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1 Historical background

The liquefaction of helium by Kammerlingh Onnes (1908) [1] signaled the birth
of modern low–temperature physics. Since then, atomic helium fluids became an
endless source of physical motivations for both theorists and experimentalists
and have played a crucial role in the evolution of low temperature physics during
the last century.

Helium is the lightest element of the noble gases and has two stable isotopes:
4He and 3He, the former being a 99.99986% of the total population. The atomic
structure of the He atom is very simple, having two electrons in the 1s orbital in
a spin singlet state around a nucleus, composed of two protons and two neutrons
in the case of the 4He, and two protons and one neutron for 3He. As the number
of fermionic constituents of the 4He atom is even, its total spin is integer and
therefore it behaves as a boson. On the other hand, the number of fermionic
constituents in 3He is odd, its total spin is 1/2 and it behaves as a fermion.

The different statistical character of the two helium isotopes produces dra-
matic differences in their physical properties. So far, a huge amount of experi-
mental information on helium liquids has already been accumulated, including
precise knowledge of the equation of state and most of its thermodynamic prop-
erties. [2, 3, 4] In addition, the dynamics and the excitation spectrum have also
been systematically investigated by inelastic neutron scattering. [5]

One of the most remarkable facts is the phase transition that takes place in
liquid 4He at 2.17 K at saturated vapor pressure. When the liquid is cooled
below this temperature, its viscosity drops to almost zero and it is able to flow
freely through very narrow capillary tubes in such a way that the velocity be-
comes independent of the pressure gradient along the channel, as it was first
shown by Kapitza in 1938. [6]

Under these conditions, liquid 4He not only shows this super flow property
but also becomes a surprisingly good heat conductor. One of the most spectac-
ular effects where both properties are manifested is the so called fountain effect,
discovered by Allan and Jones in 1938. [7]

Superfluidity in liquid 3He was discovered much later in 1972 [8] by Osheroff,
Lee and Richardson. In this case the transition occurs at 2 mK, a temperature
three orders of magnitude smaller than the transition temperature of pure 4He.

Nowadays, great activity concerning helium is concentrated on the possibility
a supersolid phase and to the condensation of bosons to the lowest quantum
state. Elementary exitation modes are well studied, but no theory exists for the
full dynamic structure. New ideas for the phase transitions have been developed
etc. Helium offers excellent material to study the dependence on dimensionality
and the effects of confining geometries on the quantum behavior of those liquids.

For theoreticians helium liquids can be considered as excellent laboratories
to study the quantum many–body problem and to test and develop many–body
theories. This is quite relevant because, in some sense, nearly all branches of
physics deal with many–body physics at the most microscopic level of under-
standing.

The energy and length scales relevant to describe helium liquids define the
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atoms as the microscopic constituents of our system. Besides, the interaction
among the atoms is simple, depends only on the distance, and is well known. In
addition, the quantum behavior has macroscopic manifestations and the effects
of having different statistics can be investigated.

Actually, the fact that helium remains liquid at zero temperature is a con-
sequence of the large zero point motion of the atoms in the fluid and can be
considered as a macroscopic quantum effect. Moreover the superfluid behavior
is a clear macroscopic manifestation of its quantum nature.

Helium liquids can be considered in the bulk limit but also in surfaces.
Besides and as mentioned above, almost two–dimensional and one–dimensional
realizations are also possible. In addition, droplets of 4He or 3He allow to
study the dependence of properties on the number of particles. Actually helium
clusters is another very interesting field which has evolved very quickly, and the
present experimental capabilities make possible to investigate problems as the
minimum number of atoms in a cluster required to have superfluidity. [11] Also
the existence of the 3He-4He mixtures permits the study of different types of
excitations and the interplay of the correlations and statistics on the excitation
spectrum.

Quantum mechanics is the natural tool to describe helium liquids. Indeed,
helium liquids at low temperature are quantum fluids, which differ from classical
fluids in the sense that they can not be described in the framework of classi-
cal statistical physics. In a quantum fluid, the thermal de Broglie wavelength
is of the order of the mean interparticle distance, and therefore there can be
large overlaps between the wave functions of different atoms. In this situation
quantum statistics has important consequences and one expects to find large
differences between liquid 4He and liquid 3He at low temperatures.

In these lectures, an introduction to the microscopic description of quantum
fluids at zero temperature is presented. I concentrate on the description of the
ground state, although the spectrum of elementary excitations and impurities
are also analyzed. Methodological aspects are overemphasized, as the techniques
explained can be used in general to describe strongly correlated systems, i.e.,
systems which can not be properly described by mean field theories and that
require the full machinery of the Quantum Many Body Methods (QMBM) to
understand their behavior.

I will follow closely the book written after the summer school in Trieste
2001. Introduction of Modern Methods of Quantum Many-Body Theory and
heir Applications, Series on Advances in QUantum Many-Body Theory - VOl.
7, edited by A. Fabrocini, S. Fantoni and E. Krotscheck. A mandatory reading
is the book by E. Feenberg, Theory of Quantum Liquids, [18] which contains
the most complete monography on the variational theory applied to Quantum
Liquids and that has enlightened most of the developments of the theory during
the last forthy years.
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1.1 General Properties of liquid helium

In order to get familiar with the energy and length scales associated to liquid
helium, some of its general properties will be first reviewed. The helium atom
has a very stable configuration that makes it chemically inert. Besides, its lowest
excitation energy is around 20 eV and the ionization energy is 24.56 eV. These
energies are quite high compared with the energy scales involve in the description
of the liquid, which are of the order of few Kelvins (K) (notice that 1 eV equals
11604 K). For the same reasons, the polarizability of the He atom is very small,
and as a consequence, the van der Waals interaction when two atoms are close
together is rather small and translates into a weak attraction that nevertheless
turns into a strong repulsion when the atoms overlap. The situation is such that
one can forget about the internal structure of the atoms and consider them as the
elementary constituents of the quantum liquid interacting through a two–body
potential.

Actually this interaction is so weak that two 4He atoms are very weakly
bound, while two 3He atoms are not bound at all. Notice also that the interac-
tion between the atoms is due to the polarization of the electronic cloud, and as
consequence the interaction between 4He-4He, 3He-3He, and 4He-3He pairs can
be considered to be the same. Keeping this in mind, it is easy to understand
that, being the 4He-4He system very weakly bound, the 3He-3He and 4He-3He
systems, which have lighter mass but the same interaction, are not bound.

As it has been previously mentioned, both 4He and 3He remain liquid at zero
temperature. It is commonly thought that cooling down a substance reduces the
average kinetic energy of its atoms. If the temperature is decreased low enough,
the atoms lose their mobility and get confined to fixed positions: at this point
the substance solidifies. However, in this qualitative argument one is forgetting
the uncertainty principle, which tells us that if the atoms are confined to a
small region in space, then their momentum is not fixed, and so they acquire a
non–zero average kinetic energy, the so called zero point motion.

One way to estimate this energy is to associate the volume occupied by each
particle, 1/ρ, to a spherical box, and to approximate the kinetic energy to the
ground state energy of a particle moving in this spherical box t ∼ h̄2π2/(2mR2),
R being its radius. At the saturation density of liquid 4He, ρ0 = 0.0218
Atoms/Å3, one finds a volume of 46 Å3, with R = 2.22 Å and E ∼ 12.3K.
This kinetic energy is large enough to compensate the interaction between the
atoms that tries to locate them in fixed equilibrium positions, and that is the
reason why helium remains liquid at T = 0. This is a macroscopic manifesta-
tion of quantum mechanics. The other noble gases are heavier and easier to
polarize, and become solid at zero temperature. The phase diagram of liquid
4He in the PT plane at low temperature is shown in Fig. 1. The line marked as
λ–transition separates the normal (liquid He I) from the superfluid (Liquid He
II) phases.

Several characteristic properties of 4He and 3He are reported in Table 1.
Some of these properties can be qualitatively understood taking into account the
different masses, the different statistics, and the fact that 4He and 3He have the
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Figure 1: Schematic phase diagram of liquid 4He in the PT plane.

same interaction. The lighter mass of 3He atoms translates into a larger mobility
and therefore into a smaller saturation density and smaller binding energy per
particle. Notice also that the binding energy results from a strong cancellation
between the potential and the kinetic energies. Actually, the value of the kinetic
energy for liquid 4He is a direct measure of the relevance of correlations. In
the absence of interactions, the ground state has all the particles in the zero
momentum state. When the interaction is turned on, particles are promoted
out of the zero momentum state and the system ends up with a kinetic energy
of about 14 K. However, there still remains a macroscopically large number
of particles in the zero momentum state, that is measured by the condensate
fraction value, n0 = N0/N 6= 0. At saturation density, the condensate fraction
of liquid 4He is of the order of 8%.

The volume per particle occupied by liquid 4He is smaller than that of 3He.
Therefore, it is easier to compress liquid 3He, and as a consequence the speed of
sound in liquid 3He is smaller than in liquid 4He when they are compared at the
corresponding saturation densities. When the interactions are turned off, the
3He system is described by means of a Slater determinant of plane waves filling
the Fermi sphere or free Fermi sea. The radius of the Fermi sphere is determined
by the Fermi momentum which, at saturation density of liquid 3He, corresponds
to kF = 0.78 Å−1. The average kinetic energy per particle associated to the
free Fermi sea is eF = 3h̄2k2

F /10m which is, at the same density, eF ∼ 3K. The
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Table 1: Characteristic properties of helium liquids
4He 3He

h̄2/2m 6.02 K Å2 8.03 K Å2

ρ0 0.365 σ−3 0.274 σ−3

e0 -7.17 K -2.47 K
〈U〉 ∼ -21 K ∼ -15 K
〈T 〉 ∼ 14 K ∼ 12 K
1/ρ0 ∼ 46 Å3 ∼ 61 Å3

Vatom ∗ ρ0 0.2 0.15
vsound 238 m/s 183 m/s
Psol 25 atm 34 atm

Fermi momentum defines the Fermi surface, a very important concept that is
meaningful even for a normal Fermi liquid when the interactions are turned on.

Another quantity of interest is the binding energy of one 3He impurity in
liquid 4He, µ = −2.78 K at the 4He saturation density. Notice that a 3He
impurity is more bound in liquid 4He than the binding energy of liquid 3He.
This indicates that it is energetically more favorable to solve 3He in 4He than to
have separate phases. As a consequence we have stable liquid mixtures of both
isotopes, with a maximum solubility of ∼ 6%.

It is also worth noticing that the ratio of the volume occupied by each atom
(Vatom = 4πR3/3 with R∼ 1.3 Å) to the volume it has at its disposal (V = 1/ρ0)
is approximately 0.2 for pure 4He, thus indicating that the system is highly
packed and that therefore the influence of correlations is strong. This same
ratio for nuclear matter (an homogeneous system of nucleons that simulates
matter at the center of a nucleus) would be 0.05. In this sense, liquid helium
is more correlated than nuclear matter. From this point of view, convergence
of perturbative calculations will be harder to achieve in liquid helium than in
nuclear matter.

Finally, it is interesting to notice that in spite of the different scales in
energy and length, from Kelvins to MeVs and from Angstroms to Fermis, the
physics of both systems, liquid 3He and nuclear matter, is similar. Also from
the methodological point of view, and this is one of the strongest points of the
many–body theory, one can use the same techniques to study them.

2 Microscopic description

The microscopic description of a quantum many–body system can be performed
once the Hamiltonian, written in terms of the masses of the atoms and the
interaction, is established

H =

N
∑

i=1

p2
i

2m
+

N
∑

i<j

V (rij) . (1)
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In the following, only the description of infinite, homogeneous systems at
T = 0 and in the thermodynamic limit (N → ∞, Ω → ∞ but ρ = N/Ω →
constant) will be considered.

As the Hamiltonian is written in first quantization, the indistinguishability of
particles is accounted in the symmetry of the operators entering in H. However,
the Hamiltonian does not distinguish if the identical particles are bosons or
fermions, and therefore this information should be added by hand to the wave
function. As usual, the latter has to be even for a system of bosons and odd for
a system of fermions under the exchange of any pair of particle coordinates.

The interaction depends only on the interparticle distance and a simple
representation is the Lennard–Jones potential

V (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, (2)

where ǫ = 10.22 K defines the depth of the potential and σ = 2.556 Å , the
length scale.

Nowadays, one uses the more accurate Aziz (HFDHF2) potential [19]

VAziz(r) = ǫ

[

Ae−αx − F (x)

(

C6

x6
+
C8

x8
+
C10

x10

)]

, (3)

where

F (x) =

{

exp
[

−
(

D
x − 1

)2
]

x < D

1 x ≥ D
(4)

and
x =

r

rm
(5)

with parameters

ǫ = 10.8K C6 = 1.3732412

rm = 2.9673 Å C8 = 0.4253785

D = 1.241314 C10 = 0.1781

α = 13.353384 A = 5.448504·105 ,

(6)

and its revised version HFD-B(HE), [20] are used in realistic calculations.
The He-He potential is characterized by a strong short range repulsion (such

that in a first approximation, the atoms can be considered as hard spheres
of diameter ∼ 2.6 Å) and a weak attraction at medium and large distances.
The Lennard–Jones and the Aziz potential are compared in Fig. 2. Despite the
apparent similarities, VAziz(r) appreciably differs from VLJ(r) at short distances
where in particular the former does not diverge. In this sense, VAziz(r) has a
softer core.

To solve the many–body Schrödinger equation is not an easy task and only
in very few exceptional cases one is able to find an exact analytic solution. In
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Figure 2: Comparison between the Lennard–Jones (dashed–line) and the Aziz
(solid line) potentials.

addition, the presence of the hard core in the interaction makes the application
of standard perturbative methods difficult. This is because the matrix elements
entering in the perturbative series would be too large, and also due to the fact
that these are very dense systems. An efficient way to handle the short range
correlations induced by the core of the potential is to embed them, from the
very beginning, in a trial wave function ΨT describing the system with N atoms

ΨT (1, . . . , N) = F (1, . . . , N)φ(1, . . . , N) . (7)

The correlation operator factor F , which is symmetrical with respect to the
exchange of particles, incorporates to the wave function in a direct but ap-
proximate way the dynamic correlations induced by the interaction between the
atoms. φ(1, . . . , N) is the wave function corresponding to the free gas, which
describes the system when the interactions are turned off and keeps the correct
symmetry of the total wave function.

