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1. The Problem: Layout
As a case study we look at a few electron Quantum Dot (QD). We concentrate
on heterostructure QDs. In heterostructures two slabs of differently doped
semiconductor stacked together:
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Fig. 1.1 A semiconductor heterostructure

• in the vicinity of the contact surface electrons can move freely parallel to
the surface

• in the perpendicular direction (z-axis in the figure) the confining
potential keeps the electrons on the lowest energy level restraining the
perpendicular motion (excitation energies are of the order of 100s of
meVs)

The electrons trapped in the contact layer

• effectively form a Two Dimensional Electron Gas (2DEG)

• feel an average non-zero electric field ESO parallel to the z-axis due to
the asymmetric confining potential caused by the inversion asymmetry of
the structure

• feel the electron-electron Coulomb interaction which is screened by the
other electrons and the substrate material (dielectric constant being of
the order ≈ 10)

• reside at the bottom of the conduction band which gives them an
effective mass only a fraction of their free mass.



Quantum dots can be formed from heterostructures for example by etching like

x

y

z B

Fig. 1.2 A heterostructure QD.

or by electric gates on the outer surface of the slabs. Now the electrons in the
contact layer

• are confined to a restricted area in the xy-plane. To a very good
approximation the confining potential Vconf for cylindrically shaped
structures is parabolic, i.e. Vconf ∝ r2, where r is the two dimensional
radius vector lying in the xy-plane

• inherit the properties (effective mass, dielectric constant, . . . ) from the
original heterostructure

QDs are often probed by an external magnetic field perpendicular to the field
and by observing their absorption spectra.
We can now write down the Hamiltonian describing the electrons in a QD. It
consists of the familiar single particle terms

• the kinetic energy

T =
1

2m
Π2,

where m is the effective mass of the electron, typically of the order of few
hundredths or tenths of electron mass m0, and Π is the momentum
operator

• the parabolic potential Vconf(r) confining the electrons in the xy-plane

Vconf(r) =
1
2
mω2

0r2,

where typically the strength of Vconf is such that the excitations energies
h̄ω0 are of the order of few meVs.



The persistent average electric field resident in the contact layer results a single
particle interaction called the Spin-Orbit (SO) coupling which is of the form

HSO =
α

h̄
[σ×Π]z

The parameter α determines the strength of the coupling and is typically of
the order of few meV nm. The components of the vector σ are the Pauli spin
matrices, i.e

σ = σxxi + σyj + σzk

=
(

0 1
1 0

)
i +

(
0 −i
i 0

)
j +

(
1 0
0 −1

)
k.

This interaction is also known as the Rashba term.
To handle external electromagnetic fields Er and B we introduce the vector
potential A such that

B = ∇×A

Er = − ∂

∂t
A

The external static magnetic field

B = Bẑ

• modifies the momentum operator as

Π = p− eA

where p = −ih̄∇ is the ordinary momentum

• the vector potential can be taken, for example as

A = AB =
B

2
(−y, x, 0)

• couples to the spin of each electron by the Zeeman term

HZ = gµBBσz,

where g is the Lande factor ranging typically from -0.4 to -40, µB the
Bohr magneton and σz a Pauli spin matrix.

To probe the energy levels of the QD we subject it to an external radiation
field with the electric component

Er(t) = Er cosΩt

• in dipole approximation the amplitude Er is spatially constant (and,
ofcourse also temporally)



• the frequency of the field is Ω/2π

• the corresponding vector potential will then be

Ar = −Er

Ω
sinΩt

The total vector potential is now given by

A = AB + Ar =
B

2
(−y, x, 0)− Er

Ω
sinΩt.

Thus far all terms in the Hamiltonian have been single particle terms, i.e. they
operate on one particle at a time. In principle it is a simple straightforward
task to find, for example the energy spectrum and eigenstates of this kind of
Hamiltonian.
The problem gets remarkably more complicated when we add the mutual
Coulomb interactions

VCoul =
1
2

Ne∑

i 6=j

e2

4πεε0|ri − rj | .

Here Ne is the number of electrons labeled by the subscripts i and j.
The total Hamiltonian modelling a heterostructure QD now reads as

H =
Ne∑

i=1

[Ti + Vconf(ri) + HSOi + HZi] + VCoul

=
Ne∑

i=1

1
2m

Π2
i +

Ne∑

i=1

1
2
mω2

0r2
i

+
Ne∑

i=1

α

h̄
[σ×Πi]z +

Ne∑

i=1

gµBBσzi

+
1
2

Ne∑

i 6=j

e2

4πεε0|ri − rj |

where the kinematic momentum Πi is

Πi = pi − eAi = pi − eABi − eAri

= −ih̄∇i − eB

2
(−yi, xi, 0) +

eEr

Ω
sinΩt.

The Task
Our aim is to find the absorption spectrum for our QD. It turns out that we
can proceed in steps:

1. solve the static problem, i.e. find the energy eigenstates of the total
Hamiltonian H when the radiation field Er(t) vanishes or, equivalently
when Ar = 0



(a) solve the single particle problem, that is forget the mutual Coulomb
interaction

i. from the single particle Hamiltonian drop out all the terms you
cannot handle analytically and solve the remaining problem by
paper and pencil

ii. handle numerically the dropped terms

(b) handle the interactions numerically

2. handle the the time dependence numerically.



2. Exact diagonalization
Consider N -particle static Hamiltonian

H = H0 + H ′.

Here H0 is

• the single particle term, e.g.

H0 =
N∑

i=1

[
− h̄2

2m
∇2

i + V (ri)
]

,

• usually tractable, i.e. we can easily solve the problem

H0Φ(r1, r2, . . . , rN ) = EΦ(r1, r2, . . . , rN ),

and H ′ contains everything else, i.e.

• the intractable single particle terms,

• the mutual interaction
1
2

N∑

i 6=j

U(ri − rj).

Since H0 is Hermitian, its eigenstates Φn,

H0Φn = EnΦn,

form a complete orthonormal basis. Thus, the solutions to the problem

HΨ(r1, r2, . . . , rN ) = EΨ(r1, r2, . . . , rN )

can be written as superpositions

Ψ =
∑
n=0

cnΦn.

The superposition coefficients

c =




c0

c1

...




satisfy the eigenvalue equation

Hc = Ec,

where the elements of the matrix H are given by

Hij = 〈Φi|H|Φj〉
=

∫
Φ∗i (r1, . . . , rN )HΦj(r1, . . . , rN ) dr1 · · · drN .

In principle the matrix H is infinite dimensional. In certain cases, for example
when



• the number of particles is small, N ≈ 10

• it is possible, e.g. by applying clever boundary values, to map the actual
many body problem approximately to a few body problem

• in the energy spectrum {En} of H0 there are big gaps as compared to
perturbation H ′,

the matrix H can be truncated to finite size, say r × r. The process

1. reducing the Hamiltonian to a finite r × r-matrix H,

2. diagonalizing H, usually numerically,

is called the exact diagonalization method.
In practice we must have r ≈ 50 000. Occasionally matrices of order of millions
can be diagonalized.



3. Occupation representation demystified
according to S. Raimes, Many-Electron Theory.

3.1 Non-interacting states
Consider the Hamiltonian

H0 =
N∑

i=1

[
− h̄2

2m
∇2

i + V (ri)
]

and the corresponding Schrödinger equation

H0Φ(r1, r2, . . . , rN ) = EΦ(r1, r2, . . . , rN ). (∗)

Supposing that the functions fi(r) satisfy single particle equations
[
− h̄2

2m
∇2 + V (r)

]
fi(r) = εifi(ri)

it is easy to see that
Φ = f1(r1)f2(r2) · · · fN (rN ) (∗∗)

satisfy the many particle equation (∗) with the eigenvalue

E =
N∑

i=1

εi.

However, the simple product (∗∗) is not correct, since

1. the spin degrees of freedom are not incorporated.

2. the statistics is wrong: wave functions describing fermions must be
antisymmetric and the ones describing boson symmetric in the
coordinates of the particles.

Spin coordinates

We introduce the spin coordinate ξ taking values ±1 and the spin wave
functions χ↑ and χ↓ as

χ↑(ξ) =
{

1 if ξ = 1
0 if ξ = −1

χ↓(ξ) =
{

0 if ξ = 1
1 if ξ = −1.

If there are no terms depending on the spin in the Hamiltonian H0 we can
rewrite the single particle solution like

φi(x) = fi(r)χi(ξ),



where χi is either χ↑ or χ↓ and

x = (r, ξ).

Integration over x implies summation over ξ, e.g.
∫

φ∗i (x)φj(x) dx =
∑

ξ=±1

∫
f∗i (r)fj(r) drχi(ξ)χj(ξ).

In particular, we have
∫
|φi(x)|2dx =

∫
|fi(r)|2dr

∑

ξ=±1

χ2
i (ξ) = 1,

provided that the spatial wave functions are normalized.

Fermions

We start with the product φ1(x1)φ2(x2) · · ·φN (xN ) and

1. permute the coordinates xi in every possible way. There are N ! ways to
do this. It is clear that we still have many particle wave functions
satisfying the equation (∗).

2. change sign every time we exchange two coordinates.

3. sum up all these terms.

When we denote by

• P a permutation of the coordinates x1, . . . , xN ,

• p the number of exchanges required for the permutaion P ,

we end up with the antisymmetric normalized wave function

Φ =
1

(N !)1/2

∑

P

(−1)pPφ1(x1)φ2(x2) · · ·φN (xN ).

By definition this can be rewritten as the determinant

Φ =
1

(N !)1/2

∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) · · · φ1(xN )
φ2(x1) φ2(x2) · · · φ2(xN )

...
...

...
φN (x1) φN (x2) · · · φN (xN )

∣∣∣∣∣∣∣∣∣
,

which is known as the Slater determinant.

3.2 Determinantal wave functions



As eigenstates of the single particle Hamiltonian the wave functions φi(x)
form a complete, orthonormal set, i.e.

∑

i

φ∗i (x
′)φi(x) = δ(x− x′).

and ∫
φ∗i (x)φj(x) dx = δij .

From these states we construct all possible non-interacting states of N
fermions by

1. picking up N different integers a1, a2, . . . , aN or, equivalently, N different
wave functions

φa1 , φa2 , . . . , φaN

from the infinite set
φ1, φ2, . . .

in every possible way and

2. forming the determinants

Φa(x1, . . . , xN )

=
1

(N !)1/2

∑

P

(−1)pPφa1(x1) · · ·φaN
(xN ).

Let

Φb(x1, . . . , xN )

=
1

(N !)1/2

∑

P

(−1)pPφb1(x1) · · ·φbN (xN ).

be another determinant.
For short we denote by dτ ′ the volume element dx1 · · · dxN and let the prime′

indicate the summation over spin coordinates.
Consider an N -particle operator F (x1, x2, . . . , xN ). We say that F is
symmetric if PF = F .
We have
if F is a symmetric operator then

∫
Φ∗bFΦadτ ′

= (N !)1/2

∫ ∫
Φ∗bFφa1(x1) · · ·φaN (xN )dτ ′.



Proof We have
∫

Φ∗bFΦadτ ′

=
1

(N !)1/2

∫
Φ∗bF

∑

P

(−1)pPφa1(x1) · · ·φaN
(xN ) dτ ′.

We note that

• since P has no effect on F we can move F to the right over P .

• introducing the operator P−1 undoing the effect of P the determinant
Φ∗b can also be moved over P multiplying it by P−1.

• the number of exchanges, p, is exactly the same in P−1 as in P and
every exchange of coordinates in the determinantal wave function merely
changes its sign.

• we can exchange the sum and the integration.

We end up with
∫

Φ∗bFΦadτ ′

=
1

(N !)1/2

∑

P

(−1)p

P

∫
(P−1Φ∗b)Fφa1(x1) · · ·φaN

(xN ) dτ ′

=
1

(N !)1/2

∑

P

P

∫
Φ∗bFφa1(x1) · · ·φaN

(xN ) dτ ′

= (N !)1/2

∫
Φ∗bFφa1(x1) · · ·φaN (xN ) dτ ′.

We can now show that determinantal wave functions are normalized. Due to
the orthogonality of the single particle function we can write

∫
Φ∗aΦadτ ′

= (N !)1/2

∫
Φ∗aφa1(x1) · · ·φaN

(xN ) dτ ′

=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗aN

(xN )

]

×φa1(x1) · · ·φaN (xN ) dτ ′

=
∫
|φa1(x1)|2 · · · |φaN

(xN )|2 dτ ′



=
∫
|φa1(x1)|2dx1 · · ·

∫
|φaN

(xN )|2dxN = 1.

Suppose now, that in the determinants Φa and Φb we have

ai = bi when i 6= j

aj 6= bj ,

i.e. the determinants differ in one single particle state. Then
∫

Φ∗aΦbdτ ′

=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗aN

(xN )

]

×φb1(x1) · · ·φbN
(xN ) dτ ′

=
∫
|φa1(x1)|2dx1 · · ·

∫
φ∗aj

(xj)φbj
(xj) dxj

· · ·
∫
|φaN (xN )|2dxN = 0.

