
763622S ADVANCED QUANTUM MECHANICS Solutions 1 Spring 2010

1. Warm up
a) Show that the eigenvalues of a Hermitian operator A are real and that the eigenkets

of A corresponding to di�erent eigenvalues are orthogonal.
b) Show that if the state ket |α〉 =

∑
a′ ca′ |a′〉 is normalized then the expansion coe�-

cients ca′ must satisfy
∑

a′ |ca′ |2 = 1.
Solution:

a)
i) A number c is shown to be real if c? = c. Let us study Hermitian operator A

to whom holds A† = A and an eigenstate |a〉 corresponding an eigenvalue a,
such that A |a〉 = a |a〉. Based on evalution of the inner product

c = 〈a |A| a〉 = a〈a|a〉

the eigenvalue a has the expression

a =
c

〈a|a〉
.

Let us now study what is a??

a? =
c?

(〈a|a〉)?
=

(〈a |A| a〉)?

〈a|a〉
=

(
〈
a
∣∣A†∣∣ a〉)
〈a|a〉

=
〈a |A| a〉
〈a|a〉

= a.

Now it has been proven that a Hermitian operator A has real eigenvalues.
ii) To prove that the eigenkets of A corresponding to di�erent eigenvalues are

orthogonal (i.e. 〈b|a〉 = 0), we examine the inner product 〈b |A| a〉 between
two eigenstates |a〉 and |b〉 corresponding di�erent eigenvalues a and b, (a 6= b).
The inner product can be evaluated two di�erent ways:

d = 〈b |A| a〉 = a〈b|a〉

d = 〈b |A| a〉 =
〈
b
∣∣A†∣∣ a〉 = b〈b|a〉.

In the latter, the hermicity of A is applied. Now the above two expression are
subtracted from each other

0 = (a− b)〈b|a〉

which implies in case of a 6= b that 〈b|a〉 = 0.



b) First of all,

〈α|α〉 =

(∑
a′

c?a′ 〈a′|

)(∑
a′′

ca′′ |a′′〉

)
=
∑
a′,a′′

c?a′ca′′〈a′|a′′〉 =
∑
a′

|ca′|2 ∈ R,

then the normalization condition

|〈α|α〉|2 = (〈α|α〉)2 = 1

straight implies that

1 = 〈α|α〉 =
∑
a′

|ca′|2.

The previous proof about orthogonality (a.ii) holds also for a degenerate case, then corre-
sponding an eigenvalue, say, b, we have a set of eigenstates |b1〉 , |b2〉 , . . . , |bj〉, but anyway
all of them are orthogonal to some other eigenstate |a〉 corresponding eigenvalue a 6= b.

2. Prove the Theorem 1 from lecture notes:
If both of the basis {|a′〉} and {|b′〉} are orthonormalized and complete then there exists
a unitary operator U so that

|b1〉 = U |a1〉 , |b2〉 = U |a2〉 , |b3〉 = U |a3〉 , . . . (1)

(Unitary operator: U †U = UU † = 1)
Solution:

The proof has three stages: construction of operator U , proof of property (1) and proof
of unitarity. Construction procedure is rather easy, we would like to build an operator
that projects the basis state |aj〉 to basis state |bj〉:

U =
∑
j

|bj〉 〈aj| .

To show that the property (1) holds, operator U operates on an arbitrary basis state |ak〉:

U |ak〉 =
∑
j

|bj〉 〈aj|ak〉 =
∑
j

|bj〉 δjk = |bk〉

where the orthonormality of basis {|a′〉} plays a role. The unitarity is checked via brute
calculation:

UU † =
∞∑
j

|bj〉 〈aj|
∞∑
i

(|bi〉 〈ai|)† =
∞∑
j

|bj〉 〈aj|
∞∑
i

|ai〉 〈bi|

=
∑
ij

= |bj〉 〈aj|ai〉︸ ︷︷ ︸
δij

〈bi| =
∑
j

|bj〉 〈bj|︸ ︷︷ ︸
completeness of {|b′〉}

= 1.



3. Consider the spin operators Sx, Sy and Sz in the {|Sz; ↑〉 , |Sz; ↓〉} basis
a) Write out the operators Sx, Sy and Sz in the {|Sz; ↑〉 , |Sz; ↓〉} basis.
b) Compute the commutators [Sx, Sy] and [S2, Sx] as well as anticommutator {Sx, Sy}.
c) Let us de�ne the ladder operators S± = Sx±iSy. Compute S± |Sz; ↑〉 and S± |Sz; ↓〉.

