φ = A(2xi− 2yj).

On the other hand, the velocity is found from the vector potential ψ, in two-dimensional
case, as

v = ∇ψ × k = 2A(yi + xj)× k = 2A(−yj + xi),

where we have used i × k = −j and j × k = i. We see that the potentials φ and ψ
describe the same velocity field. It is quite a trivial to show that φ and ψ are the real
and imaginary parts of the complex function A(x+ iy)2:

A(x+ iy)2 = A(x2 − y2) + i2Axy = φ+ iψ.

3. Velocity field in sound wave
By linearizing the Euler equation and the continuity equation, determine the equation
for the velocity field v′. Show that this has the plane wave solution

v′ = Aei(kx−ωt)i

and find how the frequency ω depends on the wave vector k.
Solution: We linearize the Euler equation

ρ
∂v

∂t
+ ρv ·∇v = −∇p

and the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0
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by using v = v′, p = p0 + p′ and ρ = ρ0 + ρ′, where p0 and ρ0 are constants, and the
primed quantities are small. To first order in primed quantities we get

ρ0
∂v′

∂t
= −∇p′ = −c2∇ρ′, (3)

and
∂ρ′

∂t
+ ρ0∇ · v′ = 0. (4)

In the last equality in eq. (3), we have used ∇p′ = c2∇ρ′, which is valid in case of
adiabatic processes (c2 = (∂p/∂ρ)s). Now, taking time derivative of eq. (3) and gradient
of eq. (4) gives

−ρ0

c2

∂2v′

∂t2
=
∂∇ρ′

∂t
, (5)

and
∂∇ρ′

∂t
+ ρ0∇∇ · v′ = 0. (6)

Combining these, we find the equation for v′:

−ρ0

c2

∂2v′

∂t2
+ ρ0∇∇ · v′ = 0 ⇒ ∂2v′

∂t2
− c2∇∇ · v′ = 0. (7)

Inserting v′ = Aei(kx−ωt)i gives −ω2v′ + c2k2v′ = 0, so the dispersion relation becomes
ω = ±ck and the plane wave is a proper solution.

4. Attenuation of sound
Formulate the linearized equations for sound wave including also the dissipative term.
Note that you have to use the Navier-Stokes equation for compressible fluid. Form a
single equation for v. Solve this for a plane wave

v = Aei(kx−ωt)i.

Keeping k real, show that ω is complex valued and leads to exponential damping of the
amplitude of sound, with damping factor e−Γt, Γ = ω2

2c2ρ0
(K+ 4

3
µ) to first order in viscosity.

(Warning: we have here neglected heat conduction, which leads to additional damping of
sound.) Estimate the decay time of sound wave in air of frequency ω/2π = 1 kHz.
Solution: We proceed as in problem 3 before. We use p = p0 + p′ and ρ = ρ0 + ρ′ (we
drop the prime from v for shortness). Now the Navier-Stokes equation

ρ
∂v

∂t
+ ρv ·∇v = −∇p+ µ∇2v + (K +

1

3
µ)∇∇ · v

can be linearized to obtain

ρ0
∂v

∂t
+ ∇p = µ∇2v + (K +

1

3
µ)∇∇ · v.
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The time derivative of this is

ρ0
∂2v

∂t2
+
∂∇p

∂t
= µ

∂

∂t
∇2v + (K +

1

3
µ)
∂

∂t
∇∇ · v. (8)

The gradient of the linearized equation of continuity is (from problem 3)

∂∇p′

∂t
+ c2ρ0∇∇ · v = 0. (9)

Combining equations (8) and (9) gives

ρ0
∂2v

∂t2
− c2ρ0∇∇ · v = µ

∂

∂t
∇2v + (K +

1

3
µ)
∂

∂t
∇∇ · v. (10)

For the plane wave

v = Aei(kx−ωt)i. (11)

we get ∇∇ · v = −k2Aei(kx−ωt)i = ∇2v, ∂
∂t
∇2v = iωk2v, and ∂2

∂t2
v = −ω2v, so equation

(10) takes the form[
−ρ0ω

2 + ρ0c
2k2 − iωk2

(
K +

4

3
µ

)]
v = 0,

which leads to the complex valued dispersion relation

ω2 = c2k2 − iωk2

ρ0

(
K +

4

3
µ

)
, (12)

The viscous term is small, and we denote ω0 = ck. Let us denote ω = a+ ib, where a and
b are real. Now we have

ω2 = a2 + 2iab− b2 = c2k2 + (−iak2 + bk2)
K + 4

3
µ

ρ0

.

The imaginary part of the equation gives

b = − k2

2ρ0

(K +
4

3
µ), (a 6= 0),

and the real part gives

a2 = c2k2 + bk2K + 4
3
µ

ρ0

+ b2 = ω2
0 −

k4

4

(K + 4
3
µ)2

ρ2
0

.

Then, application of the formula (1 + x)α = 1 + αx+ . . . gives

a ≈ ω0 −
1

2

k4(K + 4
3
µ)2

4ω0ρ2
0

,
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and to first order in viscous terms we have

ω = ω0 − i
k2(K + 4

3
µ)

2ρ0

= ω0 − i
ω2

0(K + 4
3
µ)

2c2ρ0

.

Inserting this into (11) gives

v = Aei(kx−ωt)i = Ae−Γtei(kx−ω0t),

where Γ in the damping factor e−Γt is

Γ =
ω2

0(K + 4
3
µ)

2c2ρ0

=
ω2(K + 4

3
µ)

2c2ρ0

to first order in viscous terms. For a 1 kHz sound wave in air we have ρ0 = 1.23 kg/m3,
c = 339 m/s, µ = 1.8 · 10−5 kg/(m s), K ≈ µ and ω = 2π kHz, and Γ ≈ 0.00587 1/s,
or the decay time to eth part is t = 1/Γ ∼ 170 s. In this time, the sound wave travels
almost approximately 58 km. It is evident that using the above formulation, the damping
coefficient is too low, but Γ although catches important ω2 dependence, meaning that the
low frequency components of sound travels further than the high frequency components,
being well known phenomena.
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