Quantum Field Theory

Final exam, 10.9. 2008

Answering correctly to 4 questions gives full points; however, answering to all 5 contributes to the total point score.

1. Let us consider (non-relativistic) harmonic oscillator with

$$\hat{H} = rac{\hat{p}^2}{2m} + rac{1}{2}m\omega^2 \hat{x}^2 \,,$$

and define operators

$$\hat{a} = \sqrt{\frac{m\omega}{2}}\hat{x} + \frac{i}{\sqrt{2m\omega}}\hat{p}$$
 $\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2}}\hat{x} - \frac{i}{\sqrt{2m\omega}}\hat{p}.$

Using

$$[\hat{x}, \hat{p}] = i,$$
 $[\hat{x}, \hat{x}] = [\hat{p}, \hat{p}] = 0$

show that

a) $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0$

b)
$$[\hat{a}, \hat{a}^{\dagger}] = 1,$$

- c) $\hat{H} = \omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})$
- 2. Let $c = (c_1 \ c_2)^T$, $c^{\dagger} = (c_1^* \ c_2^*)$ be 2-component Grassmann vectors, and M a 2 × 2 complex matrix. Calculate the Grassmann integral

$$\int \mathrm{d}c_1^* \,\mathrm{d}c_1 \,\mathrm{d}c_2^* \,\mathrm{d}c_2 \,\exp[-c^{\dagger}Mc]$$

3. Show that the solution of the non-homogeneous equation (J(x)): source term)

$$(\partial^{\mu}\partial_{\mu} + m^2)\psi(x) = J(x)$$

can be written as

$$\psi(x) = \psi_0(x) + i \int d^4 y G(x, y) J(y)$$

where ψ_0 is a solution for the homogeneous equation and G is a Green function. Convince yourself that if G is the retarded propagator, J(y) can affect $\psi(x)$ only if y is in the past light cone of point x (i.e. $y^0 \leq x^0$, $(x - y)^2 \geq 0$).

4. Let us consider the "scalar quantum electrodynamics", a theory with a complex scalar field $\phi(x)$ and an abelian gauge field $A_{\mu}(x)$. The action is

$$S = \int d^4x \left[-\frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x) + \left(D_{\mu}(x)\phi(x) \right)^* D^{\mu}(x)\phi(x) - m^2\phi^*(x)\phi(x) \right], \quad (1)$$

where

$$D_{\mu}(x) = \partial_{\mu} - ieA_{\mu}(x), \qquad F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x),$$

and e is the coupling constant.

Show that the action is invariant under the gauge transformation ($\theta(x)$ a real number)

$$\phi(x) \to e^{i\theta(x)}\phi(x), \ \phi^*(x) \to e^{-i\theta(x)}\phi^*(x), \ A_\mu(x) \to A_\mu(x) - \frac{1}{e}\partial_\mu\theta(x).$$

- 5. In scalar quantum electrodynamics (eq.(1)),
 - a) write down the Feynman propagator G(p) for the scalar field ϕ .
 - b) For the free gauge field, show that we can write

$$\int d^4x - \frac{1}{4}F_{\mu\nu}(x)F^{\mu\nu}(x) = \int d^4x \, d^4y \frac{1}{2}A_{\mu}(x)[g^{\mu\nu}\partial_{\alpha}\partial^{\alpha} - \partial^{\mu}\partial^{\nu}]\delta^4(x-y)A_{\nu}(y).$$

c) Using the Lorenz gauge $\partial_{\nu}A^{\nu} = 0$, argue that the gauge field Feynman propagator is

$$D_{\mu\nu}(q) = \frac{-ig_{\mu\nu}}{q^2 + i\epsilon}.$$

(Note that in this case you need not to use the gauge parameter ξ , but can impose the gauge condition directly. Ignore ghosts.)