It is easy to see that the same holds if they differ in more than one wave
function.
Thus the determinants Φa form an orthonormal set. It can also be shown that
in the space of antisymmetric functions they form a complete set. So, every
antisymmetric function Ψ of N variables can be written as a superposition

Ψ =
∑

a

BaΦa.

3.3 Matrix elements
Our original problem

HΨ = EΨ

can now be converted to the matrix form
∑

a

(Hba − E)Ba = 0, (∗)

where
Hba = 〈Φb|H|Φa〉 =

∫
Φ∗b(H0 + H ′)Φadτ ′. (∗∗)

We recall that H ′ is a sum of intractable single particle terms and terms
describing mutual interactions. It can be written in terms of one body
operators, i.e. operators acting on one particle at a time, and of two body
operators, i.e. operators acting on two particles at a time like

H ′ =
N∑

i=1

u(ri) +
1
2

N∑

i 6=j

v(ri, rj).



Thus calculation of the elements Hba involves treatment of one body and two
body operators.
In general, our operators are either one body operators

Ω(1) =
N∑

i=1

η(xi)

or two body operators

Ω(2) =
1
2

N∑

i6=j

ϑ(xi, xj).

We use the notation

〈i|η|j〉 =
∫

φ∗i (x)η(x)φj(x) dx,

and

〈ij|ϑ|kl〉 =
∫ ∫ [

φ∗i (x1)φ∗j (x2)ϑ(x1, x2)

×φk(x1)φl(x2)

]
dx1dx2.

When fermions are involved the relative orders of the labels (i, j, k, l) and the
dummy variables (x1, x2) are crucial in the latter definition.

Matrix elements of one body operators

We start with

〈Φb|Ω(1)|Φa〉
=

∫
Φ∗bΩ

(1)Φa dτ ′

= (N !)1/2

∫
Φ∗bΩ

(1)φa1(x1) · · ·φaN (xN ) dτ ′

= (N !)1/2
N∑

i=1

∫
Φ∗bη(xi)φa1(x1) · · ·φaN (xN ) dτ ′.

Case (i): Φa = Φb, i.e. bi = ai ∀i. Now, due to the orthonormality of the φai ,
we can write

(N !)1/2

∫
Φ∗bη(xi)φa1(x1) · · ·φaN

(xN ) dτ ′

=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗aN

(xN )

]

η(xi)φa1(x1) · · ·φaN (xN ) dτ ′

=
∫

φ∗ai
(xi)η(xi)φai(xi) dxi.



Consequently

〈Φa|Ω(1)|Φa〉 =
N∑

i=1

〈ai|η|ai〉.

Case (ii): Φa and Φb differ in one function. Suppose, that

ai = bi when i 6= k

ak 6= bk.

We have

(N !)1/2

∫
Φ∗bη(xi)φa1(x1) · · ·φaN (xN ) dτ ′

=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗bk

(xk) · · ·φ∗aN
(xN )

]

η(xi)φa1(x1) · · ·φak
(xk) · · ·φaN

(xN ) dτ ′

=
{

0, if i 6= k∫
φ∗bk

(xk)η(xk)φak
(xk) dxk, if i = k.

So
〈Φb|Ω(1)|Φa〉 = 〈bk|η|ak〉.

Case (iii): Φa and Φb differ in two functions, say

ai = bi when i 6= k, l

ak 6= bk, bl

al 6= bk, bl.

Now

(N !)1/2

∫
Φ∗bη(xi)φa1(x1) · · ·φaN

(xN ) dτ ′

=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗bk

(xk) · · ·

φ∗bl
(xl) · · ·φ∗aN

(xN )

]

η(xi)φa1(x1) · · ·φak
(xk) · · ·

φal
(xl) · · ·φaN (xN ) dτ ′

= 0, ∀i

so that
〈Φb|Ω(1)|Φa〉 = 0.

Clearly this holds also when the determinants differ in more than two
functions.



We can summarize:
One body operators have non zero matrix elements only between two
determinantal wave functions which are either the same or differ in a single
one particle wave function.

Matrix elements of two body operators

We start with

〈Φb|Ω(2)|Φa〉
=

∫
Φ∗bΩ

(2)Φadτ ′

= (N !)1/2

∫
Φ∗bΩ

(2)φa1(x1) · · ·φaN
(xN ) dτ ′

=
1
2

(N !)1/2
N∑

i 6=j

∫
Φ∗bϑ(xi,xj)

φa1(x1) · · ·φaN
(xN ) dτ ′.

Case (i): Φa = Φb. Then

(N !)1/2

∫
Φ∗bϑ(xi, xj)φa1(x1) · · ·φaN (xN ) dτ ′

=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗aN

(xN )

]

ϑ(xi, xj)φa1(x1) · · ·φaN (xN ) dτ ′

=
∫ ∫ [

φ∗ai
(xi)φ∗aj

(xj)− φ∗ai
(xj)φ∗aj

(xi)
]

ϑ(xi, xj)φai(xi)φaj (xj) dxidxj

= 〈aiaj |ϑ|aiaj〉 − 〈ajai|ϑ|aiaj〉,

where the second term comes from the permutation which interchanges xi and
xj . Finally

〈Φa|Ω(2)|Φa〉 =
1
2

N∑

i 6=j

[〈aiaj |ϑ|aiaj〉 − 〈ajai|ϑ|aiaj〉] .

Case (ii): Φa and Φb differ in one function, say

ai = bi when i 6= k

ak 6= bk.

Then

(N !)1/2

∫
Φ∗bϑ(xi, xj)φa1(x1) · · ·φaN (xN ) dτ ′



=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗bk

(xk) · · ·φ∗aN
(xN )

]

ϑ(xi, xj)φa1(x1) · · ·φak
(xk) · · ·φaN

(xN ) dτ ′

=




〈bkaj |ϑ|akaj〉 − 〈ajbk|ϑ|akaj〉, when i = k
〈aibk|ϑ|aiak〉 − 〈bkai|ϑ|aiak〉, when j = k
0, otherwise.

Now

〈ij|ϑ|kl〉 =
∫ ∫ [

φ∗i (x1)φ∗j (x2)ϑ(x1, x2)

×φk(x1)φl(x2)

]
dx1dx2

=
∫ ∫ [

φ∗i (x2)φ∗j (x1)ϑ(x2, x1)

×φk(x2)φl(x1)

]
dx1dx2

= 〈ji|ϑ|lk〉

supposing ϑ(x1, x2) to be symmetric.
Thus we end up with

〈Φb|Ω(2)|Φb〉

=
1
2

N∑

j=1

[〈bkaj |ϑ|akaj〉 − 〈ajbk|ϑ|akaj〉]

+
1
2

N∑

i=1

[〈aibk|ϑ|aiak〉 − 〈bkai|ϑ|aiak〉]

=
N∑

i=1

[〈aibk|ϑ|aiak〉 − 〈bkai|ϑ|aiak〉] .

Case (iii): Φa and Φb differ in two functions,

ai = bi when i! = k, l

ak 6= bk, bl

al 6= bk, bl

say. Then

(N !)1/2

∫
Φ∗bϑ(xi, xj)φa1(x1) · · ·φaN

(xN ) dτ ′



=
∫ [∑

P

(−1)pPφ∗a1
(x1) · · ·φ∗bk

(xk) · · ·

φ∗bl
(xl) · · ·φaN

(xN )

]

ϑ(xi,xj)φa1(x1) · · ·φak
(xk) · · ·

φal
(xl) · · ·φaN

(xN ) dτ ′

=




〈bkbl|ϑ|akal〉 − 〈blak|ϑ|akal〉 if i = k, j = l

or i = l, j = k
0, otherwise.

Thus

〈Φb|Ω(2)|Φb〉
= 〈bkbl|ϑ|akal〉 − 〈blak|ϑ|akal〉.

Case (iv): Φa and Φb differ in more than two functions. Now

〈Φb|Ω(2)|Φb〉 = 0,

since every term in the exapnsion of the matrix element contains a factor
φ∗bk

(xk)φak
(xk) with bk 6= ak which vanishes due to the orthogonality.

We summarize:
Two body operators have non zero matrix elements only between two
determinantal wave function which are either the same or differ at most in two
one particle functions.

3.4 Creation and destruction operators
The sign of the determinantal wave function

Φa1a2...aN (x1,x2, . . . , xN )

=
1

(N !)1/2

∑

P

(−1)pPφa1(x1)φa2(x2) · · ·φaN
(xN )

depends on the order of single particle states φai . To remove this arbitrariness
we

• specify a linear order among the single particle states so, that you can
write

a1 < a2 · · · < aN .

The order is arbitrary but once fixed stick to it. For example, you can
use the order you tabulate your single particle states, or arrange your
states in energetically ascending order.

• write the single particle wave functions in the determinants always in
increasing order.



Destruction (or annihilation) operator

The destruction operator cak
is defined formally as

cak
ΦN

a1...ak...aN
(x1, . . . , xN )

= ±ΦN−1
a1...ak−1ak+1...aN

(x1, . . . , xN−1)

= ± 1
[(N − 1)!]1/2

∑

P

(−1)pPφa1(x1) · · ·

φak−1(xk−1)φak+1(xk) · · ·φaN (xN−1),

where the sign is

• positive if k is odd, i.e. φak
is preceded by even number of functions in ΦN .

• negative if k is even, i.e. φak
is preceded by odd number of functions in

ΦN .

The effect of the destruction operator cak
is to convert an N particle

determinantal wave function containing φak
into an N − 1 particle function

not containing φak
.

In the case ΦN does not contain φak
we define

cak
ΦN

a1...aN
= 0 if ak 6∈ {a1, . . . , aN}.

Creation operator

The creation operator c†l is defined formally as

c†l Φ
N
a1...ajaj+1...aN

(x1, . . . , xN )

= ±ΦN+1
a1

. . . aj laj+1 . . . aN )(x1, . . . , xN+1)

= ± 1
[(N + 1)!]1/2

∑

P

(−1)pPφa1(x1) · · ·φaj (xj)

φl(xj+1)φaj+1(xj+2) · · ·φaN
(xN+1),

where aj < l < aj+1 and the sign is

• positive if j is even, i.e. φl is preceded by even number of functions in
ΦN+1.

• negative if j is odd, i.e. φl is preceded by odd number of functions in
ΦN+1.

The effect of the creation operator c†l is to convert an N particle determinantal
wave function not containing φl into an N + 1 particle state containing φl.
In the case ΦN contains φl we define

c†l Φ
N
a1...aN

= 0 if l ∈ {a1, . . . aN}.

Note that the sign associated with



• destruction operator is defined to be positive when the one particle
function is destroyed in the first position, i.e.

ca1Φ
N
a1a2...aN

= ΦN−1
a2...aN

,

and, otherwise, to correspond exchanges required to move the function
to be removed in the first position, e.g.

ca2Φ
N
a1a2...aN

= −ca2Φ
N
a2a1...aN

= −ΦN−1
a1a3...aN

.

• creation operator is defined to be positive when the one particle function
is created in the first position, i.e.

c†l Φ
N
a1...aN

= ΦN+1
la1...aN

,

and, otherwise, correspond to exchanges required to move the function
inserted in the first position to its correct place, e.g.

c†l Φ
N
a1a2...aN

= ΦN+1
la1a2...aN

= −ΦN+1
a1la2...aN

,

if a1 < l < a2.

3.5 Occupation numbers
Instead of specifying a determinantal wave function Φ by subscripts of the
functions appearing in it we will get a more convenient notation by giving the
occupation number ni of each single particle state φi, i.e. we

• define ni to be 1 or 0 according to whether the function φi is or is not
contained in Φ.

• write N particle determinantal wave function like

ΦN (n1, n2, n3, . . .).

For example, we have

ΦN
a1a2...aN

≡ ΦN (01, 02, . . . , 1a1 , . . . , 1a2 , . . . , 1aN , . . .).

Sometimes we also use notation

|n1, n2, n3, . . .〉 ≡ Φ(n1, n2, n3, . . .),

or, more compactly, give only the indeces i of the states for which ni = 1, e.g.

|01, 02, . . . , 1a1 , . . . , 1a2 , . . . , 1aN , . . .〉 ≡ |a1a2 . . . aN 〉.



In the occupation representation the definition of the destruction operator ck

takes the form

ckΦN (. . . 1k . . .) = θkΦN−1(. . . 0k . . .),
ckΦN (. . . 0k . . .) = 0.

Here ck leaves all other occupation numbers unchanged. The sign θk is given
by

θk = (−1)
∑

j<k
nj

in accordance with our previous definition.
Similarly, the creation operator c†k is defined as

c†kΦN (. . . 0k . . .) = θkΦN+1(. . . 1k . . .),

c†kΦN (. . . 1k . . .) = 0.

All other occupation numbers are left untouched.
We can rewrite more compactly

ckΦN (. . . nk . . .) = θknkΦN−1(. . . 0k . . .)

c†kΦN (. . . nk . . .) = θk(1− nk)ΦN+1(. . . 1k . . .).