For the ground state, one usually places all particles in the zero momentum
state and so φ(1, . . . , N) = Ω−N/2. For fermions, the model function φ(1, . . . , N)
is chosen as the Slater determinant associated to the free Fermi sea

φ(1, . . . , N) = det | ψαi
(j) | . (8)

The single–particle wave functions ψαi
(j), where the subscript refers to the

state, are taken as plane waves

ψαi
(j) =

1

Ω1/2
eikαi

·rjσ(j) , (9)

σ(j) representing the spin contribution. In the 3He case, σ(j) refers to the third
component of the spin and so it can be either | +〉 or | −〉. In this way, each
momentum state has a degeneracy 2.
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These plane waves satisfy the boundary conditions in a large cube of volume
Ω which becomes infinite when the thermodynamic limit is considered. The
allowed momenta fill a Fermi sphere of radius kF = (6π2ρ/ν)1/3, where ν = 2
is the spin degeneracy. Once a trial wave function is defined, the variational
principle guarantees that the expectation value of the Hamiltonian

〈ΨT | H | ΨT 〉
〈ΨT | ΨT 〉

= ET , (10)

is an upper bound to the ground state energy E0. Obviously, for the method to
be efficient, the trial wave function must yield a good representation of the real
many–body ground state wave function. Simple as it may look, the evaluation
of the expectation value is by no means an easy task, and very sophisticated
algorithms requiring large computer capabilities have been devised during the
last years. [12]

In this way, the ingredients for a variational calculation are the Hamiltonian
and the wave function. In addition, one needs a powerful and efficient machin-
ery to evaluate the expectation values. At this point, one should appeal to the
physical intuition in order to choose an appropriate trial wave function describ-
ing the system under consideration. A good starting point is to use a Jastrow
correlation operator [21]

F (1, ..., N) = F2(1, ..., N) =
∏

i<j

f2(rij) , (11)

f2(r) being a properly chosen two–body correlation function that should be
zero or almost zero when the interparticle distance is smaller than the range
of the repulsive part of the potential that characterizes the interaction between
the atoms, it should go to unity at large distances manifesting the absence of
correlations when particles are separated far away from each other.

One way to proceed is to use a correlation function with an analytical expres-
sion depending on several free parameters, whose values are chosen to minimize
the total energy. In this way, one determines the best function within the func-
tional space defined by the variation of these parameters. Another alternative
that will be discussed later on is to solve the Euler–Lagrange equations associ-
ated to the problem

δ

δf2

〈ΨT | H | ΨT 〉
〈ΨT | ΨT 〉

= 0 (12)

which yields the optimum correlation factors. Before discussing the determi-
nation of the optimum two–body correlation factor, one must find a good and
efficient way to evaluate the expectation value of the Hamiltonian.

On top of that one has to perform a cluster expansion of the multidimensional
integrals involved in the evaluation of the expectation value of the energy and
to try a systematic summation of the different terms.

Another possibility is to use Monte Carlo methods, based on the Metropolis
algorithm, to evaluate the multidimensional integrals appearing in the expres-
sions of ET , and this particular application is known as variational Monte Carlo
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method (VMC). One important thing to keep in mind is that, apart from finite
size effects associated to the fact that the Monte Carlo calculation takes place
in a finite box with a finite number of particles, Monte Carlo provides an exact
result for that given trial wave function and can be used as an accuracy check
for the calculations described here.

Other more powerfull Monte Carlo methods like diffusion Monte Carlo and
path integral ground state Monte Carlo methods have been developed recently.
These methods would be a subject of a separate course.

Let us begin by introducing the concept of a distribution function, which
appear in a natural way in the evaluation of the expectation value of a many–
body Hamiltonian. The calculation of the expectation value of the potential
energy per particle can be carried out as follows. The indistinguishability of
particles is reflected in the potential operator, which is symmetric under the
exchange of coordinates, and in the wave function, which is symmetric for bosons
and antisymmetric for fermions. Therefore, any pair of particles contributes the
same to the potential energy, which then becomes

1

N
〈V 〉 ≡ 1

N

〈ΨT | ∑

i<j V (rij) | ΨT 〉
〈ΨT | ΨT 〉

=
N(N − 1)

2

1

N

〈ΨT | V (rij) | ΨT 〉
〈ΨT | ΨT 〉

.

where rij = |ri − rj |, and the potential is independent of angles.
After that, one can carry out the integrals over coordinates r3, . . . , rN and

write
1

N
〈V 〉 =

1

N

1

2
ρ2

∫

dr1dr2V (r12)g(r12) (13)

where g(r) is the two–body radial distribution function

g(r) =
N(N − 1)

ρ2

∫

| ΨT (1, . . . , N) |2 dr3 · · · drN
∫

| ΨT (1, . . . , N) |2 dr1 · · · drN
. (14)

For uniform and homogeneous systems, g(r) depends only on the magnitude
of r and is proportional to the probability of finding two particles separated by
a given distance r, normalized such that g(r) → 1 when r → ∞. Therefore,
changing from variables (r1, r2) to (r1, r = r2 − r1), and performing the trivial
integration over r1, one finds

1

N
〈V 〉 =

1

2
ρ

∫

drV (r)g(r) , (15)

and thus the calculation of the potential energy is translated into the calculation
of the distribution function g(r).

Similar things happen with the evaluation of the kinetic energy. In order to
illustrate how it can be calculated, the simple case of a bosonic system described
through a Jastrow wave function will be considered. Again and due to the
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indistinguishability of particles reflected in the symmetry of the wave function,
all terms contribute the same and one has

1

N
〈T 〉 = − 1

N

N
∑

i=1

h̄2

2m

〈ΨT | ∑∇2
i | ΨT 〉

〈ΨT | ΨT 〉

≡ − h̄2

2m

〈ΨT | ∇2
1 | ΨT 〉

〈ΨT | ΨT 〉
. (16)

For the real wave function the kinetic energy part of the Hamiltonian can be
written as

h̄2

2m
ΨT∇2

1ΨT =
h̄2

8m
∇2

1Ψ
2
T +

h̄2

8m
Ψ2

T∇2
1 log(Ψ2

T ) (17)

The expectation value of the first term vanishes because we can use Gauss’ law
of integration and assume that the derivative of the wave function vanishes at
the infinity.

Identifying the expression of the distribution function, and performing the
same change of variables done in the evaluation of the potential energy, one
finally finds

1

N
〈T 〉JF =

1

2
ρ
h̄2

2m

∫

drg(r)(−∇2 ln f2(r)) . (18)

Notice that even if T is a one–body operator, the presence of two–body correla-
tions in the wave function makes its expectation value depend on the two–body
radial distribution function g(r).

Collecting results (15) and (18), one finally arrives at the expression of the
total energy of a boson fluid described by a Jastrow wave function

1

N

〈ΨT | H | ΨT 〉
〈ΨT | ΨT 〉

=

=
1

2
ρ

∫

drg(r)

[

V (r) − h̄2

2m
∇2 ln f(r)

]

. (19)

The angular integration can be trivially performed, and therefore if g(r) is
known, the evaluation of the energy reduces to a one dimensional quadrature.
Thus the whole problem has been translated into the evaluation of the two–body
radial distribution function.

A rather simple f2(r) which has been extensively used in the study of 4He and
3He liquids is the so called McMillan or Schiff–Verlet correlation factor [25, 26]

f2(r) = exp

[

−1

2

(

bσ

r

)5
]

. (20)

This function approximates well the short range behavior of the optimal corre-
lation factor, and approaches quickly to unity. Besides, it is basically zero inside
the core of the potential. The energy is minimized with respect to b, which is
taken as a variational parameter.
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2.1 General properties of the ground state

Before concentrating on the calculation of the optimal distribution function, it is
useful to discuss a couple of general properties of the ground state wave function
of a bosonic system, because they serve as a guide to write a general ansatz for
the variational many–body wave function. In a boson system the wave funtion
has two important properties:

1. It has no nodes, that is, it does not change sign and so can be chosen real
and positive.

2. is not degenerate.

The proof begins by writing the ground state wave function of the many–
body boson systems in a general exponential form [27]

Ψ0(r1, . . . , rN ) = exp

[

1

2
χ(r1, . . . , rN )

]

, (21)

where χ is a complex function

χ(r1, . . . , rN ) = χR(r1, . . . , rN ) + ıχI(r1, . . . , rN ) (22)

with χR and χI real and symmetric under the exchange of particle coordinates.
Note that this form is general enough to represent the ground state, allowing
for the presence of nodes in Ψ0.

The first thing to realize is that the expectation value of the potential energy
does not depend on χI

〈V 〉 =
〈Ψ0 | ∑N

i<j V (rij) | Ψ0〉
〈Ψ0 | Ψ0〉

=

∫

dr1...drN

∑N
i<j V (rij) exp[χR(r1, ..., rN )]

∫

dr1...drN exp[χR(r1..., rN )]

while, on the other hand, and using the Jackson–Feenberg identity , the kinetic
energy can be written as

〈T 〉 =
〈Ψ0 | −h̄2

2m

∑N
i=1 ∇2

i | Ψ0〉
〈Ψ0 | Ψ0〉

=

∫

dr1...drN eχR

[

− h̄2

8m

∑N
i=1(∇2

iχR) + h̄2

8m

∑N
i=1(∇iχI)

2
]

∫

dr1...drN exp[χR]
.

The kinetic energy splits in two pieces, the second one depending on χI and
being positive definite. As a consequence, one can always decrease the energy
by setting χI = 0. But if χI = 0, then it is clear that the wave function has
no nodes, is real and does not change sign. The fact that Ψ0 is non–degenerate
is a consequence of the absence of nodes. If there was another eigenstate with
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the same energy, it would be possible to take it orthogonal to Ψ0. However, in
order to be orthogonal to Ψ0, this new eigenstate would have to show at least
one node, and therefore χI(r1, ..., rN ) 6= 0. But then it would be possible to
lower once again the energy of that state by choosing χI = 0, contradicting the
hypothesis that E0 was the lowest possible energy. This can not happen and
therefore Ψ0 is non–degenerate.

In conclusion, the ground state wave function of a Bose system can be written
in the form

Ψ0(r1, . . . , rN ) = exp

[

1

2
χR(r1, . . . , rN )

]

, (23)

where the function χR can be decomposed into n–body functions un, with 1 ≤
n ≤ N

χR(r1, . . . , rN ) =

N
∑

n=1

∑

i1,...,in

un(ri1 , . . . , rin
) , (24)

with the summation on i1 . . . in running over all possible choices of n indices
from the set (1, . . . , N). More explicitly

Ψ0(r1, . . . , rN ) = exp
[1

2

N
∑

i<j

u2(rij)

+
1

2

∑

i<j<k

u3(ri, rj , rk) + · · ·
]

(25)

which is known as the Feenberg ansatz.
An equivalent way to write this wave function would be

Ψ0(r1, . . . , rN ) =
∏

i<j

f2(rij)
∏

i<j<k

f3(ri, rj , rk) . . . . (26)

with fn = eun/2.
In this way, the Jastrow wave function containing only two body correlations

ΨJ(r1, . . . , rN ) =
∏

i<j

f2(rij) = e
1
2

∑

N

i<j
u2(rij) (27)

can be considered as the first step towards a systematic approach to the exact
ground state wave function of a boson fluid.

The previous expressions serve to identify the general structure of the wave
function, but do not provide enough information to determine the correlation
functions entering. One knows from basic grounds, however, that there are
general requirements they should fulfill

• They should be real functions in order to yield a real total wave function.

• They must be symmetric under the exchange of particle coordinates.

12



• They must be invariant under translation of the center of mass of the
particles involved in the correlation

R =
1

n

n
∑

i=1

ri . (28)

• They have to be invariant under rigid rotations around the center of mass
R.

• They have to be invariant under simultaneous inversion of all the coordi-
nates.

• They should fulfill the cluster property, which means that un(r1, . . . , rN )
has to vanish whenever any one of the coordinates becomes arbitrarily
large.

Particularly, the cluster condition implies that the decomposition of χR given
in Eq. (25) is unique.

All those conditions must be also fulfilled when the correlation operator is
expressed in terms of F (1, . . . , N). In fact, if any subset, i1, . . . ip, of particles
is separated from the rest, F (1, . . . , N) decomposes in a product of two factors

F (1, . . . , N) = Fp(i1, . . . , ip)FN−p(ip+1, . . . , iN ) . (29)

Finally, notice that the cluster property particularly implies that

f (2)(r → ∞) → 1 , (30)

and that all the previous properties apply equally well in the case when one uses
an approximate wave function of the Jastrow type with two–body correlation
factors only.

3 Hypernetted–chain equations

It has been shown in the previous section that the energy per particle of an
homogeneous bosonic system can be easily calculated once the two–body radial
distribution function g(r) is known. In this sense, g(r) is the key quantity
required in most variational calculations. The main goal of this section is to
learn how it can be calculated. For a Jastrow wave function, g(r) becomes

g(r) =
N(N − 1)

ρ2

∫
∏

i<j f
2
2 (rij) dR12

∫
∏

i<j f
2
2 (rij) dR

. (31)

where dR12 = dr3dr4 . . . rN and dR = dr1dr2 . . . rN

13



In order to calculate g(r) it is useful to introduce the cluster function h(r) =
f2
2 (r) − 1. Because of the healing property of f2(r) that makes it approach

unity when the distance increases, the function h(r) goes quickly to zero and
provides a plausible expansion parameter. In fact, both the numerator and the
denominator of Eq. (31) can be expanded in powers of the function h(r)

g(r) =
N(N − 1)Ω−N

ρ2Ω−N
× (32)

×
∫

dR12

(

1 +
∑

i<j h(rij) +
∑

i<j,k<l h(rij)h(rkl) . . .
)

∫

dR
(

1 +
∑

i<j h(rij) +
∑

i<j,k<l h(rij)h(rkl) . . .
)

where a factor Ω−N corresponding to the normalization of the non–interacting
wave function has been added both in the numerator and the denominator.
The resulting contributions become multidimensional integrals involving one or
more h(r) factors, which are referred to as cluster terms. Doing so leads to an
expression that apparently looks much worse than the original one, but that is
easier to deal with as it will be shown in the following.

