
QUANTUM OPTICS IN ELECTRICAL CIRCUITS Exercise 1 Autumn 2017

1. RLC-circuits
Derive the electric oscillator equations (8) and (9) of the lecture notes.

2. Damped harmonic oscillator: exact solution
The equation of motion for a damped harmonic oscillator under external force can be
reduced to (a set of equations of) the form

q̈ + γq̇ + ω2
0q = A cos(ωdt),

where A is a constant. Find the general solution of the equation.

Hint: Treat q as complex and find one solution of the (inhomogeneous) equation of the
form q = Beiωdt + Ce−iωdt, where B and C are constants. In addition you need to find
the general solution of the corresponding homogeneous equation q̈ + γq̇ + ω2

0q = 0.

3. Damped harmonic oscillator: RWA solution
The solution of the previous problem in the rotating wave approximation is

α(t) =
f0

ω0 − ωd − i
2
γ

(e−iωdt − e−iω0t− γ2 t) + α(0)e−iω0t− γ2 t.

Plot the real and imaginary part of α(t) as a function of time, and depict the trajectory
of α(t) in the complex plane for
(a)

f0 = 0, α(0) = 1, ω0 = 1, γ = 0.1;

(b)

f0 = 1, α(0) = 0, ω0 = ωd = 1, γ = 0.1,

and interpret the results.

4. RWA steady state properties
Plot the real and imaginary parts (proportional to the dispersion and absorption) and
the phase δ of the steady state solution

eiωdtαss(t) = αss(0) =
f0

ω0 − ωd − i
2
γ

= Aeiδ,

as a function of ωd, and depict its trajectory in the complex plane for f0 = 1, ω0 = 1,
γ = 0.1 and interpret the results.
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1. Comparison between the quantum and classical distributions
A particle, in a harmonic potential, has total energy 20.5~ω0. Find the classical probabil-
ity distribution to find it within [q, q+dq]. Compare the classical probability distribution
(qualitatively) with the quantum mechanical probability distribution |ψ20(q)|2 shown in
the figure.
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2. Analytical solution for coupled harmonic oscillators
The Lagrange function describing coupling of the oscillator 0 to N other oscillators is

L =
1

2
m0q̇

2
0 −

1

2
m0ω

2
0q

2
0 +

N∑
i=1

(
1

2
miq̇

2
i −

1

2
miω

2
i q

2
i + q0giqi

)
.

According to classical mechanics, find the eigenfrequencies and eigenvectors in the case of
N = 1. For simplicity assume ω1 = ω0. Write the solution for the initial values q0(0) = 1,
q1(0) = q̇0(0) = q̇1(0) = 0.

3. Hamilton’s equations of motion
Derive the Hamilton’s equations of motion corresponding to the Hamiltonian

H =
p2

0

2m0

+
1

2
m0ω

2
0q

2
0 +

N∑
i=1

(
p2
i

2mi

+
1

2
miω

2
i q

2
i − q0giqi

)
,

where the index i = 0 refers to the primary oscillator.

4. Coupling to the environment: Numerical simulation
Solve the preceding equations of motion numerically using Mathematica and the “ND-
Solve” command for an environment consisting of three oscillators. Use the oscillator
parameters m0 = k0 = 1, ki = 20, m1 = 19, m2 = 20 and m3 = 21. For the coupling
constants choose gi = 0.1 and start the modeling from the initial values qi(0) = pi(0) = 0,
q0(0) = 1, p0(0) = 0. Plot the solution for q0(t) and interpret the results. What might be
the effect of increasing the number of coupled oscillators?
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1. Vector space and inner product
(a) Check that the states

∞∑
n=0

λn|n〉,

satisfy the requirements set for a vector space as stated in the two first sets of
equations in Sectinon 3.1 of the lecture notes. The states |n〉 are Fock states (i.e.
eigenstates of simple harmonic oscillator), and λn are complex valued.

(b) Show that the inner product defined by

〈m|n〉 = δm,n.

satisfies the requirments of the inner product. The states |n〉 belong to the above
vector space and the states 〈m| in the corresponding dual space.

(c) Check that a† is a Hermitian conjugate of a and that a†a is a Hermitian operator.

2. Schrödinger, Heisenberg and interaction pictures
(a) Making a change of coordinates A′ = U †AU (from the Schrödinger picture) show

that the equations of motion (lecture notes) transform to

i~
d|a′〉
dt

=

(
U †HU + i~

dU †

dt
U

)
|a′〉

i~
dA′

dt
=

[
A′,−i~dU

†

dt
U

]
+ i~U †

∂A

∂t
U.

In other words, calculate the intermediate steps from Eq. (79) to (81).
(b) Further, derive the corresponding equations in the Heisenberg and in the interaction

picture. In the Heisenberg picture, the transformation U is defined as

i~
dU

dt
= HU,

and in the interaction picture

i~
dU

dt
= H0U,

where H0 is time-independent.