3.6 Commutation relations
We have

clckΦN (. . . nk . . . nl . . .) = θknkclΦN−1(. . . 0k . . . nl . . .)

and
ckclΦN (. . . nk . . . nl . . .) = θlnlckΦN−1(. . . nk . . . 0l . . .),

where we have assumed that k < l. If either nk = 0 or nl = 0, both expressions
are zero. So, suppose that nk = nl = 1. then

clckΦN (. . . 1k . . . 1l . . .) = θkclΦN−1(. . . 0k . . . 1l . . .)
= θkθ′lΦ

N−2(. . . 0k . . . 0l . . .),

and

ckclΦN (. . . 1k . . . 1l . . .) = θlckΦN−1(. . . 1k . . . 0l . . .)
= θlθ

′
kΦN−2(. . . 0k . . . 0l . . .).

Above

• θ′l = (−1)p, where p is the number of occupied states preceding φl in
ΦN−1(. . . 0k . . . 1l . . .). Clearly θ′l = −θl, since the number of the
occupied states preceding φl has been reduced by one by the operator ck.



• θ′k = (−1)q, where q is the number of occupied states preceding φk in
ΦN−1(. . . 1k . . . 0l . . .). Clearly θ′k = θk, since no states preceding φk has
been destroyed or created.

So, we have the anticommutation rule

clckΦN = −ckclΦN ∀ΦN

and we can write
{cl, ck} ≡ clck + ckcl = 0.

Similarly we can show that creation operators obey the anticommutation rule

{c†k, c†l } = 0.

It is easy to see that these relations hold also for the cases k > l and k = l.
Consider now consecutive creation and destruction operations, ck and c†l say.
Supposing again l > k we have

c†l ckΦN (. . . nk . . . nl . . .)

= θknkc†l Φ
N−1(. . . 0k . . . nl . . .)

and

ckc†l Φ
N (. . . nk . . . nl . . .)

= θl(1− nl)ckΦN+1(. . . nk . . . 1l . . .).

If either nk = 0 or nl = 1, both expressions vanish. We set nk = 1 and nl = 0.
Then

c†l ckΦN (. . . 1k . . . 0l . . .) = θkc†l Φ
N−1(. . . 0k . . . 0l . . .)

= θkθ′lΦ
N (. . . 0k . . . 1l . . .)

and

ckc†l Φ
N (. . . 1k . . . 0l . . .) = θlckΦN+1(. . . 1k . . . 1l . . .)

= θlθ
′
kΦN (. . . 0k . . . 1l . . .).

Again, it is evident that

• θ′l = −θl since we have destroyed one occupied state preceding φl in the
final determinant ΦN .

• θ′k = θk, since no states preceeding φk in the intermediate determinant
ΦN+1 has been destroyed or created.

So, we have
{ck, c†l } = 0 when k < l.

It is clear, that the same holds also when k > l.



Set now l = k. If nk = 1, we have

c†kckΦN (. . . 1k . . .) = θkc†kΦN−1(. . . 0k . . .)
= θ2

kΦN (. . . 1k . . .)
= ΦN (. . . 1k . . .)

and
ckc†kΦN (. . . 1k . . .) = 0.

If, on the other hand, nk = 0, we have

c†kckΦN (. . . 0k . . .) = 0

and

ckc†kΦN (. . . 0k . . .) = θkckΦN+1(. . . 1k . . .)
= θ2

kΦN (. . . 0k . . .)
= ΦN (. . . 0k . . .).

We see that we can write
{c†k, ck} = 1

or, together with the previous results,

{c†l , ck} = δkl.

From the previous calculations we also deduce that

c†kckΦN (. . . nk . . .) = nkΦN (. . . nk . . .),

or in the operator form
c†kck = nk.

That’s why c†kck is called the number operator for the one particle state φk.
To summarize:

{cl, ck} = 0

{c†l , c†k} = 0

{c†k, cl} = δkl

c†kck = nk.

3.7 The vacuum
We define the vacuum (or emty) state Φvac to be the fictious ’zeroth order’
determinant containing no single particle functions, i.e. we set

Φvac ≡ Φ(01, 02, 03, . . .).



Applying successively creation operators on Φvac we can construct all possible
determinantal wave functions. For example

c†1Φvac = c†1Φ(01, 02, 03, . . .)
= Φ1(11, 02, 03, . . .)
= φ1(x1)

and

c†3c
†
1c
†
2Φvac = c†3c

†
1c
†
2Φ(01, 02, 03, . . .)

= c†3c
†
1Φ

1(01, 12, 03, . . .)

= c†3Φ
2(11, 12, 03, . . .)

= (−1)2Φ3(11, 12, 13, 04, . . .)

=
1

(3!)1/2

∣∣∣∣∣∣

φ1(x1) φ1(x2) φ1(x3)
φ2(x1) φ2(x2) φ2(x3)
φ3(x1) φ3(x2) φ3(x3)

∣∣∣∣∣∣
.

3.8 One and two body operators
We want to write the one and two body operators,

Ω(1) =
N∑

i=1

η(xi)

Ω(2) =
1
2

N∑

i 6=j

ϑ(xi, xj).
(∗)

respectively, in terms of creation and destruction operators.
We claim that

Ω(1) =
∑

i,j

〈i|η|j〉c†i cj

Ω(2) =
1
2

∑

i,j,k,l

〈ij|ϑ|kl〉c†i c†jclck.
(∗∗)

Here

• the single particle matrix elements are, as before,

〈i|η|j〉 =
∫

φ∗i (x)η(x)φj(x) dx.

• the two particle matrix elements are, again as before,

〈ij|ϑ|kl〉
=

∫ ∫
φ∗i (x1)φ∗j (x2)ϑ(x1, x2)

φk(x1)φl(x2) dx1dx2.



• the summation over indeces, i.e. over single particle states, goes over all
values.

• the relative order of operators with respect to the labeling indeces is
important. In particular, note the product clck.

To prove the equivalence of the two representations (∗) and (∗∗) we will
proceed in the most straightforward way by showing that their matrix
elements are identical.

One body operator in a one particle system

For one particle systems we have

Φa = Φ1(. . . 1k . . .) = φk(x1)
Φb = Φ1(. . . 1l . . .) = φl(x1).

We see that the matrix elements of Ω(1) in the representation (∗) in this case
are given by

〈Φa|Ω(1)|Φb〉 = 〈Φa|η(x1)|Φb〉 = 〈k|η|l〉.
In the representation (∗∗) we have

〈Φa|Ω(1)|Φb〉 =

〈
Φa

∣∣∣∣∣∣
∑

i,j

〈i|η|j〉c†i cj

∣∣∣∣∣∣
Φb

〉

=
∑

i,j

〈i|η|j〉 〈Φa|c†i cj |Φb〉

=
∑

i,j

〈i|η|j〉
∫

Φ∗ac†i cjΦbdτ ′.

Now cjΦb = 0 unless j = l, in which case clΦb = Φvac, and c†iΦvac = Φa only if
i = k. Thus

〈Φa|Ω(1)|Φb〉 = 〈k|η|l〉
holds also in the representation (∗∗).
Two body operator in a two particle system

For two particle systems we have

Φa = Φ2(. . . 1m . . . 1n . . .)

=
1√
2

[φm(x1)φn(x2)− φn(x1)φm(x2)]

Φb = Φ2(. . . 1p . . . 1q . . .)

=
1√
2

[φp(x1)φq(x2)− φq(x1)φp(x2)].



In the representation (∗) we have

〈Φa|Ω(2)|Φb〉

=
1
2

2∑

i6=j

∫
Φ∗aϑ(xi, xj)Φbdτ ′

=
∫

Φ∗aϑ(x1, x2)Φbdτ ′

=
1
2

∫ [
[φ∗m(x1)φ∗n(x2)− φ∗n(x1)φ∗m(x2)]

ϑ(x1, x2)

[φp(x1)φq(x2)− φq(x1)φp(x2)]

]
dx1dx2

=
1
2

[〈mn|ϑ|pq〉 − 〈mn|ϑ|qp〉
−〈nm|ϑ|pq〉+ 〈nm|ϑ|qp〉]

= 〈mn|ϑ|pq〉 − 〈mn|ϑ|qp〉.

In the representation (∗∗) we write

〈Φa|Ω(2)|Φb〉 =

〈
Φa

∣∣∣∣∣∣
1
2

∑

i,j,k,l

〈ij|ϑ|kl〉c†i c†jclck

∣∣∣∣∣∣
Φb

〉

=
1
2

∑

i,j,k,l

〈ij|ϑ|kl〉
∫

Φ∗ac†i c
†
jclckΦbdτ ′.

Due to the orthogonality of the determinantal wave functions the integral
vanishes unless

c†i c
†
jclckΦb = ±Φa,

or unless l, k = p, q and i, j = m,n.
Consider the case k = p, l = q, j = n, i = m. We now have

c†mc†ncqcpΦb = c†mc†ncqcpΦ2(. . . 1p . . . 1q . . .)
= c†mc†ncqΦ1(. . . 1q . . .)
= c†mc†nΦvac

= c†mΦ1(. . . 1n . . .)
= Φ2(. . . 1m . . . 1n . . .) = Φb,

and the value of the integral is +1.
Using the anticommutation relations we have immediately

k = q, l = p, j = n, i = m,

∫
= −1



k = p, l = q, j = m, i = n,

∫
= −1

k = q, l = p, j = m, i = n,

∫
= +1

and end up with

〈Φa|Ω(2)|Φb〉
=

1
2
[〈mn|ϑ|pq〉 − 〈mn|ϑ|qp〉
−〈nm|ϑ|pq〉+ 〈nm|ϑ|qp〉]

= 〈mn|ϑ|pq〉 − 〈mn|ϑ|qp〉

showing the equivalence of the two representation.

Matrix elements of one body operators

Let Φa and Φb be N -particle determinantal functions. In the representation
(∗∗) we have

〈Φb|Ω(1)|Φb〉 =
∫

Φ∗b


∑

i,j

〈i|η|j〉c†i cj


 Φadτ ′

=
∑

i,j

〈i|η|j〉
∫

Φ∗bc
†
i cjΦadτ ′.

Case (i): Diagonal elements, i.e. Φa = Φb. Now, due to the orthogonality,
∫

Φ∗ac†i cjΦadτ ′

vanishes unless
c†i cjΦa = ±Φa.

The only possibility is that i = j, in which case
∫

Φ∗ac†i ciΦadτ ′ = ni.

Thus, for diagonal elements we can write

〈Φa|Ω(1)|Φa〉 =
∑

i

〈i|η|i〉
∫

Φ∗ac†i ciΦadτ ′

=
∑

i

〈i|η|i〉ni.

Since
Φa = ΦN (. . . , 1a1 , . . . , 1aN

, . . .),



i.e. only the states a1, a2, . . . , aN are occupied, we have

ni =
{

1, for i = a1, a2, . . . , aN

0, otherwise.

Consequently

〈Φa|Ω(1)|Φa〉 =
N∑

i=1

〈ai|η|ai〉

in agreement with our earlier results for the representation (∗).
Case (ii): Φa and Φb differ in one function. Let us suppose that

Φa = ΦN (. . . 0k, 1l . . .)
Φb = ΦN (. . . 1k, 0l . . .)

all the other occupations being the same in Φa and Φb. Note that we have
assumed the differing states to take consecutive positions in the occupation
representation, and

• in our earlier treatment of the corresponding case in the representation
(∗) we assumed that the differing functions, φak

and φbk
, occupy the

same rows (or columns) in the determinants.

• in occupation representation above this would mean that the differing
states take consecutive positions or, equivalently, that there are no
occupied states between them.

Our assumption of the consecutive positions of l and k will not lead to any loss
of generality, since

• we can always permute the state l (or k) to its proper position in ΦN

resulting only a possible change of sign.

• in the determinantal wave functions exactly the same permutation with
the same change of sign will be required to carry the single particle
function into its corresponding row (or column).

Now the integral ∫
Φ∗bc

†
i cjΦadτ ′

vanishes unless j = l and i = k, when it has the value 1. Thus

〈Φb|Ω(1)|Φa〉 = 〈k|η|l〉

in agreement with our earlier result.
Case (iii): Φa and Φb differ in more than one function. Because c†i cj can
replace only one function in Φa with another one, it is clear that

c†i cjΦa 6= ±Φb ∀i, j.



Correspondingly
〈Φb|Ω(1)|Φa〉 = 0,

again in agreement with the result for the representation (∗).
Thus, we have shown that for one body operators the representations (∗) and
(∗∗) are equivalent.

Matrix elements of two body operators

Let Φa and Φb be N -particle determinantal functions. In the representation
(∗∗) we have

〈Φb|Ω(2)|Φa〉 =
1
2

∑

i,j,k,l

〈ij|ϑ|kl〉
∫

Φ∗bc
†
i c
†
jclckΦadτ ′.

Case (i): Diagonal elements,, i.e. Φa = Φb. Due to the orthogonality of the
determinantal wave functions the integral

∫
Φ∗ac†i c

†
jclckΦadτ ′

vanishes unless
c†i c

†
jclckΦa = ±Φa.