Solution:

Let us �rst summarize the {|Sz; ↑〉 , |Sz; ↓〉} basis represented with the help eigenstates of
Sx and Sy operators with proper phase choice (see. e.g. J. J. Sakurai, Modern Quantum
Mechanics, p. 28):

|Sz; ↑〉 =
1√
2
|Sx; ↑〉+

1√
2
|Sx; ↓〉 |Sz; ↑〉 =

1√
2
|Sy; ↑〉+

1√
2
|Sy; ↓〉

|Sz; ↓〉 =
1√
2
|Sx; ↑〉 −

1√
2
|Sx; ↓〉 |Sz; ↓〉 = − i√

2
|Sy; ↑〉+

i√
2
|Sy; ↓〉 (2)

Representation of an operator B in the {|Sz; ↑〉 , |Sz; ↓〉} basis

B =
∑
j=↑↓

∑
k=↑↓

|Sz; j〉 〈Sz; j |B|Sz; k〉 〈Sz; k| =
∑
j=↑↓

∑
k=↑↓

Bjk |Sz; j〉 〈Sz; k|

and in matrix representation we use the following convention with the indecies

Bjk = 〈Sz; j |B|Sz; k〉

B =

(
B↑↑ B↑↓
B↓↑ B↓↓

)
=

(
〈Sz; ↑ |B|Sz; ↑〉 〈Sz; ↑ |B|Sz; ↓〉
〈Sz; ↓ |B|Sz; ↑〉 〈Sz; ↓ |B|Sz; ↓〉

)
.

a) Basis representation for operator Sz is after above de�nitions just the calculation
of matrix elements Bjk:

Sz =

(
〈Sz; ↑ |Sz|Sz; ↑〉 〈Sz; ↑ |Sz|Sz; ↓〉
〈Sz; ↓ |Sz|Sz; ↑〉 〈Sz; ↓ |Sz|Sz; ↓〉

)
=

~
2

(
〈Sz; ↑ |Sz; ↑〉 −〈Sz; ↑ |Sz; ↓〉
〈Sz; ↓ |Sz; ↑〉 −〈Sz; ↓ |Sz; ↓〉

)
=

~
2

(
1 0
0 −1

)
.

To do the same for Sx,y we resort to relations (2) and �nd out that

Sx |Sz; ↑〉 =
~
2
|Sz; ↓〉 Sy |Sz; ↑〉 = i

~
2
|Sz; ↓〉

Sx |Sz; ↓〉 =
~
2
|Sz; ↑〉 Sy |Sz; ↓〉 = −i

~
2
|Sz; ↑〉

which shows that

Sx =

(
〈Sz; ↑ |Sx|Sz; ↑〉 〈Sz; ↑ |Sx|Sz; ↓〉
〈Sz; ↓ |Sx|Sz; ↑〉 〈Sz; ↓ |Sx|Sz; ↓〉

)
=

~
2

(
0 1
1 0

)

Sy =

(
〈Sz; ↑ |Sy|Sz; ↑〉 〈Sz; ↑ |Sy|Sz; ↓〉
〈Sz; ↓ |Sy|Sz; ↑〉 〈Sz; ↓ |Sy|Sz; ↓〉

)
=

~
2

(
0 −i
i 0

)
.



b) As we now have the representations of operators Si in the Sz eigenstate basis we
can use them to calculate the (anti)commutators.

[Sx, Sy] = SxSy − SySx =
~2

4

((
0 1
1 0

)(
0 −i
i 0

)
−
(

0 −i
i 0

)(
0 1
1 0

))
= i~Sz

(The general rule goes [Si, Sj] = i~εijkSk, where εijk is the Levi-Civita permutation
symbol.)

Then it happens out that S2
i = ~2/4 for all i = x, y, z, therefore S2 = S2

x+S2
y+S2

z =
3~2/4 and it is clear that [S2, Sx] = 3~2[I, Sx]/4 = 0. When calculating [Sx, Sy] one
notices that SxSy = −SySx which implies that {Sx, Sy} = 0.

c) Since matricies are handy objects, let us express ladder opertors S± also in the
familiar {|Sz; ↑〉 , |Sz; ↓〉} basis: S± = Sx ± iSy.