Two important facts allowing for enormous simplifications should be taken
into account:

• many integrals give the same result,

• there are substantial cancellations between infinite sets of terms.

The best way to understand how to take advantage of these facts is, as in many
branches of modern physics, by introducing a diagrammatic notation.

Cluster diagrams are built with dashed lines representing functions h(rij)
connecting particles i and j, and points or circles denoting the particles them-
selves. In order to get used to this diagrammatic notation, Fig. 3 shows some
of the diagrammatic contributions resulting from the cluster expansion of the
numerator. Particles 1 and 2, which are not integrated, appear as open circles
in the diagrams. On the other hand, internal points corresponding to integrated
coordinates are represented by solid circles. Many different terms, as for exam-
ple

∫

dr3h(r13)h(r23) and
∫

dr7h(r17)h(r27), yield the same value since internal
points are nothing but dummy integration variables. They are represented by
the same diagrammatic structure but with different labeling of the internal
points. In this way, it is clear that disregarding the labeling, a given diagram
corresponds to many different cluster integrals. In the diagrammatic formalism,
all these terms are represented by a single unlabeled diagram multiplied by a
properly chosen weighting factor that takes this fact into account.

Weighting factors are built from combinations of three different quantities:
first, terms of the form (N − α) which have to do with the different ways in
which internal points can be drawn from a set of N − 2 particles (correspond-
ing to the total number of particles N minus the two external points that are
fixed); second, factors Ω resulting from the cancellation of the global 1/ΩN term
(Eq. (33)) and the integral over the coordinates not appearing in the diagram;

14
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 R drh(r)
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 R drih(r1i)h(ri2)N�3
 R drh(r)

1

Figure 3: Several cluster diagrams appearing in the numerator of Eq. (33)

and third, overall symmetry factors associated to the fact that sometimes per-
mutations of the labels corresponding to internal points in a given diagram leads
to exactly the same labeled diagram. All this is summarized in Fig. 3, where it
is also indicated how in the thermodynamic limit factors of the form (N −α)/Ω
turn into densities ρ.

As an example, the third diagram has a function h(r12) multiplying because
neither coordinate 1 nor 2 are being integrated. It also contains a factor (N −
2)(N − 3) corresponding to choosing two points (i and j in the diagram) from
N − 2 possible choices. There is also an overall Ω dividing, that results from
the cancellation of the 1/ΩN , and a factor ΩN−4 from the integration over all
the remaining particle coordinates (different from 1, 2, i and j), a factor Ω from
the change of variables

∫

dr1dr2 →
∫

dRdr = Ω
∫

dr with R = (r1 + r2)/2 and
r = r1 − r2 and a factor Ω2 coming from the ρ2 in the definition of g(r). And
finally, a symmetry factor 1/2 associated to the fact that exchanging the labels
i and j leads to exactly the same diagram. All other diagrams in the figure can
be analyzed in the same way.

Furthermore and as mentioned above, there are strong cancellations between
diagrams in the numerator and the denominator of g(r). These cancellations
can be identified once the different cluster integrals are properly classified. Since
integrals are represented by diagrams, the problem of classifying the cluster
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Figure 4: Classification of cluster diagrams

integrals is directly mapped into the problem of classifying diagrams.
The standard classification of diagrams is illustrated in Fig. 4. Reduced

to its fundamental topological essence, diagrams may be linked and unlinked.
Unlinked diagrams contain separated pieces not connected to each other by
correlation lines. In contrast, linked diagrams form one single piece and therefore
one can always find at least one path of lines connecting any pair of points in
the diagram. Examples of linked and unlinked diagrams are depicted in the first
two rows of Fig. 4.

Linked diagrams can be classified as reducible and irreducible. Reducible
diagrams are those with at least one articulation point. An articulation point
is a circle separating the diagram in two or more different parts, such that any
path of lines joining one particle in one part to another particle in another part
passes always through it. Furthermore, all the external points in a reducible
diagram remain in the same part.

Examples of reducible diagrams are also shown in Fig. 4, pointing with an
arrow the articulation points. Due to the translational invariance of h(r), the
integral expression associated with a reducible diagram can always be factorized
into independent pieces. Despite the apparent simplicity of the classification, it
is still difficult to decide which diagrams are relevant in the evaluation of g(r).

Fortunately, there is a useful theorem that simplifies the situation a lot.
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This linked cluster theorem states that one needs to consider only the irreducible
diagrams of the numerator. All unlinked and reducible diagrams cancel against
the denominator of Eq. (33) up to order 1/N. A somewhat elaborated proof
of the theorem, as an special application of the more general fermionic case,
has been given by Fantoni and Rosati. [29] On the other hand, this problem is
completely equivalent to the calculation of the radial distribution function of a
classical fluid at finite temperature

g(r) =
N(N − 1)

ρ2

∫

dR12 exp [−∑

V (rij)/kT ]
∫

dR exp [−∑

V (rij)/kT ]
, (33)

where k is Boltzmann’s constant. The parallelism is established by identifying,
f2(rij) with exp[−V (rij)/2kT ]. Therefore, one can use the experience accumu-
lated in this field, [30] for which a diagrammatic notation was also introduced,
and derive a Hypernetted–Chain (HNC) equation in a similar way as Leeuwen,
Groeneveld and de Boer did for classical systems. [31]

In any case, one still has to face the problem of adding up the contribution
of all the irreducible diagrams in the numerator. To this end, one needs to
dive a little bit more into diagrammatic concepts and introduce new definitions.
Irreducible diagrams can be classified as either simple. or composite. A simple
diagram is a diagram containing only one 1 − 2 subdiagram, while a composite
diagram contains two or more 1− 2 subdiagrams. An i− j subdiagram is a part
of a diagram connected to the rest of the diagram through points i and j only.
In particular, the first two diagrams in Fig. 3 are examples of diagrams with
only one 1 − 2 subdiagram.

Besides, simple diagrams can be divided in nodal and elementary. A nodal
diagram is a diagram that has at least one node. A node is a point of the diagram,
such that all paths of lines going from one external point to the other passes
through it. An elementary diagram is a simple diagram that is non–nodal. In
Fig. 4 there is a scheme showing the complete classification of diagrams. The
final diagrammatic rules are very simple: diagrams are built with correlation
lines and points. External points, representing particle coordinates 1 and 2, are
depicted as open circles, while internal points (solid circles) imply an integration
over the corresponding coordinates times a factor ρ. The sum of all topologically
distinct irreducible diagrams defines the radial distribution function g(r).

There are two mathematical operations associated to the construction of dia-
grams (see Fig. 5): the convolution and the algebraic products. The convolution
product of two generic functions a(rik) and b(rkj) representing diagrammatic
links between points i and k and k and j respectively

ρ(a(rik) | b(rkj)) ≡ ρ

∫

drka(rik)b(rkj) , (34)

generates a nodal i − j subdiagram that has point k as a nodal point. This
is easy to understand since once the integral is performed, point k becomes an
internal point that is the only link connecting the external point i in a(rik)
to the external point j in b(rkj), thus being a node. On the other hand, the
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Figure 5: Mathematical operations associated to the construction of nodal and
composite diagrams

algebraic product of two functions a(rij) and b(rij), which can be taken as two
i− j subdiagrams, generates a composite i− j subdiagram.

At this point one is ready to derive the HNC equation in its simplest form,
adding the contribution of all diagrams except those containing elementary
pieces, which will be discussed later. The first row of Fig. 6 shows the dia-
grammatic contents of the chain equation at the first level of iteration. Let
N(r) be the sum of all the nodal diagrams, and take only, for the sake of sim-
plicity, the subset of nodal diagrams resulting from the first iteration of the
chain equations, as illustrated in the upper part of Fig. 6. If now one performs
the convolution product of N(r) and h(r), which is the basic brick used to con-
struct the chain, one gets all the diagrams of N(r) except the first one which is
the convolution product of two h(r) function, as it is shown in the lower part of
Fig. 6. The chosen set of diagrams satisfy therefore the equation

ρ(h(r1j) | N(rj2)) = N(r12) − ρ(h(r1j) | h(rj2)) . (35)

+ + ...

+ + ...+

(h | N) =ρ

N(r) =

=  N(r) = N(r) ρ(h | h)

Figure 6: Diagrammatic scheme of the chain operation connecting diagrams.
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The function N(r) built in this way can then be used to construct compos-
ite diagrams. Composite diagrams have two or more 1 − 2 subdiagrams, and
so their sum has to be built from terms of the form N2(r), N3(r), . . . producing
composite diagrams with 2, 3 or more 1−2 subdiagrams. However, these contri-
butions must include appropriate symmetry factors in order to avoid undesired
overcountings. As for example, N2(r) is the product of a sum of nodal diagrams
with itself, thus producing diagonal terms squared and cross terms multiplied by
2. In the diagrammatic formalism, diagonal terms squared have to be divided
by 2, which is the right symmetry factor correcting the fact that exchanging
all particles in one of the subdiagrams with all particles in the other leads to
exactly the same composite diagram. On the other hand, the factor 2 in the
cross terms has to be removed as the previous situation does not happen here.
Both facts are properly taken into account by replacing N2(r) with N2(r)/2!.

Similar analysis leads to the conclusion that composite diagrams containing
three 1 − 2 subdiagrams have to be built from the combination N3(r)/3!, and
so on. The total sum of composite diagrams formed in this way becomes

N2(r)/2! + N3(r)/3! +N4(r)/4! + · · ·
= exp[N(r)] −N(r) − 1 (36)

in the thermodynamic limit. This is schematically shown in Fig. 7, where the
diagrammatic contents of the exponential is explicitly depicted.

Finally, it should be noticed that one can still build new composite dia-
grams by multiplying exp[N(r)] with h(r), thus producing the same composite
diagrams but with an extra correlation line connecting external points 1 and 2.
Since both exp[N(r)] and h(r) exp[N(r)] are possible, and 1+h(r) ≡ f2

2 (r), one
finally finds the total sum of composite diagrams X(r) to be

X(r) = f2
2 (r) exp(N(r)) −N(r) − 1 . (37)

X(r) and N(r) obtained through Eqs. (35) and (37) are the result of the first
iteration in the HNC scheme. One can then use this X(r) back as the building
block of the chain and obtain N(r) in the second iteration

ρ(X(r1j) | N(rj2)) = N(r12) − ρ(X(r1j) | X(rj2)) , (38)

and use this new nodal function in Eq. (37) to obtain X(r) in the second itera-
tion. This process must be repeated until convergence is reached. At that point,
X(r) and N(r) simultaneously satisfy Eqs. (35) and (37), which constitute the
set of HNC equations.

This scheme is commonly known as HNC/0, and its solution yields the sum
of all diagrams but those containing elementary contributions. Elementary di-
agrams can be incorporated to the HNC process by including them in the defi-
nition of X(r)

X(r) = f2
2 (r) exp [N(r) +E(r)] −N(r) − 1 , (39)
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Figure 7: Diagrammatic contents of exp[N(r)].

although they can not be treated in an exact way because there are not simple
relations connecting them to N(r) or X(r) in a closed form.

In the end, the distribution function is expressed as the sum of all nodal,
composite and elementary diagrams

g(r) = 1 +X(r) +N(r) = f2
2 (r) exp[N(r) +E(r)] . (40)

The HNC equations (Eq. (38) and (39)) form a non linear set of integral equa-
tions, whose solution suggests in a natural way the iterative process discussed
above that is illustrated in the scheme shown in Fig. 8.

Notice also that while doing the iterations, one can take advantage of the
known properties of the Fourier Transform (FT), which turns convolutions into
algebraic products and thus helps for solving at each step the nodal contributions
from Eq. (38)

Ñ(k) =
X̃2(k)

1 − X̃(k)
, (41)

where it is customary to define the FT in the HNC context as

ã(k) = ρ

∫

dr eik·ra(r) , (42)
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Figure 8: Iterative scheme to solve the HNC equations

including a density factor ρ.
According to the scheme in the figure, in the iterative process one usually

calculates X(r) (sum of composite and elementary diagrams) in r space and
the nodal function in k space. In order to do so, good FT subroutines able
to accurately treat correlations inside the core of the potential are required.
Alternatively, the whole process can be carried out in position space, although
convolutions may be harder to deal with. Usually, ten to twenty iterations are
enough to reach convergence, at least for correlation factors with no long range
order. Since each iteration is built from the results obtained in the previous
one, the number of diagrams included at each steps grows exponentially.

One function which is experimentally accessible is the static structure func-
tion, defined as the Fourier transform of the radial distribution function

S(k) ≡ 1 + ρ

∫

dr eık·r(g(r) − 1) = 1 + X̃(k) + Ñ(k) . (43)

Taking into account the HNC equation, the nodal and the composite dia-
grams can be expressed in terms of the static structure function as

Ñ(k) =
(S(k) − 1)2

S(k)
(44)
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Figure 9: Four–points elementary diagrams and other elementary diagrams with
the same basic structure. Dashed and solid lines represent factors h(r) and
g(r) − 1, respectively.

and

X̃(k) =
S(k) − 1

S(k)
. (45)

These last two equations are valid independently of whether the elementary
diagrams are included or not.