This can happen only when

1. Φa contains φk and φl, with k 6= l.

2. i = k, j = l or i = l, j = k.

We have the two cases:

• if j = k we must have i = l and the anticommutation rules tell us that

c†i c
†
jclck = −c†i clc

†
jck = −c†i cic

†
jcj = −ninj .

• if j = l we must have i = k and from the anticommutation rules we have

c†i c
†
jclck = −c†i c

†
jckcl = c†i ckc†jcl = c†i cic

†
jcj = ninj .

We can now write

〈Φa|Ω(2)|Φa〉 =
1
2

∑

i,j

ninj [〈ij|ϑ|ij〉 − 〈ij|ϑ|ji〉].

Like before we have

ni =
{

1, for i = a1, a2, . . . , aN

0, otherwise

so that
〈Φa|Ω(2)|Φa〉 =

1
2

∑

i,j

[〈aiaj |ϑ|aiaj〉 − 〈aiaj |ϑ|ajai〉]



just like for representation (∗).
Case (ii): Φa and Φb differ in one function. Like in the treatment of Ω(1) we
suppose that

Φa = ΦN (. . . 1p0q . . .)
Φb = ΦN (. . . 0p1q . . .)

all other occupations being the same. Our earlier discussion concerning the
generality when choosing the differing functions occupying consecutive
locations is valid here, too.
The integral ∫

Φ∗bc
†
i c
†
jclckΦadτ ′

vanishes unless
c†i c

†
jclckΦa = ±Φb,

i.e. the operator c†i c
†
jclck must destroy φp and create φq and nothing else.

There are four possibilities:

1. k = p, j = q, i = l, so that

c†i c
†
jclckΦa = c†i c

†
qcicpΦa = −c†i cic

†
qcpΦa = −niΦb.

2. k = p, i = q, j = l, so that

c†i c
†
jclckΦa = c†qc

†
jcjcpΦa = c†jcjc

†
qcpΦa = njΦb.

3. l = p, j = q, i = k, so that

c†i c
†
jclckΦa = c†i c

†
qcpciΦa = c†i cic

†
qcpΦa = niΦb.

4. l = p, i = q, j = k, so that

c†i c
†
jclckΦa = c†qc

†
jcpcjΦa = −c†jcjc

†
qcpΦa = −njΦb.

We can now write

〈Φb|Ω(2)|Φa〉
=

1
2

∑

i,j,k,l

〈ij|ϑ|kl〉
∫

Φ∗bc
†
i c
†
jclckΦadτ ′

=
1
2

∑

j

〈qj|ϑ|pj〉nj − 1
2

∑

i

〈iq|ϑ|pi〉ni

+
1
2

∑

i

〈iq|ϑ|ip〉ni − 1
2

∑

j

〈qj|ϑ|jp〉nj

=
∑

i

[〈iq|ϑ|ip〉 − 〈qi|ϑ|ip〉]ni.



We note that the number ni is actually the one for φi in Φb. The occupation
numbers ni are, however, the same in Φa and Φb except when i = p or i = q.
In both cases the expression

〈iq|ϑ|ip〉 − 〈qi|ϑ|ip〉

vanishes, so that we can use

ni =
{

1, for i = a1, a2, . . . , aN

0, otherwise.

Writing ak for p, bk for q and ai for i we end up with

〈Φb|Ω(2)|Φa〉 =
N∑

i=1

[〈aibk|ϑ|aiak〉 − 〈bkai|ϑ|aiak〉],

which is identical with our previous result in the representation (∗).
Case (iii): Φa and Φb differ in two functions. We suppose, that

Φa = ΦN (. . . 1p0r1q0s . . .)
Φb = ΦN (. . . 0p1r0q1s . . .),

all other occupations being the same. Again, repeating our earlier arguments,
we see that we will lose no generality when we assume the differing functions
to occupy consecutive positions. It is also clear, that it does not matter
whether p < r or r < p or whether q < s or s < q.
Again the integral ∫

Φ∗bc
†
i c
†
jclckΦadτ ′

vanishes unless
c†i c

†
jclckΦa = ±Φb.

This can happen only when the operator clck destroys φp and φq and the
operator c†i c

†
j creates φr and φs in Φa.

We have four possibilities:

1. i = r, j = s, l = p, k = q, so that

c†i c
†
jckclΦa = c†rc

†
scpcqΦa = −c†rcpc

†
scqΦa = −Φb.

2. i = r, j = s, l = q, k = p, so that

c†i c
†
jckclΦa = c†rc

†
scqcpΦa = c†rcpc

†
scqΦa = Φb.

3. i = s, j = r, l = p, k = q, so that

c†i c
†
jckclΦa = c†sc

†
rcpcqΦa = c†rcpc

†
scqΦa = Φb.



4. i = s, j = r, l = q, k = p, so that

c†i c
†
jckclΦa = c†sc

†
rcqcpΦa = −c†rcpc

†
scqΦa = −Φb.

The matrix element will now be

〈Φb|Ω(2)|Φa〉
=

1
2

∑

i,j,k,l

〈ij|ϑ|kl〉
∫

Φ∗bc
†
i c
†
jclckΦadτ ′

= −1
2
〈rs|ϑ|qp〉+

1
2
〈rs|ϑ|pq〉

+
1
2
〈sr|ϑ|qp〉 − 1

2
〈sr|ϑ|pq〉

= 〈rs|ϑ|pq〉 − 〈sr|ϑ|pq〉.

Replacing p with ak, q with al, r with bk and s with bl we end up with

〈Φb|Ω(2)|Φa〉 = 〈bkbl|ϑ|akal〉 − 〈blbk|ϑ|akal〉,

which again is exactly the result we obtained in the representation (∗).
Case (iv): Φa and Φb differ in more than two functions. Because the operator
c†i c

†
jclck can replace at most two functions in Φa, it is clear that

c†i c
†
jclckΦa 6= ±Φb ∀i, j, k, l.

Correspondingly
〈Φb|Ω(2)|Φa〉 = 0,

again in agreement with our previous result.
Thus we have shown that the two representations (∗) and (∗∗) for Ω(2) are
equivalent.

3.9 Hermitean conjugacy of c and c†
Suppose that

Φa = ΦN+1(. . . 1i . . .)

and
Φb = ΦN (. . . 0i . . .)

all other occupation numbers being the same. Furthermore, suppose that

Φb = ciΦa,

i.e. the number of occupied states preceding φi is even. Then
∫

Φ∗bciΦadτ ′ = 1.



Denote by cH
i the Hermitean conjugate of ci. By definition

∫
Φ∗bciΦadτ ′ =

(∫
Φ∗acH

i Φbdτ ′
)∗

= 1.

Since the determinants Φa are arbitrary, except that they must contain φi, it
is evident that

Φa = cH
i Φb,

so, that cH
i creates the state φi, i.e.

cH
i = c†i .

3.10 Field operators
Sometimes the many body theory is expressed in terms of field operators Ψ(x)
and Ψ†(x) defined as

Ψ(x) =
∑

i

φi(x)ci

Ψ†(x) =
∑

i

φ∗i (x)c†i .

Now

{Ψ(x), Ψ(x′)}
=

∑

i,j

φi(x)φj(x′)cicj +
∑

i,j

φj(x′)φi(x)cjci

=
∑

i,j

φi(x)φj(x′){ci, cj} = 0,

and similarly for {Ψ†(x),Ψ†(x′)}. Further

{Ψ(x), Ψ†(x′)}
=

∑

i,j

φi(x)φ∗j (x
′)cic

†
j +

∑

i,j

φ∗j (x
′)φi(x)c†jci

=
∑

i,j

φi(x)φ∗j (x
′){ci, c

†
j}

=
∑

i

φi(x)φ∗i (x
′) = δ(x− x′)

due to the completenes of the basis {φi}.
We see that the field operators obey the anticommutation rules

{Ψ(x), Ψ(x′)} = 0
{Ψ†(x), Ψ†(x′)} = 0
{Ψ(x), Ψ†(x′)} = δ(x− x′).



Consider now the expression
∫

Ψ†(x)η(x)Ψ(x) dx.

We have ∫
Ψ†(x)η(x)Ψ(x) dx

=
∫ ∑

i

φ∗i (x)c†iη(x)
∑

j

φj(x)cjdx

=
∑

i,j

c†i cj

∫
φ∗i (x)η(x)φj(x) dx

=
∑

i,j

〈i|η|j〉c†i cj .

Similarly

1
2

∫
Ψ†(x1)Ψ†(x2)ϑ(x1, x2)Ψ(x2)Ψ(x1) dx1dx2

=
1
2

∫ ∑

i

φ∗i (x1)c
†
i

∑

j

φ∗j (x2)c
†
jϑ(x1, x2)

∑

l

φl(x2)cl

∑

k

φk(xk)ckdx1dx2

=
1
2

∑

i,j,k,l

c†i c
†
jclck

∫
φ∗i (x1)φ∗j (x2)ϑ(x1, x2)

φk(x1)φl(x2) dx1dx2

=
1
2

∑

i,j,k,l

〈ij|ϑ|kl〉c†i c†jclck.

So, we can write

Ω(1) =
∫

Ψ†(x)η(x)Ψ(x) dx

Ω(2) =
1
2

∫
Ψ†(x1)Ψ†(x2)ϑ(x1, x2)

Ψ(x2)Ψ(x1) dx1dx2.

As an example, let us consider the density operator

ρ(x) =
N∑

i=1

δ(x− xi).

In the occupation representation we have

ρ(x) =
∫

Ψ†(x′)δ(x− x′)Ψ(x′) dx′



= Ψ†(x)Ψ(x) =
∑

i,j

φ∗i (x)φj(x)c†i cj .



4. The Problem: Stationary Solution
Our task is to find out the energy eigenstates of the stationary Hamiltonian

HS =
Ne∑

i=1

[Ti + Vconf(ri) + HSOi + HZi] + VCoul

=
Ne∑

i=1

1
2m

Π2
i +

Ne∑

i=1

1
2
mω2

0r2
i

+
Ne∑

i=1

α

h̄
[σ×Πi]z +

Ne∑

i=1

gµBBσzi

+
1
2

Ne∑

i 6=j

e2

4πεε0|ri − rj |

where the kinematic momentum Πi is

Πi = pi − eAi = pi − eABi

= −ih̄∇i − eB

2
(−yi, xi, 0).

4.1 Single particle spectrum
We first work out the single particle states, i.e. the eigenstates of the
Hamiltonian

Hsp = T + Vconf(r) + HSO + HZ

=
1

2m
Π2 +

1
2
mω2

0r2

+
α

h̄
[σ×Π]z + gµBBσz.

These solutions are used to build up the non-interacting manybody basis for
the numerical treatment of the mutual Coulomb interactions.

4.1.1 Analytic solution
There is no known way to solve the single particle problem when the Rashba
SO term is present. We therefore drop it out and first figure out the
eigenstates of the Hamiltonian

H0
sp = T + Vconf(r) + HZ

=
1

2m
Π2 +

1
2
mω2

0r2 + gµBBσz.

The eigenstates of H0
sp can be written as

ψn`(r, θ) = gn`

(
r2

a2

)
ei`θ,



where, as usual the angular momentum quantum number ` can take only
integer values. The normalized radial wave functions gn`(z) are given by

gn`(z) =
1√
πa

√
n!

(n + |`|)! e
−z/2z|`|/2L|`|n (z),

where Lα
n(z) stand for the (associated) Laguerre polynomials. The

corresponding eigenenergies are

ε = 2h̄ων

ν = n− 1
2

`κ +
1
2

(|`|+ 1)± γ; n = 0, 1, 2, . . .

In the above we have introduced the shorthand notations

a2 =
h̄

mω

κ =
ωc

2ω

γ =
gµBB

4h̄ω

ω2 = ω2
0 +

1
4

ω2
c

ωc =
eB

mc
.

The solutions ψn`

• do not show any spin dependence although the Hamiltonian clearly
depends on the spin via the term gµBBσz as do the the eigenenergies via
the term ±γ

• should be appended by a spin space factor χ. Beacause the spin
dependece in our Hamiltonians is described in terms of 2× 2 Pauli spin
matrices we prefer to express χ as two component vectors

χσ =
(

1
0

)
and

(
0
1

)

for the spin states σ =↑ and σ =↓, respectively.

In the eigenenergy the +-sign of the term ±γ corresponds to the spin-up state
σ =↑, and the −-sign to the spin-down state σ =↓.

4.1.2 Rashba SO
The spin-orbit part of the single particle Hamiltonian

HSO =
α

h̄
[σ× (p− eA)]z =

α

h̄
[σ×Π]z



is written componentwise as

HSO =
α

h̄
[σ×Π]z =

α

h̄
[σxΠy − σyΠx]

=
α

h̄

[(
0 Πy

Πy 0

)
−

(
0 −iΠx

iΠx 0

)]

=
α

h̄

(
0 Πy + iΠx

Πy − iΠx 0

)

= i
α

h̄

(
0 Πx − iΠy

−Πx − iΠy 0

)
.

