- 1. Warm up
 - a) Show that the eigenvalues of a Hermitian operator *A* are real and that the eigenkets of *A* corresponding to different eigenvalues are orthogonal.
 - b) Show that if the state ket

$$\left| lpha
ight
angle = \sum_{a'} c_{a'} \left| a'
ight
angle$$

is normalized then the expansion coeffcients $c_{a'}$ must satisfy

$$\sum_{a'} |c_{a'}|^2 = 1.$$

2. Prove the Theorem 1 from lecture notes: If both of the basis $\{|a'\rangle\}$ and $\{|b'\rangle\}$ are orthonormalized and complete then there exists a unitary operator U so that

$$|b_1\rangle = U |a_1\rangle, \quad |b_2\rangle = U |a_2\rangle, \quad |b_3\rangle = U |a_3\rangle, \quad \dots$$

(Unitary operator: $U^{\dagger}U = UU^{\dagger} = 1$)

- 3. Consider the spin operators S_x , S_y and S_z in the $\{|S_z;\uparrow\rangle, |S_z;\downarrow\rangle\}$ basis
 - a) Write out the operators S_x , S_y and S_z in the $\{|S_z;\uparrow\rangle, |S_z;\downarrow\rangle\}$ basis.
 - b) Compute the commutators $[S_x, S_y]$ and $[S^2, S_x]$ as well as anticommutator $\{S_x, S_y\}$.
 - c) Let us define the ladder operators $S_{\pm} = S_x \pm iS_y$. Compute $S_{\pm} | S_z; \uparrow \rangle$ and $S_{\pm} = | S_z; \downarrow \rangle$.
- 4. Prove the Theorem 2 from lecture notes: If *T* is a unitary matrix, then the matrices *X* and $T^{\dagger}XT$ have the same trace and the same eigenvalues.
- 5. The translation operator for a finite (spatial) displacement is given by

$$\mathcal{T}(\mathbf{l}) = \exp\left(-\frac{\mathbf{i}}{\hbar}\mathbf{p}\cdot\mathbf{l}\right)$$

where **p** is the momentum operator and **l** the displacement vector.

- a) Evaluate $[x_i, \mathcal{T}(\mathbf{l})]$.
- b) How does the expectation value $\langle x \rangle$ of the position operator change under the translation?