The simplest elementary diagram, shown in Fig. 9, has four points and a
symmetry factor 1/2. Actually, there is no way to sum up the contribution of
all the elementary diagrams in a closed form, and so one has to rely on suitable
approximations. It is customary to classify the HNC scheme according to the
type of elementary diagrams included. For instance HNC/4 means that only the
four points elementary diagram E4 is implemented. Stated as it is, the HNC/4
scheme would only include one elementary diagram out of the infinite number
one can draw by adding more and more internal points. This is not the case if
one replaces the h(r) bonds in E4 by dressed lines g(r) − 1. Since g(r) already
contains an infinite sum of diagrams, the dressed E4 built in this way becomes a
massive sum of elementary contributions, thus yielding a better approximation
to the exact result. In this way, the dressed E4 has to be recalculated at each
iteration in the HNC scheme until convergence is reached. Alternatively, there
has been a lot of work done in the HNC/5 scheme where a selected subset of all
the possible five points elementary diagrams is included.
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4 Optimized ground state

In the microscopic, variational theory the calculation of the ground state prop-
erties of the system of N particles with the mass m starts from the empirical
Hamiltonian

H0 = − h̄2

2m

N
∑

i=1

∇2
i +

1

2

N
∑

i6=j

V (|ri − rj |) . (46)

One assumes that the two–particle interaction V (|ri − rj |) is either known like
the Coulomb interaction between charged particles or it is empirically deter-
mined as is the case with the interaction between helium atoms.

The variational problem is to minimize the total energy

E0 =
〈Ψ0|H0|Ψ0〉
〈Ψ0|Ψ0〉

(47)

with respect to the n–particle densities of the system

ρn(r1, . . . rn) = (48)

=
N !

(N − n)!

1

〈Ψ0|Ψ0〉

∫

d3rn+1 . . . d
3rN |Ψ0(r1, . . . rN )|2 .

In the homogeneous system with a constant density ρ0 it is more convenient to
use the n–particle distribution functions, which are normalized to unity when
all particles are far apart,

gn(r1, . . . rn) =
ρn(r1, . . . rn)

ρn
0

. (49)

Following Feenberg’s book [59] we start from the quadratic form

X(n)(r1, . . . rn) (50)

=
N !

(N − n)!〈Ψ0|Ψ0〉

∫

d3rn+1 . . . d
3rNΨ0(H − E0)Ψ0 ,

and show that the right hand side of the equation can be expressed in terms of
distribution functions. If these are correctly generated from the solution of the
Schrödinger equation HΨ0 = E0Ψ0 then the right hand side vanishes defining
the n–particle Euler equation of the system.

For the real wave function the kinetic energy part of the Hamiltonian can
be written as

h̄2

2m
Ψ0∇2Ψ0 =

h̄2

8m
∇2Ψ2

0 +
h̄2

8m
Ψ2

0∇2 log(Ψ2
0) (51)

and the integrand in Eq. (51) becomes

Ψ0(H − E0)Ψ0 =

[

− h̄2

8m

N
∑

i=1

∇2
i − E0 (52)
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+
1

2

N
∑

i6=j

V (|ri − rj |) −
h̄2

8m

N
∑

i=1

∇2
i log Ψ2

0

]

Ψ2
0 .

It can be simplified by introducing a generalized β–dependent square of the
wave function

Ψ2
0(r1, . . . rN ;β) = eβVJF (r1,...rN )Ψ2

0(r1, . . . rN ) . (53)

and the generalized normalization integral

I0(β) =

∫

d3r1 . . . d
3rN Ψ2

0(r1, . . . rN ) eβVJF (r1,...rN ) (54)

with the Jackson–Feenberg effective potential

VJF (r1, . . . rN ) =
1

2

N
∑

i6=j

V (|ri − rj |) −
h̄2

8m

N
∑

i=1

∇2
i log Ψ2

0 . (55)

Quantities which depend on the wave function like distribution functions become
then β–dependent,

ρn(r1, . . . rn;β) = (56)

=
N !

(N − n)!

1

I0(β)

∫

d3rn+1 . . . d
3rNΨ2

0(r1, . . . rN ;β) .

The return to the original notation takes place by setting β = 0 at the end
of the calculation. In this notation the norm of the wave function is

I0(0) = 〈Ψ0|Ψ0〉 (57)

and the total energy of the system is then simply

E0 =
d

dβ
log I0(β)

∣

∣

∣

∣

β=0

(58)

=
1

〈Ψ0|Ψ0〉

∫

d3r1 . . . d
3rN Ψ2

0(r1, . . . rN ) VJF (r1, . . . rN )

The full integrand (52) assumes the form

1

I0(0)
Ψ0(H − E0)Ψ0 =

=
d

dβ

[

1

I0(β)
eβVJF (r1,...rN )

]
∣

∣

∣

∣

β=0

Ψ2
0(r1, . . . rN )

− h̄2

8m

1

I0(0)

N
∑

i=1

∇2
i Ψ

2
0(r1, . . . rN ) . (59)
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The quadratic equation can now be formally integrated giving

X(n)(r1, . . . rn) (60)

=
N !

(N − n)!

1

I0(0)

∫

d3rn+1 . . . d
3rNΨ0(H − E0)Ψ0 ,

=
d

dβ
ρn(r1, . . . rn;β)

∣

∣

∣

∣

β=0

− h̄2

8m

n
∑

i=1

∇2
i ρn(r1, . . . rn; 0) .

In the case of n = 2 if the Schrödinger equation is satisfied, then

X(2)(r1, r2) = 0 (61)

and we get the Euler equation for the radial distribution function g(r) =
1
ρ2
0
ρ2(|r1 − r2|) as a function of radius r = |r1 − r2|

g′(r) ≡ d

dβ
g(r;β)

∣

∣

∣

∣

β=0

=
h̄2

4m
∇2g(r; 0) . (62)

We have introduced here Feenberg’s prime notation and ignored β from the list
of arguments. This notation should not be mixed with the ordinary derivative
with respect to the coordinate r. The Euler equation is valid for all real wave
functions, but the main problem is to calculate the β–derivative term.

4.1 Euler equation with the Jastrow wave function

For the practical implementation of the Euler equation Eq. (62) we return to the
Jastrow ansatz (27) for the wave function. Then the generalized normalization
integral (54) becomes

I0(β) =

∫

d3r1 . . . d
3rN exp





N
∑

i<j

u2(|ri − rj |;β)



 , (63)

where we have defined the generalized correlation functions by adding the Jas-
trow correlation function into the Jackson–Feenberg potential (55),

u2(r;β) ≡ u2(r) + β

[

V (r) − h̄2

4m
∇2u2(r)

]

. (64)

Its β–derivative is simple to calculate,

u′2(r) ≡
∂u2(r;β)

∂β

∣

∣

∣

∣

∣

β=0

= V (r) − h̄2

4m
∇2u2(r) . (65)

The hypernetted chain (HNC) equation gives in terms of diagrams the con-
nection between the correlation and distribution functions,

g(r) = eu2(r)+N(r)+E(r) (66)
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and the Ornstein–Zernike integral equation

N(|r1 − r2|) = ρ0

∫

d3r3(g(|r1 − r3|) − 1)X(|r3 − r2|) (67)

sums the nodal diagrams, N(r), which are formed by iterating the integral
equation up to infinite order with the sum of composite diagrams X(r),

X(r) = g(r) − 1 −N(r) . (68)

The sum of elementary diagrams E(r) must be calculated term by term. Typi-
cally one stops after the five–body diagrams.

From the HNC–equation (66) we can calculate the β–derivative of the radial
distribution function

g′(r) = g(r) [u′2(r) +N ′(r) + E′(r)] . (69)

Inserting here u′2(r) from Eq. (65) together with u2(r) solved from Eq. (66),

u2(r) = log g(r) −N(r) − E(r) , (70)

we get

g′(r) = g(r) (V (r) +N ′(r) + E′(r)) (71)

− h̄2

4m

[

g(r) ∇2 log g(r) − g(r)
(

∇2N(r) + ∇2E(r)
)]

.

It is useful to define two new quantities the induced potential wind(r) in terms
of the sum of nodal diagrams N(r),

wind(r) ≡ N ′(r) +
h̄2

4m
∇2N(r) , (72)

and the effective potential arising from the elementary diagrams,

Vele(r) ≡ E′(r) +
h̄2

4m
∇2E(r) . (73)

These simplify the expression of g′(r) and if we furthermore use the identity

g(r) ∇2 log g(r) = −∇2g(r) + 4
√

g(r) ∇2
√

g(r) (74)

then the Euler equation (62) can be written in the form of a zero–energy
Schrödinger equation

− h̄2

m
∇2

√

g(r) + (V (r) + wind(r) + Vele(r))
√

g(r) = 0 (75)

where
√

g(r) plays the role of the wave function and the normalization is such

that
√

g(∞) = 1. Yet, one should realize that this equation is highly non–linear
because both wind(r) and Vele(r) depend on the solution g(r).
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The above formulation puts weight on the short range behavior of the radial
distribution function. Especially for singular potentials V (r) we can derive the
behavior of g(r) when r → 0. In the case of the Coulomb potential — e2/r with
e2 = q2/(4πε0) where q is the charge of the particles and ε0 is the dielectric
constant — g(r) must satisfy the cusp condition

d

dr
log g(r) =

e2m

h̄2 . (76)

In the case of the Lennard–Jones potential

V (r) = ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(77)

g(r) has an essential singularity at the origin

g(r)
r→0→ exp

[

−A

r5

]

; A =
8

5

m
√
ǫ

h̄2 σ6 . (78)

Another way to solve the Euler equation (62), which put emphasis on the
long wavelength behavior, is to define the particle–hole effective interaction,

Vp−h(r) ≡ X ′(r) +
h̄2

4m
∇2X(r) , (79)

in terms of the sum of composite diagrams X(r) and its β–derivative from Eq.
(68)

X ′(r) = g′(r) −N ′(r) . (80)

We can write Eq. (71) into a new form by subtracting N ′(r) from both sides,
inserting the definitions (72) and (73) and using another identity for the loga-
rithmic term

g(r)∇2 log g(r) = ∇2g(r) − 4
(

√

g(r)
)2

. (81)

This leads to the expression

X ′(r) = g(r) [V (r) + Vele(r)] + [g(r) − 1]wind(r)

+
h̄2

4m

[

4
(

∇
√

g(r)
)2

−∇2X(r)

]

. (82)

Combining this with the definition (79) we arrive at the expression for the
particle–hole potential

Vp−h(r) = g(r) [V (r) + Vele(r)] (83)

+ [g(r) − 1]wind(r) +
h̄2

m

(

∇
√

g(r)
)2

.
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For the homogeneous system it is often more convenient to work in momen-
tum space and define the structure function S(k) as the Fourier transform of
g(r) − 1,

S(k) = 1 + ρ0

∫

d3r (g(r) − 1) e−ik·r . (84)

Similarly we get the Fourier transform of the β–derivative

S′(k) = ρ0

∫

d3r g′(r) e−ik·r . (85)

With these Fourier transforms the Euler equation (62) can be written in the
momentum space

S′(k) = − h̄
2k2

4m
(S(k) − 1) . (86)

The Ornstein–Zernike equation (67) contains the convolution integral, which
is of a product form in the Fourier space and can be solved easily together with
Eq. (68) giving

X̃(k) = 1 − 1

S(k)
. (87)

Performing the β–derivative operation and using the Eq. (86) we get

X̃ ′(k) =
S′(k)

S2(k)
= − h̄

2k2

4m

(S(k) − 1)

S2(k)
. (88)

Inserting these into the Fourier transform of the definition (79) we find a
simple expression for Ṽp−h(k)

Ṽp−h(k) = X̃ ′(k) − h̄2k2

4m
X̃(k)

= − h̄
2k2

4m

(

S(k) − 1

S2(k)
+
S(k) − 1

S(k)

)

= − h̄
2k2

4m

(

1 − 1

S2(k)

)

, (89)

which can be solved for the structure function and we get the Bogoljubov–like
form of the Euler equation

S(k) =
k

√

k2 + 4m
h̄2 Ṽp−h(k)

. (90)

We still need to calculate the induced potential wind(r) defined in Eq. (72).
From Eqs. (68) and (87) we get

Ñ(k) =
(S(k) − 1)2

S(k)
. (91)
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Figure 10: Radial distribution functions around saturation density in 3D 4He.

The β–derivative and the use of Eqs. (86) and (88) gives

Ñ ′(k) = S′(k) − X̃ ′(k) (92)

= − h̄
2k2

4m

(S(k) − 1)
2
(S(k) + 1)

S2(k)
.

Inserting these into the definition (72) we get the Fourier transform of
wind(r)

w̃ind(k) = Ñ ′(k) − h̄2k2

4m
Ñ(k)

= − h̄
2k2

4m
(S(k) − 1)

2

(

S(k) + 1

S2(k)
+

1

S(k)

)

= − h̄
2k2

4m
(2S(k) + 1)

(

1 − 1

S(k)

)2

. (93)

Equations (90), (84) and (93) form a self–consistent set of equations which can
be solved iteratively.

In the the long wavelength limit the structure function of the 4He liquid is
linear and inversely proportional to the speed of sound c

S(k)
k→0→ h̄k

2mc
, (94)
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Figure 11: Static structure functions around saturation density in 3D 4He.

which tells that Ṽp−h(0) = mc2. In the case of charged Bose gas the Coulomb

interaction 4πe2ρ0/k
2 dominates the small k behavior of Ṽp−h(k) and the struc-

ture function becomes quadratic

S(k)
k→0→ h̄k2

2mωp
(95)

where ωp =
√

4πρ0e2/m is the plasma frequency.