S+ =
~
2

(
0 1
1 0

)
+

~
2

(
0 1
−1 0

)
= ~

(
0 1
0 0

)
S− =

~
2

(
0 1
1 0

)
+

~
2

(
0 −1
1 0

)
= ~

(
0 0
1 0

)
.

or

S+ = ~ |Sz; ↑〉 〈Sz; ↓| S− = ~ |Sz; ↓〉 〈Sz; ↑| .

and operations to Sz eigenstates result

S+ |Sz; ↑〉 = 0 S− |Sz; ↑〉 = ~ |Sz; ↓〉
S+ |Sz; ↓〉 = ~ |Sz; ↑〉 S− |Sz; ↓〉 = 0

Now, the physical meaning of the ladder operators can be read. Operator S+ raises
the spin component by ~ and if the spin component cannot be raised further, we
get null state. Similarly, S− lowers the spin component by ~. Both these operators
are non-Hermitian.



4. Prove the Theorem 2 from lecture notes:
If T is a unitary matrix, then the matrices X and T †XT have the same trace and
the same eigenvalues.
Solution:

i) Trace of a matrix X is the sum of its diagonal elements: Tr (X) =
∑

iXii and
as an reminder the matrix multiplication expressed in index notation goes
(AB)ij =

∑
k AikBkj. The unitarity of T has then index expression:

TT † = 1 ⇒
∑
k

TikT
†
kj = δij

T †T = 1 ⇒
∑
k

T †ikTkj = δij

With these in our mind we are ready to prove the trace invariance:

Tr
(
T †XT

)
=
∑
i

(T †XT )ii =
∑
i

∑
j

∑
k

T †ijXjkTki

=
∑
k

∑
j

Xjk

∑
i

TkiT
†
ij︸ ︷︷ ︸

δkj

=
∑
k

Xkk = Tr (X) .

ii) The matrix X has eigenvalues {a1, a2, . . . , an} and corresponding eigenvectors
{|a1〉 , |a2〉 , . . . , |an〉}. By constructing a new set of vectors such that |bj〉 =
T † |aj〉 and evaluating

T †XT |bj〉 = T †XTT † |aj〉 = T †X |aj〉 = ajT
† |aj〉 = aj |bj〉 ,

we observe that |bj〉 are the eigenvectors of matrix T †XT corresponding the
same eigenvalues {a1, a2, . . . , an}. Thus matricies X and T †XT has the same
eigenvalues if T is a unitary matrix.



5. The translation operator for a �nite (spatial) displacement is given by

T (l) = exp

(
− i

~
p · l

)
where p is the momentum operator and l the displacement vector.

a) Evaluate [xi, T (l)].
b) How does the expectation value 〈x〉 of the position operator change under

the translation?
Solution:

a) As introduced in lectures the e�ect of a �nite spatial displacement by l is
T (l) |x〉 = |x + l〉. When evaluating commutator one should remember when
xi is an operator and when a pure number, to distinguish these two cases I use
now notation x̂i for operator and xi for number. Let us introduce arbitrary
state |α〉 having presentation in con�guration space |α〉 =

∫
dx |x〉 〈x|α〉

[x̂i, T (l)] |α〉 = x̂iT (l) |α〉 − T (l)x̂i |α〉

= x̂i

∫
dx |x + l〉 〈x|α〉 − T (l)

∫
dxxi |x〉 〈x|α〉

=

∫
dx (xi + li) |x + l〉 〈x|α〉 −

∫
dxxi |x + l〉 〈x|α〉

=

∫
dx li |x + l〉 〈x|α〉 = liT (l) |α〉 .

Now we say that [x̂i, T (l)] = liT (l), which is an operator identity since it
holds for an arbitrary state. Furthermore, we know by generalising the result
that x̂T (l)− T (l)x̂ = lT (l) or x̂T (l) = T (l)(l + x̂).

b) Before the translation, the expectation value of position operator x̂ for an
arbitrary state is 〈x〉 = 〈α |x̂|α〉 and after the translation

〈αl |x̂|αl〉 =
〈
α
∣∣T †(l)x̂T (l)

∣∣α〉 =
〈
α
∣∣T †(l)T (l)(l + x̂)

∣∣α〉
= 〈α |l + x̂|α〉
= l + 〈x〉,

which is not any big surprise.