Defining the ladder operators Π± as

Π± = Πx ± iΠy

the SO term can be written compactly like

HSO = i
α

h̄

(
0 Π−

−Π+ 0

)
.

Explicit expressions for the ladder operators read

Π+ = px + ipy − eB

2
(ix− y)

Π− = px − ipy +
eB

2
(ix + y),

where we have used the minimal coupling scheme

Π = p− eA = p− eB

2
(−y, x, 0).

Expressing the operator combinations

px ± ipy = −ih̄
(

∂

∂x
± i

∂

∂y

)

ix∓ y = i(x± iy)

in polar coordinates like

px ± ipy = −ih̄e±iθ

(
∂

∂r
± i

1
r

∂

∂θ

)

ix∓ y = ire±iθ

we end up with

Π± = −ih̄e±iθ

(
∂

∂r
± i

1
r

∂

∂θ
± mωc

2h̄
r

)
.



Changing to the dimensionless variable

z =
r2

a2

the ladder operators take the form

Π± = −i
h̄

a
e±iθ

√
z

(
2

∂

∂z
± i

1
z

∂

∂θ
± κ

)
,

which will be handy when we have to operate with them on the single particle
states

ψn`(r, θ) = gn`

(
r2

a2

)
ei`θ = gn`(z)ei`θ.

Matrix elements

We now have to solve numerically the eigenproblem

HspΦ(r) = EΦ(r),

where the single particle Hamiltonian is composed as

Hsp = H0
sp + HSO.

The solutions can be written as superpositions

Φ =
∑

k=0

ckΦk.

We take the basis states Φk to be the eigenstates of H0
sp, i.e. they satisfy

H0
spΦk = εkΦk.

The superposition coefficients

c =




c0

c1

...




satisfy the eigenvalue equation

Hc = Ec,

where the elements of the matrix H are given by

Hij = 〈Φi|Hsp|Φj〉 =
∫

Φ∗i (r)HspΦj(r) dr

=
∫

Φ∗i (r)H0
spΦj(r) dr

+
∫

Φ∗i (r)HSOΦj(r) dr

= εiδij + 〈Φi|HSO|Φj〉.



The first term is diagonal in our basis and its contribution is known from our
analytic solution. The second term is just what we called single particle
matrix elements in our treatment of occupation presentation.
Obviously our analytic solutions

Ψk = ψn`(r, θ) = gn`

(
r2

a2

)
ei`θ

are good candidates for basis states Φk. However, recalling that the SO
Hamiltonian was given by

HSO = i
α

h̄

(
0 Π−

−Π+ 0

)
,

we see that in fact, the eigenstates Φ of Hsp must actually be two component
spinors, like

Φ =
(

Φ↑

Φ↓

)
.

We can, nevertheless expand this in terms of the complete set {Ψk} as

Φ =
(

Φ↑

Φ↓

)
=

∑

k

c↑k

(
Ψk

0

)
+

∑

k

c↓k

(
0

Ψk

)
.

Let us now assume that we can separate the angular dependence in the spinors
like

Φ(r) =
(

Φ↑(r)
Φ↓(r)

)
=

(
φ↑(r)ei`↑θ

φ↓(r)ei`↓θ

)

Applying the operator

HSO = i
α

h̄

(
0 Π−

−Π+ 0

)

with

Π± = −ih̄e±iθ

(
∂

∂r
± i

1
r

∂

∂θ
± mωc

2h̄
r

)

we get

HSOΦ(r) = i
α

h̄

(
0 Π−

−Π+ 0

) (
φ↑(r)ei`↑θ

φ↓(r)ei`↓θ

)

= i
α

h̄

(
Π−φ↓(r)ei`↓θ

−Π+φ↑(r)ei`↑θ

)

=

(
φ̃↓(r)ei(`↓−1)θ

−φ̃↑(r)ei(`↑+1)θ

)
,



where the functions φ̃↑,↓(r) are obtained from the functions φ↑,↓(r) by
applying the radial part of the operators Π± on them.
Since H0

sp depends neither on angle nor on spin it retains the angular
dependence of the Ψ. Thus, for Ψ to be an eigenstate of

Hsp = H0
sp + H0

SO

we must have

`↓ − 1 = `↑

`↑ + 1 = `↓.

Both equation yield the same constrain

`↓ = `↑ + 1

implying that the spinors can in fact be written as

Φ(r) =
(

φ↑(r)ei`θ

φ↓(r)ei(`+1)θ

)
.

Thus the quantum number ` (actually the total angular momentum ` + sz) is
a conserved quantity which greatly simplifies our task. Note also, that the
quantum number ` must be integer: going around a full circle in the
configuration space we must end up with the original state.
Introducing the ket-vectors |n`〉 via the scalar product

〈r|n`〉 = Ψk = ψn`(r, θ) = gn`

(
r2

a2

)
ei`θ

and the spinors |n;σ〉 like

|n; ↑〉 =
( |n, `〉

0

)

|n; ↓〉 =
(

0
|n, ` + 1〉

)

and the short hand
η± = 1± κ

it is straightforward (but somewhat tedious) task to figure out the matrix
elements

〈n′; ↑ |HSO|n; ↑〉 = 0

〈n′; ↑ |HSO|n; ↓〉 =
α

a





η−
√

n + ` + 1δn′n

+η+
√

n + 1δn′,n+1; ` > 0
−η+

√
n + |`|δn′n

−η−
√

nδn′,n−1; ` ≤ 0



〈n′; ↓ |HSO|n; ↑〉 =
α

a





η−
√

n + ` + 1δn′n
+η+

√
nδn′,n−1; ` ≥ 0

−η+
√

n + |`|δn′n

−η−
√

n + 1δn′,n+1; ` < 0

〈n′; ↓ |HSO|n; ↓〉 = 0.

Because spin-orbit coupling HSO conserves the angular momentum (total
angular momentum ` + sz = ` + 1

2 ) we can construct the Hamiltonian matrices
separately for each `.
We take the spinors

|n; ↑〉 =
( |n, `〉

0

)

|n; ↓〉 =
(

0
|n, ` + 1〉

)

as our complete basis and expand the eigenstates Φ of the single particle
Hamiltonian

Hsp = H0
sp + H0

SO

in terms of them as
Φ =

∑
n

c↑n|n; ↑〉+
∑

n

c↓n|n; ↓〉.

Because the base states |n; σ〉 are eigenstates of H0
sp we can see that in this

representation the contribution of H0
sp is limited to the diagonal of the matrix.

4.2 Coulomb interaction
The solutions

Φk = |k〉 =
∑

n

ck
n

↑|n; ↑〉+
∑

n

ck
n

↓|n; ↓〉.

of the eigenproblem
HspΦk = EkΦk

obtained in the previous section form a complete set and thus can be used to
form a complete basis for multiparticle problems. In occupation representation
we write these non-interacting Ne electron states as

Ψ = |k1, . . . , kNe〉,
where ki label the occupied states Φki . To bring the Coulomb interaction of
the many particle Hamiltonian

HS =
Ne∑

i=1

Hspi + VCoul

=
Ne∑

i=1

Hspi +
1
2

Ne∑

i 6=j

e2

4πεε0|ri − rj |



into the game we need to evaluate the twobody matrix elements〈
k1k2

∣∣e2/(4πεε0|r1 − r2|)
∣∣k3k4

〉
.

Since each of the states |ki〉 involved in the twobody matrix elements is in fact
a superpostion

Φki = |k〉 =
∑

n

cki
n

↑|n; ↑〉+
∑

n

cki
n

↓|n; ↓〉

and the spinors |n;σ〉 are composed of states |n`〉 like

|n; ↑〉 =
( |n, `〉

0

)

|n; ↓〉 =
(

0
|n, ` + 1〉

)

we see that we actually have to evaluate the matrix elements

Vn1`1n2`2n3`3n4`4

=

〈
n1`1; n2`2

∣∣∣∣∣
e2

4πεε0|r1 − r2|

∣∣∣∣∣n3`3; n4`4

〉
.

The evalutation can be performed by

• expressing the Coulomb potential 1/r in terms of its Fourier transform,
i.e.

1
r

=
1
2π

∫
e−ik·r

k
dk

• using the explicit representation

Lα
n(x) =

n∑
m=0

(−1)m

(
n + α
n−m

)
xm

m!

for the Laguerre polynomials Lα
n appearing in the wave functions

〈r|n`〉 = Ψk = ψn`(r, θ) = gn`

(
r2

a2

)
ei`θ

=
1√
πa

√
n!

(n + |`|)! e
−r2/2a2

×
( r

a

)|`|
L|`|n

(
r2

a2

)
ei`θ.

Since the evaluation is rather lengthy we just, for the completeness’ sake show
the final result:

Vn1`1n2`2n3`3n4`4

= δ`1+`2,`3+`4

√
2e2

4πεε0a



×
(

n1!
(n1 + |`1|)!

) (
n2!

(n2 + |`2|)!
)

×
(

n3!
(n3 + |`3|)!

) (
n4!

(n4 + |`4|)!
)

×Sn1`1n2`2n3`3n4`4

where Sn1`1n2`2n3`3n4`4 is the sixfold summation

Sn1`1n2`2n3`3n4`4

=
n1∑

κ1=0

n2∑
κ2=0

n3∑
κ3=0

n4∑
κ4=0[

κ1 + κ4 +
1
2
(|`1|+ |`4| − k

]
!

×
[
κ2 + κ3 +

1
2
(|`2|+ |`3| − k

]
!

× (−1)κ1+κ4

κ1!κ4!
(−1)κ2+κ3

κ2!κ3!

× (n1 + |`1|)!(n4 + |`4|)!
(n1 − κ1)!(|`1|+ κ1)!(n4 − κ4)!(|`4|+ κ4)!

× (n2 + |`2|)!(n3 + |`3|)!
(n2 − κ2)!(|`2|+ κ2)!(n3 − κ3)!(|`3|+ κ3)!

×
κ14∑
s=0

[
κ1 + κ4 + 1

2 (|`1|+ |`4|+ k)
]
![

κ1 + κ4 + 1
2 (|`1|+ |`4| − k)− s

]
!(k + s)!

×
κ23∑
t=0

[
κ2 + κ3 + 1

2 (|`2|+ |`3|+ k)
]
![

κ2 + κ3 + 1
2 (|`2|+ |`3| − k)− t

]
!(k + t)!

× (−1)s+t

s!t!
Γ

(
k + s + t + 1

2

)

2k+s+t+1
.

Above we have used the notation

k = |`1 − `4| = |`2 − `3|
κ14 = κ1 + κ4 +

1
2
(|`1|+ |`4| − k)

κ23 = κ2 + κ3 +
1
2
(|`2|+ |`3| − k).

We should note that

• due to the Kronecker delta δ`1+`2,`3+`4 the total orbital angular
momentum is conserved

• because the Coulomb interaction does not depend on spin the total spin
and its z-component are also conserved, so



• (the z-component of) the total angular momentum is conserved and we
can solve the multielectron eigenstates for each total angular momentum
separately

• the numerical evaluation of the sum S is very unstable and requires in
practice multiprecision arithmetic.

4.3 The Code

4.3.1 Base states
Base states as well as any other quantum states are represented as objects of
classes derived from the abstract
class QuantumState {
public:

...
QuantumState() : id_( 0 ) {}
QuantumState( COUNT id ) : id_( id ) {}

virtual ~QuantumState() {}

virtual FLOAT ener() const = 0;
virtual void show() const = 0;

COUNT getID() const { return id_; }
...

private:
COUNT id_;
...

};
Types COUNT, FLOAT, e.t.c. are typedef-defined in a header file (now as
unsigned, double, . . . ).
Our fundamental basis consists of the spinors

|n; ↑〉 =
( |n, `〉

0

)

|n; ↓〉 =
(

0
|n, ` + 1〉

)

〈r|n`〉 =
1√
πa

√
n!

(n + |`|)! e
−r2/2a2

×
( r

a

)|`|
L|`|n

(
r2

a2

)
ei`θ.

Since we will never need the explicit wave function it suffices to represent
these spinor states as



class BaseSpinor : public QuantumState {
public:

...
BaseSpinor( int ud, int n, int m ) :

ud_( ud ), n_( n ), m_( m )
{}

...
virtual FLOAT ener() const // e in meV

{ return nu( n_, m_, ud_ )*keUnit_; }
virtual void show() const;

int udQN() const // spin up/down: +1/-1
{ return ud_; }

int nQN() const // degree of L
{ return n_; }

int mQN() const // angular momentum
{ return m_; }

FLOAT nu() const// energy in 2\hbar\omega
{ return nu( n_, m_, ud_ ); }

static FLOAT nu( int n, int m, int ud )
{ return n + 0.5*(-m*kappa_
+ abs( m ) + 1.0) + ud*gamma_; }

private:
int ud_;
int n_;
int m_;

static FLOAT keUnit_;
static FLOAT kappa_;
static FLOAT gamma_;
...