5 Dynamic structure of Bose fluids

In this section we study excited states. They can be accessed experimentally in
essentially two ways: by increasing the temperature, and by exciting the system
with an external probe as is done in neutron scattering. At finite temperature,
the system populates some of the excited states and the elementary excitation
spectrum is required if one seeks to understand the thermodynamic properties
of the system. As en example, a quantity that directly depends on the density
of excited states and therefore on the excitation energies is the specific heat. On
the other hand, in a scattering event the probe transfers momentum and energy
to the system, and the cross section for fixed momentum transfer as a function
of E shows marked peaks at the excitation energies.
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5.1 Low excited states

We begin the discussion of excitations with the Feynman model of the elemen-
tary excitation modes of a strongly correlated Bose system. Using a variational
ansatz, Feynman [45] showed that, in the long wavelength limit, the wave func-
tion of the lowest excited states corresponding to a momentum k takes the form

| Ψk〉 = ρk | Ψ0〉 , (96)

where Ψ0 is assumed to be the exact ground state and

ρk =
∑

j

eik·rj (97)

is the operator exciting density oscillation of wavelength k. The excitation
energy associated with this trial wave function becomes then an upper bound
to the exact excitation energy.

Taking into account that

ρ†kρk =
∑

i

e−ik·ri

∑

j

eik·rj = N +
∑

i6=j

eik·(rj−ri) , (98)

where N is the number of particles, the normalization constant becomes

〈Ψk | Ψk〉
〈Ψ0 | Ψ0〉

= NS(k) (99)

Here S(k) is the Fourier transform of the radial distribution function g(r) of the
ground state from Eq. (84).

The excitation energy can then be written as follows,

ǫ(k) =
〈Ψk | H − E0 | Ψk〉

〈Ψk | Ψk〉

=
〈Ψ0 | ρ†k (H − E0) ρk | Ψ0〉

〈Ψ0 | ρ†kρk | Ψ0〉
(100)

which, after shifting the position of the rightmost density fluctuation operator,
leads to

ǫ(k) =
〈Ψ0 | ρ†kρk (H − E0) | Ψ0〉

〈Ψ0 | ρ†kρk | Ψ0〉

+
〈Ψ0 | ρ†k [(H − E0), ρk] | Ψ0〉

〈Ψ0 | ρ†kρk | Ψ0〉
. (101)

The first term of the previous equation is zero when | ψ0〉 is the exact ground
state but also when it is a variational model fulfilling the two–body optimization
condition of Eq. (61).

As for the second term, the commutator of ρk with E0 is trivially zero and,
if the potential is momentum independent, the commutator with the potential
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operator also cancels. In this way one is left with the kinetic energy contribution

ǫ(k) =
〈Ψ0 | ρ†k[− h̄2

2m

∑

i ∇2
i , ρk] | Ψ0〉

〈Ψk | Ψk〉
(102)

which can be easily simplified in the following way: Take into account the anti–
hermitian character of the ∇ operator, and the fact that the ground state of a
Bose system is always real, then

∫

dRΨ0f(r)(∇1Ψ0) = −1

2

∫

dRΨ0(∇1f)Ψ0 (103)

This together with the properties of commutators, allows us to write excita-
tion energy

ǫ(k) =
h̄2

2m

N
∑

i=1

〈Ψ0 | (∇iρ
†
k)(∇iρk) | Ψ0〉

〈Ψ0 | Ψ0〉

( 〈Ψk | Ψk〉
〈Ψ0 | Ψ0〉

)−1

(104)

thus leading to

ǫ(k) =
h̄2k2

2m

N
∑

i

( 〈Ψk | Ψk〉
〈Ψ0 | Ψ0〉

)−1

=
h̄2k2

2mS(k)
. (105)

Recalling the small k behavior of S(k) of Eq. (94) in helium, one finally recovers

ǫ(k)k→0 = h̄kc (106)

which is the typical linear dispersion relation of phonon excitations.
The excitation spectrum of the system can be explored by means of inelastic

neutron scattering. The setup of a typical scattering experiment is shown in
Fig. 12. A beam of neutrons is emitted from the source, and falls on the sample
after it is collimated to match the desired energy and momentum. Neutron
detectors are placed at a large distance surrounding the sample. The scatter-
ing angle is directly related to the energy E and the momentum q transferred
from the probe to the sample. An important aspect to bear in mind is the fact
that the range of energies and momenta of the neutrons used in the experi-
ment are precisely those matching the energies and momenta characteristic of
the elementary excitations and collective modes of a typical condensed matter
system.

In addition, the neutrons only interact with the nucleus of the atoms in the
sample, and the nuclear interaction is really short–ranged compared with the
wave length of the incident beam (of the order of few Å). This fact implies that
the scattering basically happens in s–wave and that the effective potential the
neutron sees can be well characterized by a Fermi pseudo potential

V (r) =
2πh̄2

m
b

N
∑

j=1

δ(r − rj) , (107)
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Figure 12: Experimental setup of a typical neutron scattering experiment. (a)
neutron source, (b) momentum selector, (c) sample, (d) transmitted neutrons,
(e) neutrons with momentum k’ scattered in a solid angle ∆Ω.

where b is the scattering length. On the other hand, the use of Fermi’ “Golden
Rule” allows to write the cross–section in the form

d2σ

dEdΩ
=
k1

k0
b2S(q, E) , (108)

where S(q, E) is the dynamic structure function

S(q, E) =
1

N

∑

n

| 〈n | ρq | 0〉 |2 δ(E − (En − E0)) , (109)

ρq being the density fluctuation operator.
The measurement performed at each detector can be associated with well

defined values of the energy and momentum transferred, and the number of
counts registered in each detector gives precise information about the inten-
sity of the scattering. This intensity is characterized by the double differential
cross section defined above, which becomes the product of a kinematic term
containing the initial and the final momentum of the neutron, the scattering
length that defines the interaction, and the new function, S(q, E), which incor-
porates all the information one can extract in the experiment corresponding to
the system under study. The dynamic structure function for a given excitation
operator collects the contribution of all excited states which are accessible with
that excitation operator, and that are compatible with the external energy and
momentum being transferred to the system. The cross section then presents
marked peaks at these energies.

As an example, one can calculate S(q, E) in the one–phonon approximation,
where ρq | 0〉 are the only allowed excited states. This is a very crude ap-
proximation, but since this ansatz gives a good description of the spectrum at
very low energies, one can expect the resulting S(q, E) to be accurate enough
to describe the response in this regime.
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The set of normalized excited states considered are then

| n〉 ≡ | Ψk〉
〈Ψk | Ψk〉1/2

=
ρk | Ψ0〉

N1/2S(k)1/2
, (110)

and the required matrix elements become

〈n | ρq | 0〉 = δk,qN
1/2(S(q))1/2 , (111)

which lead to the expression

S(q, E) =
1

N

∑

k

δkqNS(q)δ

(

E − h̄2k2

2mS(k)

)

. (112)

Now, one can use the δkq to perform the summation over k to finally find

S(q, E) = S(q)δ

(

E − h̄2q2

2mS(q)

)

. (113)

In this approximation, S(q, E) becomes a δ-function centered at the excita-
tion energy with a strength given by the static structure function S(q). There is
only one excited state taking all the strength of the excitation operator because
in this approximation there is only one state able to take the whole momentum
and energy transferred to the system.

Furthermore, one can also perform an analysis in terms of the energy
weighted sum rules satisfied by S(q, E), which is a common tool used to study
the dynamic structure function of generic systems. This is done by evaluating
the different energy moments of S(q, E) and inferring its behavior from them.
Sum rules of the response are defined as

mk(q) =

∫ ∞

0

dE EkS(q, E) , (114)

which, due to the energy integration, do not depend on the detailed structure of
the excited states and reduce to ground state expectation values of commutators
of the Hamiltonian and the density fluctuation operator.

Here only the first two moments m0 and m1 will be considered. The idea is
to first carry out the energy integration and to use the closure property when
appropriate. The m0 moment is extremely simple and becomes

m0(q) =

∫

dE S(q, E)

=
1

N

∫

dE
∑

n

| 〈n | ρq | 0〉 |2 δ(E − (En − E0))

=
1

N

∑

n

| 〈n | ρq | 0〉 |2

34



=
1

N

∑

n

〈0 | ρ†q | n〉〈n | ρq | 0〉

=
1

N
〈0 | ρ†qρq | 0〉 = S(q) . (115)

The evaluation of m1(q) is also straightforward

m1 =

∫ ∞

0

dE S(q, E)E

=
1

N

∑

n

(En − E0)〈0 | ρ†q | n〉〈n | ρq | 0〉

=
1

N

∑

n

〈0 | ρ†q | n〉〈n | [H, ρq] | 0〉

=
1

2

1

N
〈0 | [ρ†q, [H, ρq]] | 0〉 (116)

where in the last step use has been made of the time reversal invariance of the
system. [46]

Only the kinetic operator from H contributes to the innermost commutator,
and after little algebra one finds the final result

m1(q) =
h̄2q2

2m
, (117)

thus showing that the first moment of the response, also known as the f-sum rule,
depends on the details of the system only through the mass of its constituents.

Notice that this result has been obtained on the basis that the system is
initially in its ground state, and that it is infinite, homogeneous and invariant
under time reversal transformations. These conditions are quite common and
therefore the range of validity of this sum rule is quite wide. Of course, the fact
that m1(q) = h̄2q2/2m is very interesting from the theoretical point of view as
it imposes a severe model independent constraint on any realistic calculation of
the response.

At this point it is straightforward to check that S(q, E) calculated in the
one–phonon approach, S(q, E) = S(q)δ(E − h̄2q2/2mS(q)), fulfills these two
sum rules. Of course, this fact does not mean that this is the exact response.
Actually, one can reverse the question and ask what should the form of S(q, E)
be if the sum rule is exhausted by only one state. In that case, one can write

S(q, E) = Z(q)δ(E − Eq) (118)

and require the two first sum rules to be fulfilled

m0(q) =

∫ ∞

0

S(q, E) dE = S(q) ≡ Z(q) (119)

and

m1(q) =

∫ ∞

0

S(q, E)E dE =
h̄2q2

2m
≡ Z(q)Eq , (120)
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so that one can recover Eq = m1/m0 to get Eq = h̄2q2/2mS(q). This shows
that the one–phonon approximation is the exact solution in this case when only
one state is populated.

5.2 Linear response and equation of motion method

In the calculation of the ground state properties we optimized the total energy
and derived the Euler equations for the pair distribution function.

In this section we follow a similar approach for the dynamic, time dependent
system and optimize the action integral with respect to density oscillations.
Time dependence is introduced into the system by adding an external, driving
potential into the Hamiltonian. The bosonic quantum system responds to that
by changing its density. Since the Hamiltonian is known and the wave function
is solved from the least action principle we can derive the continuity equations
for the one– and two–particle currents and densities, which are the equations
of motion of the system. In this approach all particles are treated on the same
footing including those which are in the Bose condensed state. The fraction of
particles in the condensate can be calculated from the asymptotic behavior of
the dynamic structure function at large momenta and frequencies.

Let us assume that a quantum fluid is driven out of the ground state by an
infinitesimal external interaction Ũext(k, ω), with a given frequency ω and wave
number k representing a probe. Under these assumptions we need to consider
the linear response of th system and each Fourier component Ũext(k, ω) of the
interaction acts independently: a given component induces a density fluctuation,
δρ̃1(k, ω), in the originally homogeneous system having the same wave vector
and frequency. In particular, we choose to study a harmonic perturbation. We
can do this without loss of generality, because every periodic perturbation can
be Fourier decomposed into its harmonic components.

A probe with a given frequency produces transitions in the system transfer-
ring thus energy into it. This will heat up the system, even to such an extend
that the system deformation can no longer be considered small and nonlinear
effects become important. To avoid this, we adopt the usual idea of adiabati-
cally turning on the interaction. Mathematically it amounts to multiplying the
interaction by a factor eηt, where η is a positive infinitesimal constant, set to
zero at the end of the calculation. This procedure ensures also that the response
to the prope is causal – i.e. the response occurs after the applied perturbation
in time. For t→ −∞, the system is in its ground state.

The response of the system is assumed to be linear and the information
on its dynamic properties, excitations and decay modes, is contained in the
density–density linear–response function defined as

χ(k, ω) =
δρ̃1(k, ω)

ρ0Ũext(k, ω)
. (121)

A standard application of the first-order time-dependent perturbation the-
ory, in which one treats the external potential as perturbation and projects the
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state |Ψ,k〉 onto the eigenstates of the unperturbed Hamiltonian, allows the
linear response function to be written in terms of the eigenstates of the system
as

χ(k, ω) =
1

N

∑

n

| 〈n | ρk | 0〉 |2 (122)

×
[

1

h̄ω − h̄ωn0 + iη
− 1

h̄ω + h̄ωn0 + iη

]

Comparing with Eq.(109) we get

χ(k, ω) =

∫

d(h̄ω′)S(k, ω′) (123)

×
[

1

h̄ω − h̄ω′ + iη
− 1

h̄ω + h̄ω′ + iη

]

The dynamic structure function thus serves as a spectral density for the
density-density response function. At zero temperature the dynamic structure
function gives the density-fluctuation excitation spectrum as a positive definite
function defined on the positive real axis, and, therefore, contains the physical
information in a more compact form than the linear density-density response
function.

Recalling Plemelj’s formula for singular integrals

lim
η→0

1

h̄ω − h̄ω′ ± iη

= P 1

h̄ω − h̄ω′
∓ iπδ(h̄ω − h̄ω′) (124)

where P denotes Caychy principal value, we can split the linear response func-
tion into real and imaginary parts.

Reχ(k, ω) =

∫ −∞

−∞

d(h̄ω′)S(k, ω′)P
(

2h̄ω

h̄2ω2 − h̄2ω′2

)

Imχ(k, ω) = −π [S(k, ω′) − S(k,−ω′)] (125)

The dynamic structure function measures real transitions induced by the probe,
thus the imaginary (dissipative) part of the response function specifies directly
the steady energy transfer from an oscillating probe to the many-particle system.
The real (reactive) part describes virtual transition or reversible deformation of
the system. We also see that the real part is an even function of ω, whereas the
imaginary part is odd. At finite temperatures one must allow the possibility
that the system transfer energy to the probe as well.

