Klein-Gordon’s equation
We consider the scalar field ¢(x) which, according to its
definition, behaves under Lorentz transformation like

¢'(2') = ¢().

Now
= L(¢,0¢/0z).

Since we want

e the Lagrangian density to be invariant under Lorentz
transformations

e a linear wave equation,
the Lagrangian density can contain only the terms
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One possible form for the Lagrangian density is
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Substituting this into the Euler-Lagrange equation
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If we employ the notation
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we end up with the Klein-Gordon equation
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Heuristic derivation
We substitute into the relativistic energy-momentum
relation
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When we set
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we end up with the Klein-Gordon equation.
There are no sources in the Lagrangian density
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so the solution describes a free field. We include the term
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where p is the (usually position dependent) density of the
source. The field equation is now
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O¢ — p’¢ = p.
When we choose
p=Gi(x)

and seek for a stationary solution we end up with the
equation
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We substitute ¢ using its Fourier transform
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We end up with the algebraic equation
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of the Fourier components. Its solution is
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Taking the Fourier transform we get the solution
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known as the Yukawa potential. Let’s suppose that the
meson field of a nucleon at the point x; satisfies the
equations
(V3 — 1*)¢ = Go(x) — x2).
Its solution is thus the Yukawa potential.
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Because the Hamiltonian density was
H=nmr—L,
the Hamiltonian density of the interaction is
Hint = _Lint

and the total interaction Hamiltonian

Hint :/Hint d3$=/¢pd3x

We see that the interaction energy of nucleons located at
the points x; and x5 is
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Note Unlike in the Coulomb case, this interaction is
atractive and short ranged.

In the reality there are 3 mesons (7+, 7% 77), with
different charges but with (almost) equal masses,
consistent with the thory. We expand our theory so that
we consider two real fields, ¢, and ¢o, for two particles
with equal masses. From these we construct the complex
fields
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The Lagrangian density for the free fields can be written

using either the complex or real fields:
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Considering the fields ¢ and ¢* independent we get two
Euler-Lagrange equations
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which can be further written as two Klein-Gordon
equations
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We define the first order gauge transformation so that the
fields transform under it like
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when A is a real parameter. Let A be now an arbitrary,
infinitesimally small, number. Then
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The Lagrangian density transforms then as
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In a small neighborhood of the solutions ¢ and ¢* the
Lagrangian density is invarinat so we must have

oL =0.
Thus we get
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We see that

e a complex field ¢ is associated with a conserved
four-vector density s,,,

o if we exchange ¢ «— ¢*, then s, +— —s,,.
We interpret this so that

e s, is the charge current density,

e ¢ carries the charge e,

e ¢* carries the charge —e,

e the previous real field corresponds to neutral mesons.