};

We now have to construct the basis set from the base spinors. The framework
expects the bases to be handed over as objects of
class QNumMap {

...
QNumMap( QStateGenerator& qsgen, ... );
QNumMap( QuantumState const* const* qs, ... );
QNumMap( const QNumMap& qmap );
...
virtual ~QNumMap() { zap_(); }
...
COUNT count() const { return nst_; }
QuantumState* state( COUNT i ) const

{ return state_[i]; }
virtual void show( COUNT l, COUNT u ) const;



...
QuantumState* operator[]( COUNT i ) const

{ return state_[i]; }
protected:

QuantumState** state_;
COUNT nst_;
...

private:
...
void zap_();

};
There are several ways to construct QNumMaps. For example, one could collect
the basis states into a vector and hand it to QNumMap (second constructor) or,
as we will do, let QNumMap itself construct the vector of basis states (first
constructor). For that purpose we need to derive a quantum state generator
from the abstract base class
class QStateGenerator {
public:

QStateGenerator() : qsf_( 0 ) {}
QStateGenerator( const QStateFilter& qsf ) :

qsf_( &qsf ) {}
virtual ~QStateGenerator() {}

virtual QuantumState* genQState() = 0;
protected:

const QStateFilter* qsf_;
};
The constructor of QNumMap calls the method genQState() as long as it
returns a non-zero pointer to a created QuantumState, this time to a
BaseSpinor-object.

4.3.2 SO coupling
Recall that

• we are now solving the single particle states with Rashba SO coupling
included

• Rashba SO conserves total angular momentum ` + sz. Since the orbital
angular momenta of up- and down-spinors were related by `↓ = `↑ + 1 it
suffices to specify `↑, say. Hence we can solve separately the problem for
each ` = `↑

• Rashba SO mixes states with different principal (radial) quantum
numbers.

We generate the base spinors with
class BaseSpGen : public QStateGenerator {



public:
BaseSpGen( int n, int m = 0 ) : n_max_( n )

{ set( m ); }

void set( int m )
{ m_ = m; ud_ = 1; n_ = 0; first_ = true; }

virtual QuantumState* genQState()
{ return nextConf_() ?
(new BaseSpinor( ud_, n_, ud_ > 0

? m_ : m_ + 1 )) : 0; }
private:

bool nextConf_();

int n_max_; // maximum degree
int m_; // angular momentum of spin up state
int ud_; // spin up/down
int n_; // current n_
bool first_;

};
The constructor argument n specifies the maximum degeree of Laguerre
polynomials involved in the diagonalization and m tells the ` of the up-spinor.
The actual generation of configurations the genQState()-method uses to
create BaseSpinors is done by
bool
BaseSpGen::nextConf_()
{

if( first_ ) {
first_ = false;
return true;

}

if( ud_ > 0 ) {
ud_ = -1;
return true;

}

if( n_ >= n_max_ )
return false;

n_++;
ud_ = 1;

return true;
}
We now proceed to the construction of the matrix representation of the single



particle Hamiltonian Hsp. For convenience the framework acknowledges the
concept of single particle Hermitian operator as
template<class Field>
class SBHermOperator :

public SymmColumnArray<Field> {
public:

SBHermOperator( const QNumMap& qmap,
OnebodyOperator<Field>* obo,
DiagonalOperator<Real>* dgo = 0 );

~SBHermOperator() { delete[] wrk_; }

Field matElem( const Field* lft,
const Field* rgt );

...
private:
const QNumMap& qmap_;
const int dim_;
OnebodyOperator<Field>* obo_;
DiagonalOperator<Real>* dgo_;
Field* wrk_;
...

};
The class SBHermOperator

• is derived from the class SymmColumnArray representing symmetric
matrices, and as such has a collection of typical matrix operations,
including a diagonalization method

• the first argument of the constructor is the QNumMap consisting of the
single particle basis, this time of our BaseSpinors

• the second argument represents the onebody operator

• the last argument represent the diagonal operator, i.e. it takes care of
matrix elements of the form 〈i|Hsp|i〉. It is, ofcourse redundant because
the second argument could handle the diagonal terms. Nevertheless, it is
occasionally handy.

The actual onebody and diagonal operators are derived from
template<class Field>
class OnebodyOperator {
public:

OnebodyOperator() {}
virtual ~OnebodyOperator() {}

virtual Field
element( const QuantumState* lft,



const QuantumState* rgt ) = 0;
virtual bool

isSymmetric() const = 0;//<i|T|j>=<j|T|i>^*?
};
and
template<class Field>
class DiagonalOperator {
public:

DiagonalOperator() {}
virtual ~DiagonalOperator() {}

virtual Field
element( const QuantumState* st ) = 0;

};
like
class SOOper : public OnebodyOperator<FLOAT> {
public:

SOOper( FLOAT beta, FLOAT etap, FLOAT etam ) :
beta_( beta ), etap_( etap ), etam_( etam )
{}

virtual FLOAT
element( const QuantumState* lft,

const QuantumState* rgt );
virtual bool isSymmetric() const

{ return true; }
private:

const FLOAT beta_; // alpha/a
const FLOAT etap_; // eta^+
const FLOAT etam_; // eta^-

};
and
class BaseDiagOper :

public DiagonalOperator<FLOAT> {
public:

virtual FLOAT
element( const QuantumState* diag )

{ return
static_cast<const BaseSpinor*>( diag )->nu(); }

};
In these classes

• element() methods receive pointers to QuantumState-objects from
SBHermOperator

• to figure out the QuantumState-objects to be passed SBHermOperator
consults the QNumMap-object we gave to it in the construction phase.



Since this QNumMap contains BaseSpinors we can safely cast
QuantumState*-pointers to BaseSpinor*-pointers in the
element()-methods

• SOOperator handles the Rashba SO

• the diagonal terms are simply the energies of our base spinors.

The element()-method of SOOperaror is a direct implementation of the
onebody matrix elements 〈n′;σ′|HSO|n;σ〉:
FLOAT
SOOper::element( const QuantumState* lft,

const QuantumState* rgt )
{

const BaseSpinor* lst =
static_cast<const BaseSpinor*>( lft );

const BaseSpinor* rst =
static_cast<const BaseSpinor*>( rgt );

int lud = lst->udQN();
int rud = rst->udQN();

if( lud == rud )
return 0.0;

int lm = lst->mQN();
int rm = rst->mQN();
int ln = lst->nQN();
int rn = rst->nQN();

if( rud > 0 ) {
if( lm != rm + 1 )
return 0.0;

if( rm >= 0 ) {
if( ln == rn )

return beta_*etam_*sqrt( rn + rm + 1.0 );
if( ln == rn - 1 )

return beta_*etap_*
sqrt( static_cast<FLOAT>( rn ) );
return 0.0;

}

if( ln == rn )
return -beta_*etap_*

sqrt( rn +
fabs( static_cast<FLOAT>( rm ) ) );

if( ln == rn + 1 )
return -beta_*etam_*sqrt( rn +1.0 );



return 0.0;
}

if( lm != rm - 1 )
return 0.0;

if( rm > 0 ) {
if( ln == rn )
return beta_*etam_*

sqrt( static_cast<FLOAT>( rn + rm ) );
if( ln == rn + 1 )
return beta_*etap_*sqrt( rn + 1.0 );

return 0.0;
}

if( ln == rn )
return -beta_*etap_*
sqrt( rn +

fabs( static_cast<FLOAT>( rm - 1 ) ) );
if( ln == rn - 1 )

return -beta_*etam_*
sqrt( static_cast<FLOAT>( rn ) );

return 0.0;
}

Superposition spinors

We now have all pieces needed for the numerical solution of the single particle
problem. Schematically we proceed as

1. Given the maximum degree n_max of the Laguerre polynomial expansion
and the orbital angular momentum ell of the spin-up spinor we create
the basis

BaseSpGen spgen( n_max, ell );
QNumMap base( spgen );
COUNT dim = // size of the basis

base.count();
FLOAT* ener = // space for spectrum

new FLOAT[dim];

2. We construct the onebody operators and the Hamiltonian

SOOper soop( beta, eta_p, eta_m );
BaseDiagOper bdiag;
SBHermOperator<FLOAT> ham( base, &soop,

&bdiag );

where beta stands for α/a and eta_p/eta_m for η±



3. The diagonalization

ham.diag( ener );

returns the eigenvalues (energies) in the argument vector ener. The
eigenvectors are stored in the columns of the matrix and can be retrieved
by the method

Field* SymmColumnArray<Field>::
col( int i ) const;

of the base class.

Let Θk stand for the spinors in our collection base, i.e. they represent either
the spinor ( |n, `〉

0

)

or the spinor (
0

|n, ` + 1〉
)

.

The spinors satisfying the Schrödinger equation

HspΦ = EΦ

are then the superpositions
Φ =

∑

k

ckΘk,

where the coefficients ck are the components of the eigenvector corresponding
to the eigenvalue E.
Note that

• the diagonalization is done separately for each orbital angular
momentum `, so we have to loop over angular momenta
` = −`max,−`max + 1, . . . , `max, say, to cover the interesting spectrum

• the diagonalization is a full one, i.e. for each ` we get dim eigenvalues
and eigenvectors

• we will use these superposition states Φ as a basis for the multielectron
computations, so we need to save them.

Superposition quantum states are so ubiquitous that they deserve their own
class
template<class Field>
class SupposQuantumState : public QuantumState {

SupposQuantumState( const QNumMap& qmap,
const Field* c, COUNT dim,



FLOAT cut = 0.0 );
...
virtual ~SupposQuantumState();

COUNT dim() const // dimension of the
{ return dim_; } // full Hilbert space

Field coef( COUNT i ) const // original
{ return c_[i]; } // i’th coefficient

COUNT count() const // number of selected
{ return cnt_; } // states

Field selCoef( COUNT i ) const//i’th selected
{ return c_[isel_[i]]; } // coeffficient

QuantumState* state( COUNT i ) const//original
{ return qmap_[i]; } // i’th state

QuantumState* selState( COUNT i ) const //i’th
{ return qmap_[isel_[i]]; }// selected state

const QNumMap& qNumMap() const
{ return qmap_; }

...

protected:
// mapping of the states in superposition

const QNumMap& qmap_;
//original superposition coefficients

Field* c_;
COUNT dim_;// number of original coefficients
FLOAT cut_; // |c_[i]| < cut_ rejected
COUNT cnt_; // number of selected coefficients
COUNT* isel_; // and their indeces

};

Very often only a fraction of coefficients ck in the expansion

Φ =
∑

k

ckΘk

differ essentially from zero. Therefore this class offers an opportunity to
exclude unimportant components from the computations by tuning the cut off
parameter cut.
The solutions of the single particle solutions are stored as
SupposQuantumState objects.

4.3.3 Coulomb interaction

Basis

We solve the stationary problem
[

Ne∑

i=1

Hspi + VCoul

]
Ψ = EΨ



by expanding the wave function Ψ in terms of the occupations

Ξk = |k1, . . . , kNe〉

like
Ψ =

∑

k

CkΞk.

To construct the basis set {|k1, . . . , kNe
〉} we note that

• the code refers to the single particle states Φk comprising the Slater
determinants |k1, . . . , kNe〉 just by numbers 0, 1, . . . ,M − 1, where M is
the number of single particle states involved

• the set {|k1, . . . , kNe
〉} is constructed by picking up Ne integers out of M

ones in all possible ways (order of picking doesn’t matter)

• no physics (excludig the Fermi statistics) is involved in this construction
process

• matrix elements 〈k′1, . . . , k,Ne |HS|k1, . . . , kNe〉 can be non-zero only if the
left and right hand sides differ by at most two occupied states. This fact
is also independent of the problem

• the phases introduced when permuting the states to be destroyed to the
front and the states created to the correct positions depend only on the
occupations of the left and right hand sides and not the specific problem.

We see that the basis {|k1, . . . , kNe〉}, the possible nonzeros and the phases
associated with the matrix elements depend only on the number (and on the
numbering) of the single particle states and on the number of electrons.
In the code these notions are combined in
class NonIntManybodySystem {
public:

NonIntManybodySystem( NonIntGenerator& gen,
... );

...
virtual ~NonIntManybodySystem() {}

COUNT dim() const // size of the basis
{ return dim_; }

int nPart() const // number of electrons
{ return nPart_; }

int maxSnglQN() const // max occupied states
{ return nimbb_.maxSnglQN(); }

L_COUNT nonZ() const // number of nonzeros
{ return opms_.count(); }

const NonIntManybodyBase& base() const;



const OperMasks& masks() const;
...

private:
NonIntManybodyBase nimbb_;
OperMasks opms_;
COUNT dim_;
int nPart_;

};
The non-interacting manybody basis (NonIntManybodyBase) itself is generated
by
class NonIntGenerator :

public QStateGenerator {
public:

NonIntGenerator( int np, int nl );
NonIntGenerator( int np, int nl,

const NIMBSFilter& mbf );
virtual ~NonIntGenerator() {}
...
int nPart() const { return np_; }

protected:
...
int np_; // # of particles
int nl_; // # of single particle levels
const NIMBSFilter* mbsf_; // filter

};
In the simplest case only the number of electrons (np) and the number of
single particle levels (nl) are needed. At this stage it is possible to incorporate
some physics into the play via a NIMBSFilter which checks each generated
occupation |k1, . . . , kNe〉 against some criteria. For example, we could accept
only the occupations with a given total angular momentum.
A NonIntManybodySystem object contains also templates OperMasks for
manybody Hamiltonian matrices. These templates

• specify the positions of possible nonzero elements

• list the differing occuppied single particle states for each possible nonzero
matrix element

• give the phase associated with the one- and twobody matrix elements.