Eq. (125) connects the dynamic structure function, which provides a direct
measure of the fluctuations in the system to the imaginary part of the linear
response function describing energy dissipation. The relation between these two
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in principle quite different phenomena is known as the fluctuation–dissipation
theorem. At zero temperature ω > 0 and S(k,−ω) vanishes and we can write

S(k, ω) = − 1

π
ℑm [χ(k, ω)] . (126)

Hence, S(k, ω) is known, once the relation between the one–body density fluc-
tuations and the perturbation has been established and one can compare the
theoretical results with experiments.

The dynamic structure function is measured in (x–ray, neutron) scattering
experiments and provides information of the strength, lifetime, and dispersion
of excitations. At low temperatures it consists typically of a low–frequency
sharp peak and of a high–frequency broad contribution.[79, 51] It is therefore
customary to write

S(k, ω) = Z(k)δ(h̄ω − h̄ω0(k)) + Smp(k, ω) . (127)

This suggests that Eq. (109) may not be the best way to formulate the dynamic
structure of a strongly correlated system.

Eq. (123) expresses the linear response function in the Kubo form, in terms
of the exact eigenstates of the system. These are something we do not know
and thus some form of perturbation theory is needed.

Another method is to take the Kubo form as Green’s function of the propa-
gating density fluctuation (phonon Green’s function). Then we can return to the
diagrammatic techniques developed by Feynman and Dyson. We key quantity
in Dyson equations is the self-energy Σ(k, ω) which is connected to the Green’s
function and similarly to the linear response function as follows,

χ(k, ω) = S(k)
[ 1

h̄ω − ε(k) − Σ(k, ω)

− 1

h̄ω + ε(k) + Σ∗(k,−ω)

]

. (128)

Here ε(k) is the energy of a single collective mode. The above form is familiar
from the random phase approximation (RPA) where the self energy contains a
set of ring diagrams is summed up to infinite order. The form preserves the
symmetry properties of the Kubo form.

The self–energy Σ(k, ω) is a complex quantity,

Σ(k, ω) = ∆(k, ω) − iΓ(k, ω) . (129)

Recalling that for singular integrand one has

1

ω − ω′
= P 1

ω − ω′
− iπδ(ω − ω′) (130)

where P denotes the Cauchy principal value, we see that the dynamic structure
function (126) has contributions from the poles of the response function and
from the imaginary part of the self–energy.
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The elementary excitation modes are determined by the positive frequency
poles ω = ω0(k) of Eq. (128). We show in a moment that the poles lie on the
real axis, then

h̄ω0(k) = ε(k) + ∆(k, ω0(k)) (131)

and Γ(k, ω0(k)) = 0. The strength Z(k) of that pole can then be evaluated from
the derivative of the self–energy,

Z(k) = S(k)

[

1 − d∆(k, ω)

d(h̄ω)

∣

∣

∣

∣

ω=ω0

]−1

. (132)

The second term in (127), Smp(k, ω), is the multi–phonon background, i.e.
the contribution in which a projectile like a neutron probing the system ex-
changes energy with two or more excitation modes. This contribution is deter-
mined by the imaginary part of the self–energy

Smp(k, ω) =
1

π
S(k)

Γ(k, ω)

[h̄ω + ε(k) + ∆(k, ω)]
2

+ [Γ(k, ω)]
2 . (133)

The dynamic structure function is a positive function for positive values of ω
and that is why also Γ(k, ω) must be a non–negative function. For Γ(k, ω) > 0
the energy h̄ω transfered into the system has created such excitation modes,
that can decay into other lower lying excitations within finite lifetime.

In addition, the relative weight, Z(k)/S(k), gives the efficiency of scattering
processes from a single collective excitation, as seen from the zeroth–moment
sum rule

∫ ∞

0

S(k, ω)d(h̄ω) = S(k) . (134)

In other words, it gives the fraction of available scattering processes going
through a single collective mode at a given wave vector. If the only excitation in
the system were the collective mode ε(k), like in the Feynman approximation,
then the ratio Z(k)/S(k) would be one.

Let us return to the proof that all poles of the response function must lie on
the real ω–axis and thus they determine the collective, elementary excitation
modes of the system. The pole solution of Eq.(128) must satisfy the implicit
equation

h̄ω0(k) = εF (k) + Σ(k, ω0(k)) (135)

We start the proof by assuming that ω0 is complex,

ω0 = x0 + iy0 , (136)

and show that this leads to a contradiction.[87]
The general requirement that the dynamic structure function must be posi-

tive implies that the imaginary part of the self–energy Γ(k, ω) ≥ 0 when ω ≥ 0
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and zero otherwise. Using the Kramer–Kronig relations we can write the self–
energy in the spectral form

Σ(k, ω) =
1

π

∫ ∞

0

dω′ Γ(k, ω′)

ω − ω′
. (137)

If we make the assumption of Eq. (136) then the poles are given by the solutions
of the equation

x0 + iy0 − εF (k) =
1

π

∫ ∞

0

dω′ Γ(k, ω′)

x0 + iy0 − ω′
. (138)

Setting imaginary parts equal on both sides of the equation we get

1 = −
∫ ∞

0

dω′

π

Γ(k, ω′)

(x0 − ω′)2 + y2
0

. (139)

The right–hand side is always negative and the equation can never be satisfied.
We can conclude that the poles must lie on the real ω–axis.

5.3 Time–dependent correlation functions

Let us proceed with the details of the time–dependent response of the system.
If a weak, time dependent interaction perturbs the system then the ground–
state wave function, Ψ0(r1, . . . , rN ), is modified accordingly and it becomes
time dependent. For later use we separate in the notations the time dependent
phase due to the unperturbed ground state energy

Ψ(r1, . . . , rN ; t) = e−iE0t/h̄Φ(r1, . . . , rN ; t) , (140)

the change in the normalization due to the perturbation

Φ(r1, . . . , rN ; t) =
1

√

N (t)
φ(r1, . . . , rN ; t) (141)

and the time dependence of the correlation functions

φ(r1, . . . , rN ; t) = e
1
2 δU(r1,...,rN ;t)Ψ0(r1, . . . , rN ) . (142)

One can think δU(r1, ..., rN ; t) as a complex–valued excitation operator

δU(r1, ..., rN ; t) =
∑

i

δu1(ri; t) +
∑

i<j

δu2(ri, rj ; t) (143)

expanded in terms of one– and two–body correlation functions. The time–
dependent one–body function δu1(ri; t) must be included into the description
because dynamics will normally break the translational invariance of the system,
but restricting the time dependence to the one–body component only would
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lead directly to the Feynman theory of one–phonon excitations as we will show
later. The time–dependent two–body component is significant in situations
where the external field excites fluctuations of wavelengths comparable to the
inter–particle distance, as explicitly demonstrated for liquid 4He [77, 75, 76, 74,
63] and for the bosonic Coulomb systems[80].

In the previous section we showed that the optimized ground state
Ψ0(r1, . . . , rN ) satisfies the Schrödinger equation

H0Ψ0 = E0Ψ0 (144)

where H0 is the ground state Hamiltonian given in Eq. (46) and E0 is the
ground state energy appearing in the phase factor of definition Eq. (140). In
order to simplify notations we assume that the ground state wave function is
normalized to unity

〈Ψ0|Ψ0〉 = 1 . (145)

The normalization factor in Eq. (141) has changed from that due to the time
dependence of the correlation factors

N (t) =

∫

d3r1 . . . d
3rN |Ψ0(r1, . . . rN )|2eℜe[δU(r1,...rN ;t)] . (146)

5.4 Action integral

The time evolution of the wave function functions is governed by the least–action
principle [81, 82]

δS = δ

∫ t

t0

dtL(t) (147)

≡ δ

∫ t

t0

dt

〈

Ψ(t)

∣

∣

∣

∣

H(t) − ih̄
∂

∂t

∣

∣

∣

∣

Ψ(t)

〉

= 0

where the Hamiltonian
H(t) = H0 + Ûext(t) (148)

now contains, besides the ground–state Hamiltonian H0, also the time depen-
dent operator Ûext(t) =

∑N
i=1 Uext(ri; t), which creates an external, infinitesimal

disturbance into the system. This is exactly the term that provides us the re-
lation between the one–body density fluctuations and the perturbation, needed
to calculate the dynamic linear response.

Using the ground state Schrödinger equation (144) we can write the inte-
grand in the form

L(t) =

〈

Φ(t)

∣

∣

∣

∣

H − E0 −
h̄

2

(

i
∂

∂t
+ h.c.

)
∣

∣

∣

∣

Φ(t)

〉

41



=
1

N (t)

〈

Ψ0

∣

∣

∣
e

1
2 δU∗(t)[H0, e

1
2 δU(t)]

∣

∣

∣
Ψ0

〉

+

〈

Φ(t)

∣

∣

∣

∣

− h̄
2

(

i
∂

∂t
+ h.c.

)

+ Ûext(t)

∣

∣

∣

∣

Φ(t)

〉

. (149)

With the notation h.c. we add the hermitian conjugation of the time–derivative
operator.

The potential energy term commutes with δU(t) and thus only the kinetic
energy gives contribution to the commutator. This can be evaluated with a
little bit of algebra,

∫

dτ Ψ0 e
1
2

δU∗(t)
∇

2

(

e
1
2

δU(t)
Ψ0

)

=

∫

dτΨ0e
1
2

δU∗(t)
∇ ·

(

1

2
e
1
2

δU(t)
Ψ0∇δU(t) + e

1
2

δU(t)
∇Ψ0

)

=

∫

dτ

[

−e
1
2

δU∗(t)
( 1

2
Ψ0∇δU

∗
(t) + ∇Ψ0

) 1

2
e
1
2

δU(t)
Ψ0∇δU(t)

+ Ψ0e
ℜe[δU(t)]

( 1

2
∇Ψ0 · ∇δU(t) + ∇

2
Ψ0

)

]

=

∫

dτ

[

−
1

4
|Ψ0|

2
e
ℜe[δU(t)]

|∇δU(t)|
2

+ Ψ0e
ℜe[δU(t)]

∇
2
Ψ0

]

giving the result

1

N (t)

〈

Ψ0

∣

∣

∣
e

1
2 δU∗(t)[H0, e

1
2 δU(t)]

∣

∣

∣
Ψ0

〉

=
h̄2

8m

〈

Φ(t)

∣

∣

∣

∣

∣

∣

N
∑

j=1

|∇jδU(t)|2
∣

∣

∣

∣

∣

∣

Φ(t)

〉

. (150)

The evaluation of the time derivative gives

− h̄

2

〈

Ψ0

∣

∣

∣

∣

∣

e
1
2 δU∗(t)

√

N (t)

(

i
∂

∂t
+ h.c.

)

e
1
2 δU(t)

√

N (t)

∣

∣

∣

∣

∣

Ψ0

〉

=
1

2
h̄

〈

Φ(t)
∣

∣

∣
ℑm[δU̇(t)]

∣

∣

∣
Φ(t)

〉

(151)

where we have used the dot–notation ḟ(t) = ∂f(t)
∂t . Collecting all together we

have the integrand

L(t) =
〈

Φ(t)
∣

∣

∣

h̄2

8m

N
∑

j=1

|∇j δU(t)|2

+
1

2
h̄ ℑm[δU̇(t)] + Ûext(t)

∣

∣

∣
Φ(t)

〉

. (152)
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5.5 Least action principle

In the least–action principle we search for the correlation functions δu1(r1; t),
δu2(r1, r2; t), etc, which minimize the action integral (148). The variation

δS = δ

∫ t

t0

dt′L(t′) = 0 (153)

with respect to a general correlation function δun(r1, . . . , rn; t), which depends
on n coordinates and time gives

∫

d3rn+1 . . . d
3rN

[

− h̄2

8m

n
∑

j=1

∇j ·
(

|Φ(t)|2∇jδU(t)
)

− ih̄

4

∂

∂t
|Φ(t)|2 +

(

h̄

2
ℑm[δU̇ ] + Ûext

)

1

N (t)

∂|φ|2
∂δU∗(t)

]

−
〈

Φ(t)

∣

∣

∣

∣

h̄

2
ℑm[δU̇ ] + Ûext

∣

∣

∣

∣

Φ(t)

〉

1

N (t)

∂N (t)

∂δU∗(t)
. (154)

The derivatives can be calculated from the definitions (141)

∂|φ|2
∂δU∗(t)

=
1

2
|φ|2

1

N
∂N

∂δU∗(t)
=

1

2

∫

d3rn+1 . . . d
3rN |Φ(t)|2

∂

∂t
|Φ(t)|2 = |Φ(t)|2

[

ℜeδU̇ −
∫

d3r1 . . . d
3rN |Φ(t)|2ℜeδU̇

]

and the least action principle can be written in the form
∫

d3rn+1 . . . d
3rN

[

− h̄2

4m

n
∑

j=1

∇j ·
(

|Ψ|2∇jδU(t)
)

(155)

+|Ψ|2
(

− ih̄
2
δU̇ + Ûext −

〈

Ψ

∣

∣

∣

∣

− ih̄
2
δU̇ + Ûext

∣

∣

∣

∣

Ψ

〉)

]

= 0 .

5.6 Many–particle densities and currents

In order to simplify the notations in Eq. (155) we generalize the definition of
the n–particle density in Eq. (57) to the time dependent wave function,

ρ̄n(r1, . . . rn; t) =
N !

(N − n)!

∫

dτn+1|Ψ(r1, . . . rN ; t)|2 . (156)

with dτn+1 ≡ d3rn+1 . . . d
3rN In the linear response theory one assumes that the

time dependent perturbation is infinitesimal and hence it is natural to separate
the time dependent and independent parts of the density,

ρ̄n(r1, . . . rn; t) = ρn(r1, . . . rn) + δρn(r1, . . . rn; t) . (157)
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Expanding to the first order in δU(t) we get

δρn(r1, . . . rn; t) ≈ N !

(N − n)!

∫

dτn+1|Ψ0|2 (158)

× ℜe
[

δU(t) − 〈Ψ0 |δU(t)|Ψ0〉
]

.

The physical density is a real quantity, but in Eq. (155) the terms with
the time derivative can be identified with the density if we generalize the above
definition to the complex density fluctuations by removing the notation for the
real part.

