
Klein-Gordon’s equation
We consider the scalar field φ(x) which, according to its
definition, behaves under Lorentz transformation like

φ′(x′) = φ(x).

Now
L = L(φ, ∂φ/∂xµ).

Since we want

• the Lagrangian density to be invariant under Lorentz
transformations

• a linear wave equation,

the Lagrangian density can contain only the terms

φ2 and
∂φ

∂xµ

∂φ

∂xµ
.

One possible form for the Lagrangian density is

L = −1
2

(
∂φ

∂xµ

∂φ

∂xµ
+ µ2φ2

)
.

Substituting this into the Euler-Lagrange equation

∂

∂xµ

[
∂L

∂(∂φ/∂xµ)

]
− ∂L

∂φ
= 0,

we get

− ∂

∂xµ

(
∂φ

∂xµ

)
+ µ2φ = 0.

If we employ the notation

= ∇2 − 1
c2

∂2

∂t2
,

we end up with the Klein-Gordon equation

φ− µ2φ = 0.

Heuristic derivation

We substitute into the relativistic energy-momentum
relation

E2 − |p|2c2 = m2c4

the operators

E 7→ ih̄
∂

∂t
, pk 7→ −ih̄

∂

∂xk
,

and get (
− ∂2

c2∂t2
+∇2 − m2c2

h̄2

)
φ = 0.

When we set
µ =

mc

h̄
, [µ] =

1
length

,

we end up with the Klein-Gordon equation.
There are no sources in the Lagrangian density

L = −1
2

(
∂φ

∂xµ

∂φ

∂xµ
+ µ2φ2

)

so the solution describes a free field. We include the term

Lint = −φρ,

where ρ is the (usually position dependent) density of the
source. The field equation is now

φ− µ2φ = ρ.

When we choose
ρ = Gδ(x)

and seek for a stationary solution we end up with the
equation

(∇2 − µ2)φ = Gδ(x).

We substitute φ using its Fourier transform

φ(x) =
1

(2π)2/3

∫
d3keik·xφ̃(k),

where
φ̃(k) =

1
(2π)3/2

∫
d3x e−ik·xφ(x).

We end up with the algebraic equation

(−k2 − µ2)φ̃(k) =
G

(2π)3/2

of the Fourier components. Its solution is

φ̃(k) = − G

(2π)2/3

1
k2 + µ2 .

Taking the Fourier transform we get the solution

φ(x) = − G

4π

e−µr

r
,

known as the Yukawa potential. Let’s suppose that the
meson field of a nucleon at the point x1 satisfies the
equations

(∇2
2 − µ2)φ = Gδ(x1 − x2).

Its solution is thus the Yukawa potential.

φ(x2) = − G

4π

e−µ|x2−x1|

|x2 − x1|
.

Because the Hamiltonian density was

H = η̇π − L,

the Hamiltonian density of the interaction is

Hint = −Lint

and the total interaction Hamiltonian

Hint =
∫
Hint d3x =

∫
φρ d3x.

We see that the interaction energy of nucleons located at
the points x1 and x2 is

H
(1,2)
int = − G

4π

e−µ|x2−x1|

|x2 − x1|
.



Note Unlike in the Coulomb case, this interaction is
atractive and short ranged.
In the reality there are 3 mesons (π+, π0, π−), with
different charges but with (almost) equal masses,
consistent with the thory. We expand our theory so that
we consider two real fields, φ1 and φ2, for two particles
with equal masses. From these we construct the complex
fields

φ =
φ1 + iφ2√

2

φ∗ =
φ1 − iφ2√

2
.

The Lagrangian density for the free fields can be written
using either the complex or real fields:

L = −1
2

(
∂φ1

∂xµ

∂φ1

∂xµ
+ µ2φ2

1

)
− 1

2

(
∂φ2

∂xµ

∂φ2

∂xµ
+ µ2φ2

2

)
= −

(
∂φ∗

∂xµ

∂φ

∂xµ
+ µ2φ∗φ

)
.

Considering the fields φ and φ∗ independent we get two
Euler-Lagrange equations

∂

∂xµ

∂L
∂(∂φ/∂xµ)

− ∂L
∂φ

= 0

∂

∂xµ

∂L
∂(∂φ∗/∂xµ)

− ∂L
∂φ∗ = 0,

which can be further written as two Klein-Gordon
equations

φ∗ − µ2φ∗ = 0
φ− µ2φ = 0.

We define the first order gauge transformation so that the
fields transform under it like

φ′ = eiλφ

φ∗′ = e−iλφ∗,

when λ is a real parameter. Let λ be now an arbitrary,
infinitesimally small, number. Then

δφ = iλφ

δφ∗ = −iλφ∗.

The Lagrangian density transforms then as

δL =
[
∂L
∂φ

δφ +
∂L

∂(∂φ/∂xµ)
δ

(
∂φ

∂xµ

)]
+

[
∂L
∂φ∗ δφ∗ +

∂L
∂(∂φ∗/∂xµ)

δ

(
∂φ∗

∂xµ

)]
=

[
∂L
∂φ
− ∂

∂xµ

(
∂L

∂(∂φ/∂xµ)

)]
δφ

+
[

∂L
∂φ∗ −

∂

∂xµ

(
∂L

∂(∂φ∗/∂xµ)

)]
δφ∗

+
∂

∂xµ

[
∂L

∂(∂φ/∂xµ)
δφ +

∂L
∂(∂φ∗/∂xµ)

δφ∗
]

= −iλ
∂

∂xµ

(
∂φ∗

∂xµ
φ− φ∗ ∂φ

∂xµ

)
.

In a small neighborhood of the solutions φ and φ∗ the
Lagrangian density is invarinat so we must have

δL = 0.

Thus we get
∂sµ

∂xµ
= 0,

where

sµ = i

(
∂φ∗

∂xµ
φ− φ∗ ∂φ

∂xµ

)
.

We see that

• a complex field φ is associated with a conserved
four-vector density sµ,

• if we exchange φ←→ φ∗, then sµ ←→ −sµ.

We interpret this so that

• sµ is the charge current density,

• φ carries the charge e,

• φ∗ carries the charge −e,

• the previous real field corresponds to neutral mesons.