Because, in many cases these NonIntManybodySystems do not depend on the
specific problem it is possible to construct and store them in advance, and
retrieve them when needed.

Twobody matrix elements

To construct the manybody Hamiltonian matrix we have to implement the
one- and twobody matrix elements. The onebody matrix elements are trivial



since our single particle basis states were eigenstates of the single particle part
of the Hamiltonian.
The implementation of the twobody matrix elements begins with the
implementation of the known matrix elements Vn1`1n2`2n3`3n4`4 . This is done
by deriving from the base class
template<class Field>
class TwobodyOperator {
public:

TwobodyOperator() {}
virtual ~TwobodyOperator() {}
virtual Field element(

const QuantumState* lft1,
const QuantumState* lft2,
const QuantumState* rgt1,
const QuantumState* rgt2 ) = 0;

// V(r_1,r_2)=V(r_2,r_1)?
virtual bool isSymmetric() const = 0;

};
The implementation means the implementation of the element() method and
involves

• realizing the fact that the QuantumState objects passed to the method
are two component spinors Θk = |n; σ〉 and that the Coulomb interaction
conserves the spin

• checking for conserved total angular momentum

• multiple precision arithmetic

• tabulation of partial sums

is rather lengthy and is not shown here.
We should note that we just implemented the twobody matrix elements in the
case of the single particle states Θk whereas the single particle states in our
manybody Hamiltonian are in fact superpositions

Φ =
∑

k

ckΘk.

Since evaluation of one- and twobody matrix elements for superposition states
when the elements for the components of the superposition are known is a
common task the framework recognizes
template<class Field>
class SupposTwobodyOperator :

public TwobodyOperator<Field> {
public:

SupposTwobodyOperator(
TwobodyOperator<Field>& basop,



... );
virtual Field element(

const QuantumState* lft1,
const QuantumState* lft2,
const QuantumState* rgt1,
const QuantumState* rgt2 );

virtual bool isSymmetric() const
{ return basop_.isSymmetric(); }

private:
TwobodyOperator<Field>& basop_;
...

};

This time

• the QuantumState objects of the element() method are of the type
SupposQuantumState

• each of these objects contains as a member a QNumMap which tells to the
SupposTwobodyOperator what are the components of the superpositions

• these component states are then passed by the element() method to the
twobody operator specified in the construction, in our case to the
operator responsible of the evaluation of the matrix elements
Vn1`1n2`2n3`3n4`4 .

Manybody Hamiltonian

Manybody Hamiltonians are derived from the base class

template<typename HOP, typename Meth>
class MBHamilton_ : public HOP {
public:

typedef typename HOP::FieldT FieldT;
MBHamilton_( const NonIntManybodySystem& mbs,

const QNumMap& snglMap,
OnebodyOperator<FieldT>* obo,
TwobodyOperator<FieldT>* tbo,
DiagonalOperator<FLOAT>* dgo,
... );

virtual ~MBHamilton_() { delete meth_; }
void setMaxIt( COUNT maxit ) const

{ meth_->setMaxIt( maxit ); }
void setEps( FLOAT eps ) const

{ meth_->setEps( eps ); }
...
FLOAT eigen( COUNT i ) const

{ return meth_->eigen( i ); }
void getEigVec( FieldT* vec, COUNT i ) const



{ meth_->getEigVec( vec, i ); }
protected:

Meth* meth_;
};
The Hamiltonian

• is derived from the base class specified by the first template parameter.
This base class must recognize operations typical for sparse Hermitian
manybody operators

• uses the method specified by the second template parameter to
diagonalize the base Hermitian operator

• member method names and number depend on the diagonalization
method.

Currently all implemented many particle Hamiltonians use either conjugate
gradient or Davidson-Liu diagonalization, of which the latter one is more
efficient although not quite as robust as the former one.



5. Periodic Hamiltonian

5.1 Trivial time dependence
Suppose that our Hamiltonian H can be written as

H(t) = f(t) + H(t),

where the scalar function f(t) depends only on time t (and not on positions,
momenta, . . . ) so that it commutes with H(t). We denote the time dependent
state vectors by kets like |ψ; t〉. To eliminate the trivial time dependence from
the problem

H(t)|Ψ; t〉 = ih̄
∂

∂t
|Ψ; t〉

we try the product

|Ψ; t〉 = e−
i
h̄

∫ t
f(t′) dt′ |ψ; t〉.

The substitution to the Schrödinger equation leads to

ih̄
∂

∂t
|Ψ; t〉 = ih̄

∂

∂t

(
e−

i
h̄

∫ t
f(t′) dt′ |ψ; t〉

)

= f(t)e−
i
h̄

∫ t
f(t′) dt′ |ψ; t〉

+ih̄e−
i
h̄

∫ t
f(t′) dt′ ∂

∂t
|ψ; t〉

= H|Ψ; t〉
= f(t)e−

i
h̄

∫ t
f(t′) dt′ |ψ; t〉

+H(t)e−
i
h̄

∫ t
f(t′) dt′ |ψ; t〉

= f(t)e−
i
h̄

∫ t
f(t′) dt′ |ψ; t〉

+e−
i
h̄

∫ t
f(t′) dt′H(t)|ψ; t〉,

where the last equality follows from the assumption that f(t) commutes with
H(t). This yields the equation

ih̄
∂

∂t
|ψ; t〉 = H(t)|ψ; t〉.

We assume that the remaining non-trivial Hamiltonian H is a periodic
function of time, i.e.

H(t + T0) = H(t)

where T0 is the period. The corresponding angular velocity Ω is then

Ω =
2π

T0
.

This periodicity allows us to write H as the Fourier series

H(t) =
∞∑

n=−∞
HneinΩt,



where the Fourier components Hn are given by

Hn =
1
T0

∫ T0

0

dt e−inΩtH(t)

5.2 Floquet theory
Floquet theory claims that the solutions of the time dependent Schrödinger
equation

ih̄
∂

∂t
|ψ; t〉 = H(t)|ψ; t〉.

can be expanded as

|ψ; t〉 = e−
i
h̄ εt

∑
n

∑
α

FnαeinΩt|α〉,

where the set {|α〉} is an (arbitrary) complete orthonormal basis for the Hilbert
space of the periodic Hamiltonian H.
To see the validity of the claim we substitute the expansion into the
Schrödinger equation and get

ih̄
∂

∂t
|ψ; t〉 = ih̄

∂

∂t

[
e−

i
h̄ εt

∑
nα

FnαeinΩt|α〉
]

= εe−
i
h̄ εt

∑
nα

FnαeinΩt|α〉

+e−
i
h̄ εtih̄

∑
nα

FnαinΩeinΩt|α〉

= e−
i
h̄ εt

∑
nα

FnαeinΩt (ε− nh̄Ω) |α〉

=
∑
m

HmeimΩt

[
e−

i
h̄ εt

∑
nα

FnαeinΩt|α〉
]

= e−
i
h̄ εt

∑
nmα

Fnαei(n+m)ΩtHm|α〉.

We now make a series of summation index changes as

e−
i
h̄ εt

∑
nmα

Fnαei(n+m)ΩtHm|α〉

= e−
i
h̄ εt

∑

ijα

FnαeiiΩtHi−j |α〉
∣∣∣∣∣∣

n+m=i

n=j

m=i−j

= e−
i
h̄ εt

∑
nmα

FnαeinΩtHn−m|α〉
∣∣∣∣∣ n=i

m=j,



which allows us to read the equation

e−
i
h̄ εt

∑
nα

FnαeinΩt (ε− nh̄Ω) |α〉

= e−
i
h̄ εt

∑
nmα

FnαeinΩtHn−m|α〉.

Noting that the exponentials
{
einΩt

}
form an orthogonal set on the time

interval [0, T0] and that the basis {|α〉} was assumed to be an orthonormal one
we can deduce the equality

∑

β

Fnβ (ε− nh̄Ω) |β〉 =
∑

mβ

FmβHn−m|β〉,

or, taking the scalar product from the left with 〈α|,
(ε− nh̄Ω)Fnα =

∑

mβ

〈α|Hn−m|β〉Fmβ .

Defining the matrix elements Hn
αβ as

Hn
αβ = 〈α|Hn|β〉

and the matrix elements Γnα;mβ as

Γnα;mβ = Hn−m
αβ + nh̄Ωδnmδαβ

we can rewrite this as the eigenvalue problem
∑

mβ

Γnα;mβFmβ = εFnα,

or, in the matrix form
ΓF = εF.

Using the property

H−n
βα = 〈β|H−n|α〉

=
1
T0

∫ T0

0

einΩt〈β|H(t)|α〉dt

=
1
T0

∫ T0

0

einΩt〈α|H†(t)|β〉∗ dt

=

[
1
T0

∫ T0

0

e−inΩt〈α|H(t)|β〉dt
]∗

= Hn
αβ
∗

it is easy to see that
Γnα;mβ = Γ∗mβ;nα

and hence the matrix Γ is Hermitian.
Due to the Hermiticity of Γ



• the eigenvalue problem ΓF = εF has a solution

• the eigenvalues ε are real

• the eigenvectors F form a complete (orthonormal) basis.

Obviously we can deduce that |ψ; t〉 = e−
i
h̄ εt

∑
nα FnαeinΩt|α〉 indeed solves

the time dependent problem.
The eigenvectors F are something like

F =
(

Fnα

)
=




...
F−1,0

F−1,1

...
F0,0

F0,1

...
F1,0

F1,1

...




,

that is, the Fourier component labels n run through all integers.
We now show that there exists a relation between the Fourier components. For
that purpose we look at what happens if we shifted the eigenvalue by a
multiple of h̄Ω. From the expression

Γnα;mβ = Hn−m
αβ + nh̄Ωδnmδαβ

it is clear that

Γnα;mβ + kh̄Ωδnmδαβ

= Hn−m
αβ + nh̄Ωδnmδαβ + kh̄Ωδnmδαβ

= H
(n+k)−(m+k)
αβ + (n + k)h̄Ωδn+k,m+kδαβ

= Γn+k,α;m+k,β .

Using the component expression
∑

mβ

Γnα;mβFmβ = εFnα

we get

(ε + kh̄Ω)Fnα

=
∑

mβ

(Γnα;mβ + kh̄Ωδnmδαβ)Fmβ

=
∑

mβ

Γn+k,α;m+k,βFmβ =
∑

mβ

Γn+k,α;mβFm−k,β ,



where in the last expression we have substituted m + k → m.
We now have the equation

(ε + kh̄Ω) Fnα =
∑

mβ

Γn+k,α;mβFm−k,β ,

from which by the replacement n + k → n we get

(ε + kh̄Ω) Fn−k,α =
∑

mβ

Γn,α;mβFm−k,β .

This means that the eigenvector F corresponding to the eigenvalue ε is related
to the eigenvector F k corresponding to the eigenvalue ε + kh̄Ω by

F k
nα = Fn−k,α.

Recall that the time dependent solutions related to the eigenvalue ε are

|ψ; t〉 = e−
i
h̄ εt

∑
nα

FnαeinΩt|α〉.

Correspondingly the solutions |ψ′; t〉 related to the shifted eigenvalue ε + kh̄Ω
would be

|ψ′; t〉 = e−
i
h̄ (ε+kh̄Ω)t

∑
nα

F k
nαeinΩt|α〉

= e−
i
h̄ εt

∑
nα

F k
nαei(n−k)Ωt|α〉

= e−
i
h̄ εt

∑
nα

F k
n+k,αeinΩt|α〉

= e−
i
h̄ εt

∑
nα

FnαeinΩt|α〉

= |ψ; t〉.

We see that we can shift all eigenvalues ε to an interval of width h̄Ω. As the
solution of the eigenvalue problem

ΓF = εF

we get an infinite set eigenvalues and eigenvectors. When we label them as

ΓFλ = ελFλ

it is thus sufficient to look at, for example only the spectral set

Λ =

{
λ

∣∣∣∣∣−
h̄

2
Ω ≤ ελ <

h̄

2
Ω

}



and the corresponding set

|λ; t〉 = e−
i
h̄ ελt

∑
nα

Fλ
nαeinΩt|α〉, λ ∈ Λ

of time dependent quantum states. Due to the linear independence of the
eigenvectors Fλ it is easy to see that the states |λ; t〉 form a complete linearly
independent set of solutions for the time dependent problem. Any given state
in the relevant Hilbert space, e.g. any initial state can be expressed as a linear
combination of these states.
It is worthwhile to notice the beauty of the Floquet approach. It reduces time
dependent problems to static ones, that is to time independent eigenvalue
problems

ΓF = εF.