Similarly we define the n–particle current

jn,j(r1, . . . rn; t) =
h̄

2mi

N !

(N − n)!
(159)

×
∫

dτn+1 [Ψ∗∇jΨ − Ψ∇jΨ
∗] ,

expand it to the first order in δU(t)

jn,j(r1, . . . rn; t) ≈ h̄

2m

N !

(N − n)!
(160)

×
∫

dτn+1|Ψ0(r1, . . . rN )|2ℑm [∇j δU(t)]

and generalize the definition to complex currents as needed in Eq. 155). The
second index in the definition of currents refers to the index of the differentiated
coordinate.

5.7 One– and two–particle continuity equations

With the generalized definitions of Eqs. (159) and (161), the least action prin-
ciple (155) can be separated into one– and two–particle continuity equations —
the equations of motion of the system, [77, 75, 76]

∇1 · j1(r1; t) + δρ̇1(r1; t) = D1(r1; t) (161)

∇1 · j2,1(r1, r2; t) + ∇2 · j2,2(r1, r2; t) (162)

+ δρ̇2(r1, r2; t) = D2(r1, r2; t) .

On one-body level we leave out the second index as unnecessary.
Inserting the definition of the excitation operator (143) into the definition

of the density (159) and using the complex notation we get the expression of
the one–particle density fluctuations in terms of the two– and three–particle
distribution functions (49)

δρ1(r1; t) = ρ0 δu1(r1; t)
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+ ρ2
0

∫

d3r2(g2(r1, r2) − 1)δu2(r2; t) (163)

+ ρ2
0

∫

d3r2

[

g2(r1, r2)δu2(r1, r2; t)

+
ρ0

2

∫

d3r3 (g3(r1, r2, r3) − g2(r2, r3)) δu2(r2, r3; t)
]

.

From the definition (159) it is easy to verify that the particle number is conserved
in the fluctuations

∫

d3rδρ1(r) = 0 (164)

and that the sequential relation is satisfied,
∫

d3r2 δρ2(r1, r2; t) = (N − 1) δρ1(r1; t) . (165)

The one– and two–particle currents can be read out of Eq. (161). Using
again the complex notation we get

j1(r1; t) =
h̄ρ0

2mi

{

∇1δu1(r1; t) (166)

+ ρ0

∫

d3r2g2(r1, r2)∇1δu2(r1, r2; t)

}

.

j2,1(r1, r2; t) =
h̄ρ2

0

2mi

{

g2(r1, r2) (167)

× [∇1δu1(r1; t) + ∇1δu2(r1, r2; t)]

+ ρ0

∫

d3r3g3(r1, r2, r3)∇1δu2(r1, r3; t)

}

.

The currents also satisfy the sequential relation
∫

d3r2 j2,1(r1, r2; t) = (N − 1) j1(r1; t) . (168)

The terms which depend on the external potential are collected into the func-
tions D1(r1; t) and D2(r1, r2; t) and they are the terms which drive excitations
into the system,

D1(r1; t) =
2ρ0

ih̄

{

Uext(r1; t)

+ρ0

∫

d3r2

[

g2(r1, r2) − 1
]

Uext(r2; t)

}

(169)

D2(r1, r2; t) =
2ρ2

0

ih̄

{

g2(r1, r2) [Uext(r1; t) + Uext(r2; t)]

+ρ0

∫

d3r3

[

g3(r1, r2, r3) − g2(r1, r2)
]

Uext(r3; t)

}

. (170)
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6 Solving the continuity equations

Up to now, we have formulated the problem in terms of a Hamiltonian, a trial
wave function, the least action principle, and we have derived two coupled con-
tinuity equations (161) and (163). What we still need to do is to find a way to
actually solve those continuity equations for the unknown quantities δu1(r; t)
and δu2(r1, r2; t); assuming that all ground state quantities are known. In the
following we introduce various approximation schemes.

In the homogeneous system fluctuations are weak and it is more convenient
to work in the Fourier space. We define the one–body Fourier transform and its
inverse as

F [f(r; t)] = ρ0

∫

d3r dt e−i(k·r−ωt)f(r; t)

= f̃(k;ω)

F−1[f̃(k;ω)] =

∫

d3k dω

(2π)4ρ0
ei(k·r−ωt)f̃(k;ω)

= f(r; t) (171)

and the two–body Fourier transforms in the form

F [f(r1, r2; t)] =

= ρ2
0

∫

d3r1d
3r2 dt e

−i(k·R+p·r−ωt)f(r1, r2; t)

F−1[f̃(k,p; t)] =

=

∫

d3kd3p dω

(2π)7ρ2
0

ei(k·R+p·r−ωt)f̃(k,p;ω) . (172)

Here R = (r1 + r2)/2 is the center–of–mass vector and r = r1 − r2 the rel-
ative position vector; k and p are the center–of–mass and relative momenta,
respectively.

6.1 Feynman approximation

The simplest, physically consistent approximation is the Feynman approxima-
tion where we limit the time dependence to the one–body correlation function by
setting δu2(r1, r2; t) = 0. In this case, we need to solve only the first continuity
equation (161). The one–body current reduces to

j1(r1; t) =
h̄ρ0

2mi
∇1δu1(r1; t) (173)

and the time–dependent part of the density is simply

δρ1(r1; t) = ρ0δu1(r1; t) (174)

+ ρ2
0

∫

d3r2

[

g2(|r1 − r2|) − 1
]

δu1(r2; t) .
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The Fourier transforms into the momentum space can be readily calculated,
resulting in

δρ̃(k, t) = S(k)ρ0δũ(k, t) . (175)

Inserting these results into the continuity equation (161), along with the
Fourier transform of D1(r; t), we end up with

(

−εF (k) + ih̄
∂

∂t

)

δρ̃(k, t) = 2ρ0S(k)Ũext(k, t) . (176)

where we have used the notation

εF (k) =
h̄2k2

2mS(k)
. (177)

The external potential is part of the Hamiltonian and that is why it must
be a real function. As discussed earlier without loss of generality we may take
a harmonic perturbation with a fixed frequency dependence, ω,

Uext(ri; t) = Ue(ri, ω) cos(ωt)eηt, η → 0 + (178)

The time dependence is switched on adiabatically using a small, positive pa-
rameter η, which can be set equal to zero at the end of the calculations. In
momentum space that is simply

Ũext(k; t) = Ũe(k, ω) cos(ωt)eηt . (179)

The density response of the fluid has two components

δρ̃(k, t) =
[

a(k, ω)e−iωt + b(k,−ω)eiωt
]

eηt , (180)

which can be different for ω and −ω.
Inserting this into Eq. (176) and requiring that the solution must be valid

for all t we can solve a and b,

a(k, ω) =
ρ0S(k)Ũe(k, ω)

h̄ω − εF (k) + iη
(181)

b(k,−ω) =
ρ0S(k)Ũe(k, ω)

−h̄ω − εF (k) + iη
= a(k,−ω)

The last equality follows from the fact that the external potential is an even
function of ω and we have changed the notation of the small imaginary term
h̄η → η → 0+.

The physical density needed for the linear response function must be a real
function. We get it from Eq. (180) by adding the complex conjugate of δρ̃(k, t)
and dividing by two.

ℜe[δρ(k; t)] =
1

2
eηt

{

e−iωt [a(k, ω) + a∗(k,−ω)]

+ eiωt [a(k,−ω) + a∗(k, ω)]

}

. (182)
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This separates the response into the retarded and advanced components. The
first one is analytic in the upper half of the complex ω plane and the second
term in the lower half. Eq. (182) defines the Fourier components

ℜe[δρ(k, ω)] = a(k, ω) + a∗(k,−ω) (183)

The retarded component with e−iωt describes a physical, causal pertubation,
which propagates forward in time and the disturbance happens before the re-
sponse. That is the component we need to consider here.

This defines the Feynman approximation of the linear response function,

χ(k, ω) =
a(k, ω) + a∗(k,−ω)

ρ0Ũe(k, ω)
(184)

= S(k)

[

1

h̄ω − εF (k) + iη
− 1

h̄ω + εF (k) + iη

]

,

which has the desired symmetry

χ(k, ω) = χ∗(k,−ω) (185)

as derived from the spectral representation Eq. (125).
The positive frquency poles determine the collective excitation mode of the

system, known as the Feynman approximation

h̄ω = εF (k) =
h̄2k2

2mS(k)
(186)

and in the limit ω′ = 0 we obtain the static response function

χ(k, 0) = −4mS2(k)

h̄2k2
. (187)

In liquid 4He (and, in fact, also in systems where the particles interact
through the screened Coulomb, or Yukawa, interaction), the excitation mode is
linear in the long–wavelength limit and proportional to the speed of sound c,

εF → h̄kc , as k → 0 . (188)

Then the structure function must also be linear at low momenta,

S(k) → h̄k

2mc
, as k → 0 , (189)

as pointed out earlier in Eq. (94), and the inverse of the static response function
determines the incompressibility

− χ−1(k, 0) → mc2 . (190)
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Due to the long range of the Coulomb interaction, the long wavelength limits
in charged systems depend strongly on the dimensionality of the system. For
example, there is a gap in the three–dimensional plasmon spectrum contrary
to the two–dimensional case. That is to say, in a three–dimensional system
(regardless of the statistics) the energy of the collective excitation does not go
to zero at low momenta but to a constant known as the plasma frequency and
the static structure function becomes quadratic in the long wavelength limit
pointed out in Eq. (95).

Everything put together, we have now solved our original problem: the
imaginary part of the density–density response function in the single Feynman
pole approximation and using Eq. (130) we get the dynamic structure function
(126)

S(k, ω) = S(k)δ(h̄ω − εF (k)) . (191)

The strength of the pole is given by Z(k) = S(k). The fact that S(k, ω) consists
only of a single non–decaying excitation branch is where the Feynman approxi-
mation misses much of the physics. The Feynman approximation gives results
that are exact in the long wavelength limit, but in the roton region the exci-
tation energy is too large by a factor of two. Further more, the single–mode
spectrum does not have an upper limit with increasing wave number, contrary
to what is observed.[83] We return to these points when we discuss our results
for the dynamic structure.

The elementary excitation modes of the system can also be obtained directly
by setting Uext = 0 in the continuity equations. Working still within the Feyn-
man approximation and using the results (173) and (175), we get the differential
equation

h̄ρ0

2mi
∇2

1δu1(r1;ω) − iω

[

ρ0δu1(r1;ω) (192)

+ ρ2
0

∫

d3r2 [g(r1, r2) − 1] δu1(r2;ω)

]

= 0 .

This has the solution (186) with

δu1(r1;ω = εF (k)) = eik·r1 . (193)

The excitation operator now takes the Feynman form,

δU =
∑

j

δu1(rj ;ω) =
∑

j

eik·rj . (194)

The full excitation operator of Eq. (143) can then be viewed as a generalization
of this phonon–creation operator.

7 CBF–approximation

The next step is to allow also the two–particle correlation function to vary with
time. Then the response of the system as a solution of the one-body continuity
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equation (161) gains an additional term called self-energy Σ(k, ω), where all
contributions from the time dependence of the two–particle correlation function
are collected,

a(k, ω) =
2S(k)ρ0Ũext(k, ω)

h̄ω − εF (k) − Σ(k, ω) + iη
. (195)

Following the derivation of the linear response function leading to Eq. (185) we
can write the linear response function in the same form as in Eq.(128),

χ(k, ω) = S(k)

[

1

h̄ω − εF (k) − Σ(k, ω) + iη

− 1

h̄ω + εF (k) + Σ∗(k,−ω) + iη

]

. (196)

Collecting results of Eqs. (166), (163) and (169) for the one-body continuity
equation

∇1 · j1(r1; t) + δρ̇1(r1; t) = D1(r1; t) (197)

we find that both the density fluctuations and currents depend on the time-
dependent two particle correlation function. Further more a new quantity, the
triplet distribution function g3(r1, r2, r3), appears in the equation. There are
systematic ways the approximate that in terms of the Abe- diagrams, but here
we include only the first set of diagrams called the convolution approximation.
In that approximation the emphasis is put on the correct long-range behavior.

7.1 Convolution approximation

The simplest set of diagrams needed for the triplet distribution function
g3(r1, r2, r3) contains the fan diagrams shown in Fig. 13.

In the algebraic form it becomes

g3(r1, r2, r3) = 1 + h(r1, r2) + h(r1, r3) + h(r2, r3)

+ h(r1, r2)h(r1, r3) + h(r1, r2)h(r2, r3)

+ h(r1, r3)h(r2, r3)

+

∫

d3r4h(r1, r4)h(r2, r4)h(r3, r4) (198)

+ terms with triplet correlations functions .

Here we have also introduced the short–hand notation h(r1, r2) = g2(r1, r2)−1.
After the Fourier transform this simplifies to a product form

F [g3(r1, r2, r3) − 1] = S(k1)S(k2)S(k3) (199)

× [1 + u3(k1,k2,k3)] − 1 .

We ignore triplet correlations for a moment, but they can be add later at will.
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Figure 13: Convolution approximation of g3(r1, r2, r3). Circles are particle
positions, black circles are integrated and open circles not. Dashed lines are
functions h(r1, r2) and triangles are triplet correlation functions u3(r1, r2, r3),
which can be ignored in the simplest approximation. The second, third, sixth
and seventh diagrams have three of the same kind, but with different particle
coordinates.

7.2 One–particle equation

Let us now return to the one-particle continuity equation (161) and to the one–
particle current (166). We want again to remove δu1(r1; t) in favor of δρ1(r1; t)
within the convolution approximation. In that approximation the one–particle
density (163) can be written in the form

δρ1(r1; t) = ρ0 δv1(r1; t) + ρ2
0

∫

d3r2h(r1, r2)δv1(r2; t) (200)

with

δv1(r1; t) = δu1(r1; t) (201)

+ρ0

∫

d3r2g2(r1, r2)δu2(r1, r2; t)

+
1

2
ρ2
0

∫

d3r2d
3r3Y (r2, r3; r1)δu2(r2, r3; t)

]

,

with Y (r1, r2; r3) = h(r1, r3)h(r2, r3).
Eq. (200) can then be readily solved for δv1(r1; t)

ρ0δv1(r1; t) = δρ1(r1; t) − ρ0

∫

d3r2X(r1, r2)δρ1(r2; t) . (202)

From that we can solve the one–particle correlation function,

ρ0δu1(r1; t) = δρ1(r1; t)
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−ρ0

∫

d3r2X(r1, r2)δρ1(r2; t)

−ρ2
0

∫

d3r2g2(r1, r2)δu2(r1, r2; t) (203)

−1

2
ρ3
0

∫

d3r2d
3r3Y (r2, r3; r1)δu2(r2, r3; t) .

Taking its gradient and inserting into equation (166) we get the one–particle
current

j1(r1; t) =

=
h̄

2mi

{

∇1

[

δρ1(r1; t) − ρ0

∫

d3r2X(r1, r2)δρ1(r2; t)

]

−ρ2
0

∫

d3r2δu2(r1, r2; t)∇1g2(r1, r2) (204)

−1

2
ρ3
0

∫

d3r2d
3r3∇1Y (r1, r2; r3)δu2(r2, r3; t)

}

.

We can now collect the expressions for the current and density from Eqs.
(204) and (203) and insert them into the continuity equation (161). In momen-
tum space it has the form

[h̄ω − εF(k)]δρ1(k;ω)

+
h̄2k2

4m

∫

d3p

(2π)3ρ0
σk(p)δu2(k,p;ω)

= 2ρ0S(k)Uext(k, ω) (205)

where we have introduced the notation σk(p),

σk(p) = − 1

k2

[

k ·
(

k
2 + p

)

S
(∣

∣

k
2 − p

∣

∣

)

+ (p ↔ −p)
]

+ S
(∣

∣

k
2 + p

∣

∣

)

S
(∣

∣

k
2 − p

∣

∣

)

. (206)

7.3 Two–particle equation

Our aim is to get an approximation for δu2(r1, r2; t) using Eq. (163). The
simplest term to approximate is D2(r1, r2; t) in Eq. (170) using the convolution
approximation (199)

D2(r1, r2; t) = ρ0

{

g2(r1, r2) (D1(r1; t) +D1(r2; t))
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+
2ρ2

0

ih̄

∫

d3r3Uext(r3; t)

[

h(r1, r3)h(r2, r3) (207)

+

∫

h(r1, r4)h(r2, r4)h(r3, r4)

]

}

.

The last two lines can be written in the form

ρ0

∫

d3r3Y (r1, r2; r3)D1(r3; t) (208)

The triplet correlation function will give an additional contribution to that. We
can express now the two particle driving term entirely in terms of D1(r; t).

D2(r1, r2; t) = ρ0

{

g2(r1, r2) (D1(r1; t) +D1(r2; t))

+ρ0

∫

d3r3Y (r1, r2; r3)D1(r3; t)

}

. (209)

Similarly we can write the expression for the time dependent two–particle
density using Eqs. (159) and (163)

δρ2(r1, r2; t) = ρ0

{

g2(r1, r2) (δρ1(r1; t) + δρ1(r2; t))

+ ρ0

∫

d3r3Y (r1, r2; r3)δρ1(r3; t)

}

+ ρ2
0g2(r1, r2)δu2(r1, r2; t) + F [δu2] (210)

where we have removed the dependence on δu1(r, t) in favor of δρ1(r, t). The
functional F [δu2] contains all the rest of the terms with δu2(r1, r2; t). They can
be written explicitly using the definition (159), but they are not included in the
CBF–approximation.

The two particle current has a term with one–particle current, but also
structure which comes from the time–dependent two–particle correlations,

j2(r1, r2; t) = ρ0g2(r1, r2) j1(r1; t)

+
h̄ρ2

0

2mi

{

g2(r1, r2)∇1δu2(r1, r2; t)

+ρ0

∫

d3r3 [g3(r1, r2, r3) − g2(r1, r2)g2(r1, r3)]

×∇1δu2(r1, r3; t)

}

. (211)

The final steps of the derivation are the approximations necessary to bring
the two–body equation in a numerically tractable form. Our scheme follows
the general strategy of the uniform limit approximation [59] which has been
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quite successful for the calculation of the optimal static three–body correlations
[84, 85, 86]. The essence of the approximation is to consider all products of two
or more two–body functions small in coordinate space.

In our specific case, the uniform limit approximation amounts to tak-
ing g2(r1, r2)δu2(r1, r2; t) ≈ δu2(r1, r2; t) and a similar expression for
∇1δu2(r1, r2; t). While this approximation places more emphasis on the struc-
ture of δu2(r1, r2) it is physically appealing since it simply removes the redun-
dant relevant short–range structure shared by g2(r1, r2) and δu2(r1, r2). Invok-
ing the equivalent uniform limit for the three–body distribution function, the
terms in Eq. (211) which depend on δu2(r1, r2; t) become

h̄ρ2
0

2mi

[

g2(r1, r2)∇1δu2(r1, r2; t) (212)

+ρ0

∫

d3r3∇1δu2(r1, r3; t)

× [g3(r1, r2, r3) − g2(r1, r3)g2(r1, r2)]

]

≈ h̄ρ3
0

2mi

∫

d3r3 [δ(r3 − r2) + h(r3, r2)]∇1δu2(r1, r3; t) .

We can now put together the approximate two–particle continuity equation

∇1 ·
[

g2(r1, r2) j1(r1; t) (213)

+
h̄ρ2

0

2mi

∫

d3r3 [δ(r3 − r2) + h(r3, r2)]∇1δu2(r1, r3)

]

+ same with (1 ↔ 2)

= g2(r1, r2)
(

D1(r1; t) − δρ̇1(r1; t)

+D1(r2; t) − δρ̇1(r2; t)
)

+ ρ0

∫

d3r3Y (r1, r2; r3) (D1(r3; t) − δρ̇1(r3; t))

+ρ0δu̇2(r1, r2; t) .

From the terms containing the time derivative δu̇2(r1, r2; t) we have kept only
the leading term in accordance with the uniform limit approximation and left
out the term F [δu̇2].

If we furthermore use the one–particle continuity equation to replace the one–
particle quantities with one–particle currents we arrive at our final approximate
form

[

h̄ρ2
0

2mi

∫

d3r3 [δ(r3 − r2) + h(r3, r2)]∇2
1δu2(r1, r3; t)

+same with (1 ↔ 2)

]

− ρ0δu̇2(r1, r2; t) (214)
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= j1(r1; t) · ∇1g2(r1, r2) + j1(r2; t) · ∇2g2(r1, r2)

+ ρ0

∫

d3r3Y (r1, r2; r3)∇3 · j1(r3; t) .

The last step is to decouple the equations of motion. We can do this by
approximating the one–particle current, given in Eq. (166) by the Feynman
current of Eq. (173)

j(r1; t) =
h̄ρ0

2mi
∇1δu1(r1; t) (215)

=
h̄ρ0

2mi
∇1

[

δρ1(r1; t) − ρ0

∫

d3r2X(r1, r2)δρ1(r2; t)

]

.

On the second line we have solved δu1(r1; t) in terms of δρ1(r1; t) from Eq. (175)
using the direct correlation function X(r1, r2).

The fluctuating two–particle correlation function can now be expressed, in
closed form, as a functional of one–body quantities alone. The integrals in Eq.
(214) are of convolution form and can be integrated in momentum space leading
to the result

[

h̄ω − εF
(
∣

∣

k
2 + p

∣

∣

)

− εF
(
∣

∣

k
2 − p

∣

∣

)]

×S
(∣

∣

k
2 + p

∣

∣

)

S
(∣

∣

k
2 − p

∣

∣

)

δu2(k,p;ω)

+ εF(k) σk(p) δρ1(k;ω) = 0 (216)

where σk(p) is defined in Eq. (206). It is now evident that we can solve from
Eq. (216) the fluctuating two–body correlation function directly in terms of the
one–body density fluctuation,

δu2(k,p;ω)

δρ1(k;ω)
= −εF(k)σk(p)

[

S
(∣

∣

k
2 + p

∣

∣

)

S
(∣

∣

k
2 − p

∣

∣

)]−1

h̄ω − εF
(∣

∣

k
2 + p

∣

∣

)

− εF
(∣

∣

k
2 − p

∣

∣

) , (217)

needed for the self–energy.

7.4 The self–energy and the linear response function

As the final step we define the self–energy by dividing the left hand side of Eq.
(205) with δρ1(k;ω). That gives the result

[h̄ω − εF(k) − Σ(k, ω)] δρ1(k;ω) = 2ρ0S(k)Uext(k, ω) (218)

from which the self–energy emerges

Σ(k, ω) = − h̄
2k2

4m

∫

d3p

(2π)3ρ0
σk(p)

δu2(k,p;ω)

δρ1(k;ω)
. (219)
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But the ratio δu2(k,p;ω)/δρ̃1(k;ω) was exactly what we got out of the two–
body equation (217) in closed form. The expression of the self–energy turns
into an more familiar form [63] if we change the variables k

2 + p → −p and
k
2 − p → −q and then introduce the Dirac δ–function to insure the momentum
conservation, p + q + k = 0,

Σ(k, ω) =
1

2

∫

d3p d3q

(2π)3ρ0
δ(k + p + q)

|V3(k;p,q)|2
h̄ω − εF(p) − εF(q)

(220)

where the three–plasmon/phonon coupling matrix element

V3(k;p,q) = − h̄2

2m

1
√

S(p)S(q)S(k)
(221)

×
[

k · pS(p) + k · qS(q) + k2S(p)S(q)
]

=
h̄2

2m

√

S(p)S(q)

S(k)

[

k · pX̃(p) + k · qX̃(q)
]

is given in terms of the ground–state structure function S(k), the direct corre-
lation function X̃(k) = 1 − S(k)−1.

Using the derivation of the linear response function presented in connection
with the Feynman approximation leading to Eq. (185) we can write χ(k, ω) as
in Eq. (128).

χ(k, ω) = S(k)
[ 1

h̄ω − ε(k) − Σ(k, ω)

− 1

h̄ω + ε(k) + Σ∗(k,−ω)

]

. (222)

We are studying excitations at zero temperature with positive frequencies ω > 0
and from the fluctuation-dissipation theorem (126) we get the dynamic structure
function,

S(k, ω) = − 1

π
ℑm [χ(k, ω)] (223)

= − 1

π
ℑm

[

S(k)

h̄ω − εF (k) − Σ(k, ω)

]

.

7.5 Numerical evaluation of the self–energy

The integrand in the expression of the self–energy in Eq. (220) can have poles,
which makes the self–energy a complex function. Let us look next in detail
how it can be calculated numerically. After integrating the δ–function and the
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φ–coordinate we are left with the double integral

Σ(k, ω) =
1

2

1

(2π)2ρ0

∫ ∞

0

q2dq (224)

×
∫ 1

−1

dx
|V3(k; q, x)|2

h̄ω − εF(|k + q|) − εF(q)

where we have chosen the following variables

p = −(k + q)

p2 = k2 + 2k · q + q2 = k2 + q2 + 2kqx

x =
p2 − k2 − q2

2kq
. (225)

Replacing x with p we can write the integral in the form

Σ(k, ω) =
1

8π2ρ0k

∫ ∞

0

qdq (226)

×
∫ k+q

|k−q|

pdp
|V3(k; q, p)|2

h̄ω − εF(p) − εF(q)
.

This integral has a pole when

h̄ω = εF(p) + εF(q) . (227)

In other words when the energy of the excitation is equal to the energy of two
elementary Feynman modes. In such a case the self–energy becomes a complex
function.

Assuming that this pole is the only pole in the integrand and that the inte-
grand converges fast enough at infinity we can separate the real and imaginary
parts

Σ(k, ω) = ∆(k, ω) − iΓ(k, ω) (228)

by remembering that

1

ω′ − ω
= P 1

ω′ − ω
− iπδ(ω′ − ω) . (229)

The imaginary part can then be calculated with one integration only

Γ(k, ω) =
1

8πρ0k

∫ ∞

0

qdq

∫ k+q

|k−q|

pdp (230)

× |V3(k; q, p)|2δ(h̄ω − εF(p) − εF(q)) .

The real part could be calculated from the above principle value integral, but
it is much more convenient for numerics to calculate it from the imaginary part
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Figure 14: S(k,w) for helium at the saturation density.

using Kramers–Kronig relations which connect the real and imaginary parts. If
f(ω) is an analytic complex function

f(ω) = a(ω) + ib(ω) (231)

then

a(ω) =
1

π
P

∫ ∞

−∞

dω′ b(ω
′)

ω′ − ω

b(ω) = − 1

π
P

∫ ∞

−∞

dω′ a(ω
′)

ω′ − ω
. (232)

Provided that a(ω) and b(ω) converge fast enough at large ω.
Using the first relation we can write the real part of the self–energy in the

form

∆(k, ω) = − 1

π
P

∫ ∞

0

dω′Γ(k, ω′)

ω′ − ω
. (233)

The imaginary part is non–zero only when ω′ > 0. In the numerical integration
of the principle value one distributes the integration mesh symmetrically around
ω and leaves out the point ω′ = ω.

8 Summary

The variational Jastrow–Feenberg theory provides a powerful theoretical tool in
obtaining microscopic understanding of the many–particle structure and pro-
cesses present in strongly–correlated quantum fluids. A detailed derivation of
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Figure 15: S(k,w) for a hard core potential at x = 0.1.

the optimized ground state and the equations of motions for the dynamic sys-
tem have been described. By extending the time dependence to two–particle
correlations and, hence, including three–phonon processes we went beyond the
conventional Feynman theory of excitations. We showed that the CBF approx-
imation gives qualitatively reasonable results for the dynamic structure. We
studied the analytic properties of the dynamic structure function and made a
clear distinction between the real elementary–excitation mode and the broader
complex mode, which can decay into elementary excitations.
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