If you happen to have a computer code for static problems in occupation
representation formalism the time dependent problems are easily adapted:

• obtain a complete basis {|α〉} for the relevant Hilbert space, for example
by solving a static problem (possibly a manybody one)

• construct a fictitious single particle basis {|m;α〉} representing the set of
products |α〉eih̄mΩt

• construct a fictitious onebody operator O with matrix elements

〈n;α|O|m;β〉 = Hn−m
αβ + nh̄Ωδnmδαβ

• feed the fictitious basis and the fictitious onebody operator to your code,
and solve the fictitious static onebody problem and you are done!

5.3 Transition rates
Suppose that our system is initially at t = 0 in the state |α〉. That is, using
the notation

|λ; t〉 = e−
i
h̄ ελt

∑
nα

Fλ
nαeinΩt|α〉

we require that the superposition

|ψ; t〉 =
∑

λ

xα
λ |λ; t〉 =

∑

λ

xα
λe−

i
h̄ ελt

∑
nγ

Fλ
nγeinΩt|γ〉

satisfies the condition
|ψ; t = 0〉 = |α〉.

Written explicitly this condition reads
∑

λ

xα
λ

∑
nγ

Fλ
nγ |γ〉 = |α〉,



or taking scalar products on both sides with 〈γ|
∑

λ

xα
λ

∑
m

Fλ
mγ = δαγ ,

from which we can solve the coefficients xα
λ (note that the vectors xα form the

inverse of the matrix
∑

m Fλ
mα).

The probability amplitude to find the state |ψ; t〉 at time t in the state |β〉 is

ηβα(t) = 〈β|ψ; t〉 =
∑

λ

xα
λe−

i
h̄ ελt

∑
n

Fλ
nβeinΩt.

The corresponding transition probability is then

Pβα(t) = |ηβα|2

=
∑

λλ′
xα

λ′
∗xα

λ

∑
nm

Fλ′
mβ

∗
Fλ

nβei( 1
h̄ (ελ′−ελ)t+(n−m)Ωt).

Time averaged transition probability is then

P̄βα = lim
T→∞

1
T

∫ T

0

dt Pβα(t).

It is easy to see that the integral vanishes unless

1
h̄

(ελ′ − ελ) + (n−m)Ω = 0.

Recalling, that the eigenvalues ελ were restricted to the interval
−Ω/2 < ελ ≤ Ω/2 we can conclude that we must have n−m = 0. Forgetting
the accidental degeneracies ελ = ελ′ (λ′ 6= λ) we have also the condition
λ = λ′. The time averaged transition probability reads now

P̄βα =
∑

λ

|xα
λ |2

∑
n

|Fλ
mβ |2.

Occasionally we are interested in the time evolution of the transition
probability or, equivalently how the transition probability oscillates when time
goes on. For that purpose we return to the general case and define the
frequency dependent transition probability Pβα(ω) via

Pβα(t) =
∫

dω eiωtPβα(ω).

We see that the transition probability corresponding to the frequency ω is

Pβα(ω) =
1
2π

∫
dt e−iωtPβα(t)

=
∑

λλ′
xα

λ′
∗xα

λ

∑
nm

Fλ′
mβ

∗
Fλ

nβ

×δ(
1
h̄

(ελ′ − ελ) + (n−m)Ω− ω).



Using the notations
∆λ′λ = ελ′ − ελ

and
Pλ′λ

β (ω) =
∑
nm

Fλ′
mβ

∗
Fλ

nβδ(
1
h̄

∆λ′λ + (n−m)Ω− ω)

the total probability can be written as

Pβα(ω) =
∑

λλ′
xα

λ′
∗xα

λPλ′λ
β (ω).

Noting that for given frequency ω the difference n−m in must be constant we
can rewrite Pλ′λ

β (ω) as

Pλ′λ
β (ω) =

∑
m

Fλ′
mβ

∗
Fλ

M+m,β

where now ω = 1
h̄∆λ′λ + MΩ and M = n−m.

We define convolution vectors C as

Cλ′λ
mα =

∑
n

Fλ′
nα

∗
Fλ

m+n,α.

We can see that we have
(
Cλ′λ

mα

)∗
=

∑
n

Fλ′
nαFλ

m+n,α

∗
=

∑

k

Fλ
kα

∗
Fλ′
−m+k,α

= Cλλ′
−m,α

and, consequently the convolutions obey the relation

Cλλ′
mα =

(
Cλ′λ
−mα

)∗
.

In terms of the convolutions the transition probability can be rewritten as

Pαβ(ω) =
∑

λλ′m

xβ
λ′
∗
xβ

λCλ′λ
mαδ

(
1
h̄

∆λ′λ + mΩ− ω

)
.

5.4 An example: Two state system
To see how the Floquet theory works in practice we look at the simplest
possible system, a system consisting of two states. We assume that the static
Hamiltonian H0 satisfies the Schrödinger equation

H0|α〉 = λα|α〉; α = 0, 1,

with the eigenvalues
λ0 = 0 and λ1 = λ.



We take the time dependent part V(t) of the Hamiltonian to be

V(t) = V
[
e−iΩt|1〉〈0|+ eiΩt|0〉〈1|] ,

so that the complete Hamiltonian is

H = λ|1〉〈1|+ V e−iΩt|1〉〈0|+ V eiΩt|0〉〈1|.
We proceed first to solve the time dependent problem directly and then to
compare the results with the Floquet model. To this end we write the solution
of the full Schrödinger equation

H|ψ〉 = ih̄
∂

∂t
|ψ〉

as
|ψ〉 = a0(t)|0〉+ a1(t)|1〉.

We have

ih̄
∂

∂t
|ψ〉 = ih̄ȧ0|0〉+ ih̄ȧ1|1〉 = H|ψ〉

= λa1|1〉+ V e−iΩt|1〉a0 + V eiΩt|0〉a1.

From this we can read the system of differential equations

ih̄ȧ0 = V eiΩta1

ih̄ȧ1 = λa1 + V e−iΩta0.

Setting

t =
h̄

V
τ

ν =
h̄Ω
V

γ =
λ

V

we end up with the equations

iȧ0 = eiντa1

iȧ1 = γa1 + e−iντa0.

In the spirit of Floquet we try solutions of the form

ai(t) = e−iετ
∑

n

ci
neinντ .

Substituting this to the wave function |ψ〉 we get

|ψ〉 = a0(t)|0〉+ a1(t)|1〉
= e−iετ

∑
n

c0
neinντ |0〉+ e−iετ

∑
n

c1
neinντ |1〉

= e−iετ
∑
nα

cα
neinντ |α〉.



Comparing this with the Floquet expansion

|ψ〉 = e−
i
h̄ εt

∑
nα

FnαeinΩt|α〉

= e−i ε
V τ

∑
nα

Fnαein h̄Ω
V τ |α〉

= e−i ε
V τ

∑
nα

Fnαeinντ |α〉,

we can read the relations

ε = V ε

Fnα = cα
n.

For the time derivatives of the coefficients we get

ȧi = −iεe−iετ
∑

n

ci
neinντ + ie−iετ

∑
n

nνci
neinντ

= −ie−iετ
∑

n

(ε− nν)ci
neinντ .

Substitutions to the first differential equation yield

e−iετ
∑

n

(ε− nν)c0
neinντ = e−iετeiντ

∑
n

c1
neinντ

= e−iετ
∑

n

c1
n−1e

inντ ,

and to the second one

e−iετ
∑

n

(ε− nν)c1
neinντ

= γe−iετ
∑

n

c1
neinντ + e−iετe−iντ

∑
n

c0
neinντ

= e−iετ
∑

n

γc1
neinντ + e−iετ

∑
n

c0
n+1e

inντ .

From these we can read the equations

(ε− nν)c0
n = c1

n−1

(ε− nν)c1
n = γc1

n + c0
n+1,

or, rearranging a little bit

nνc0
n + c1

n−1 = εc0
n

(nν + γ)c1
n + c0

n+1 = εc1
n.



This is clearly an eigenvalue problem related to the matrix

(n− 1, 1) (n, 0) (n, 1) (n + 1, 0)
. . .

...
...

...
...

...
(n− 1, 1) · · ·(n− 1)ν + γ 1 0 0 · · ·

(n, 0) · · · 1 nν 0 0 · · ·
(n, 1) · · · 0 0 nν + γ 1 · · ·

(n + 1, 0) · · · 0 0 1 (n + 1)ν · · ·
...

...
...

...
...

. . .

where the row and column labels (n, α) correspond to the coefficients cα
n. We

see that the matrix is in block diagonal form so it is sufficient to look only at
one block, say

B =
(

(n− 1)ν + γ 1
1 nν

)
.

The components of the eigenvectors are then labeled as
(

c1
n−1

c0
n

)
.

Let’s see how this fits to the general Floquet formalism. From the Hamiltonian

H = λ|1〉〈1|+ V e−iΩt|1〉〈0|+ V eiΩt|0〉〈1|

we can readily read the Fourier components

H0 = λ|1〉〈1|, H−1 = V |0〉〈1|, H1 = V |1〉〈0|.

From these one can directly read the matrix elements Hn
αβ as

H0
11 = λ, H−1

01 = H1
10 = 0

all other matrix element vanishing. The components of the matrix

Γnα;mβ = Hn−m
αβ + nh̄Ωδnmδαβ

are then

Γn0:m0 = Hn−m
00 + nh̄Ωδnm = nh̄Ωδnm = V nν

Γn1;m1 = (λ + nh̄Ω)δnm = V (γ + nν)
Γn0;m1 = Hn−m

01 = V δn,m−1

Γn1;m0 = Hn−m
10 = V δn,m+1.

Arranging the rows and columns of Γ in the order (n0), (n1), (n + 1, 0),
. . . clearly gives us the previous matrix multiplied by V which would yield the
same eigenvectors. The eigenvalues would be multiplied by V which is
perfectly OK (ε = V ε).



The characteristic equation of the block is

[(n− 1)ν + γ − ε][nν − ε]− 1
= [(n− 1)ν + γ]nν − [(n− 1)ν + γ]ε
−nνε + ε2 − 1

= ε2 − (2(n− 1)ν + ν + γ) ε

+[(n− 1)ν + γ]nν − 1
= 0.

Its solutions are

ε =
1
2

[
2(n− 1)ν + ν + γ ±

√
D

]

=
1
2

[
2nν + (γ − ν)±

√
D

]
,

where

D = (2(n− 1)ν + ν + γ)2

−4nν ((n− 1)ν + γ) + 4
= (γ − ν)2 + 4.

The eigenvalues can now be written as

εn
± = nν +

1
2
(γ − ν)±

√(
γ − ν

2

)2

+ 1.

Let us now choose the block related to the coefficients c1
−1 and c0

0, i.e. the one
whose eigenvalues are ε0±,

ε± = ε0± =
1
2
(γ − ν)±

√(
γ − ν

2

)2

+ 1. (5.1)

The coefficients satisfy the equations

(γ − ν)c1
−1 + c0

0 = ε±c1
−1

c1
−1 = ε±c0

0.

So, the normalized eigenvectors can be written, for example using the latter
equation as (

c1
−1

c0
0

)
=

1√
1 + (ε±)2

(
ε±
1

)
,

which are clearly linearly independent (ε+ 6= ε−).



The former equation would yield the eigenvectors
(

1
ε± − (γ − ν)

)
. At first

sight it looks like as if we had too many eigenvectors. However, using the
properties

ε+ + ε− = γ − ν

ε+ε− = −1

readable from the characteristic equation

ε2 − (γ − ν)ε− 1 = 0

we can readily see that the eigenvectors
(

ε±
1

)

are linearly dependent on the eigenvectors
(

1
ε± − (γ − ν)

)
=

(
1

ε± − (ε+ + ε−)

)

=
(

1
−ε∓

)

= −ε∓

(
ε±
1

)
.

In the general case the coefficients satisfy the equations

((n− 1)ν + γ) c1
n−1 + c0

n = εn
±c1

n−1

nνc0
n + c1

n−1 = εn
±c0

n,

from which we can read the normalized eigenvectors
(

c1
n−1

c0
n

)
=

1√
1 +

(
εn± − nν

)2

(
εn
± − nν

1

)
.

The corresponding eigenvalues are

εn
± = nν +

1
2
(γ − ν)±

√(
γ − ν

2

)2

+ 1.

Returning to the general Floquet expansion the identifications

ε = V ε

Fnα = cα
n.



yield

εn
± = nν +

1
2
(γ − ν)±

√(
γ − ν

2

)2

+ 1

εn
± = V εn

±

= V


nν +

1
2
(γ − ν)±

√(
γ − ν

2

)2

+ 1




F
εn
±

n−1,1 = c
εn
±,1

n−1 = c
[
εn
± − nν

]

=
c

2

[
γ − ν ±

√
(γ − ν)2 + 4

]

F
εn
±

n0 = c
εn
±,0

n = c

c =
1√

1 +
(
εn± − nν

)2
.