3. Interaction picture: time evolution of operators
Find the operators a and a† in the interaction picture choosing H0 as Hamiltonian of the
simple harmonic oscillator.



4. Density matrix: a two-state system
Calculate the density matrix and the expectation value of Sx = σx/2 in case of
(a) equal mixture of | ↑〉 and | ↓〉
(b) pure state (| ↑〉+ | ↓〉)/

√
2.

The states | ↑〉 and | ↓〉 are the eigenstates of the operator Sz = σz/2.

5. Density matrix: properties
Show that Trρ = 1 (note that states |ai〉 are normalized but not necessarily orthogonal).

6. Density matrix: equation of motion
Using the Schrödinger equation verify the equation of motion for the density matrix in
the Schrödinger picture

i~
dρ

dt
= [H, ρ],

and the same in the interaction picture

i~
dρ′

dt
= [H ′1, ρ

′].
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1. Thermal distribution
Starting from the Gibbs distribution, derive the two forms of the density operator for a
simple harmonic oscillator as given in the lectures.

2. Commutator expressed as a matrix
Consider the commutator

B = [A, ρ],

where A and ρ are 2 × 2 matrices. Express the commutator as a 4 × 4 matrix U by
considering ρ and B as 4-dimensional vectors, so that

B = Uρ.

3. Master equation
On the equation

dρ

dt
= −

∫ t

0

dt1TrR[(a†Γ(t)eiω0t + aΓ†(t)e−iω0t),

[(a†Γ(t1)eiω0t1 + aΓ†(t1)e−iω0t1), ρR(0)ρ(t)]],

select freely another term (besides the one presented in the lectures) that will lead to a
nonvanishing contribution in the master equation and write what are the differences in
the subsequent calculation.

4. Cauchy’s formula
Justify the relation

lim
ε→0

∫ ∞
−∞

dx
f(x)

x+ iε
= −iπ

∫ ∞
−∞

dxf(x)δ(x) + P

∫ ∞
−∞

dx
f(x)

x
,

where P denotes principal value integration at x = 0.

Hint: Consider separately the real and imaginary parts of 1
x+iε

.

5. Damped harmonic oscillator
Verify the equations

d〈a〉
dt

= −iω0〈a〉 −
γ

2
〈a〉+ if0e

−iωdt,

and
d〈a†a〉
dt

= if0(〈a†〉e−iωdt − 〈a〉eiωdt)− γ〈a†a〉+ γN.
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1. Correlation functions in thermal state
Let us consider a simple harmonic oscillator (neither driving nor damping) in equilibrium
at temperature T . Calculate 〈a(t)〉, 〈a†(t)〉, and the correlation functions 〈a(t)a†(0)〉 and
〈a†(t)a(0)〉. Try to interpret the results for T = 0 and T > 0.

2. Detailed balance
Verify that the Bose distribution

ρ =
∞∑
n=0

|n〉〈n| 1

1 +N

(
N

1 +N

)n
, N =

1

exp(β~ω0)− 1
,

satisfies the detailed balance condition

t+(n)P (n) = t−(n+ 1)P (n+ 1),

where

t+(n) = γN(n+ 1), t−(n) = γ(N + 1)n, P (n) ≡ ρnn.

3. Temperature relaxation
Show that the time dependent Bose distribution (t ≥ 0) whose diagonal elements are
defined as

ρnn =
1

1 +N ′

(
N ′

1 +N ′

)n
, N ′ = N(1− e−γt),

satisfies the master equation

dP (n)

dt
= t+(n− 1)P (n− 1) + t−(n+ 1)P (n+ 1)− [t+(n) + t−(n)]P (n),

where transition rates t±(n) and the occupation probability P (n) are exactly as above.
Find the momentary temperature of the distribution.

4. Glauber states
The Glauber states |α〉 are represented with number states as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉,

where α is an arbitrary complex number. Show the following properties of the Glauber
states:



(a) The mean number and the standard deviation of the photon number are

〈n̂〉 = |α|2, ∆n =
√
〈n̂2〉 − 〈n̂〉2 =

√
〈n̂〉,

respectively.
(b) The distribution of photon numbers follows the Poissonian distribution i. e.

P (n) = |〈n|α〉|2 = e−〈n̂〉
〈n̂〉n

n!
.

(c) The overlap of two Glauber states |α〉 and |β〉 depends exponentially on the mutual
distance of the coordinates α and β on the complex plane:

|〈α|β〉|2 = e−|α−β|
2

.
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1. Cat states
Verify that ρ = ||α〉〈β||e−αβ∗ is a solution of the master equation

dρ

dt
=
γ

2
(2aρa† − a†aρ− ρa†a),

if α(t) and β(t) satisfy the corresponding classical equations. The unnnormalized Glauber
states are defined by

||α〉 =
∞∑
n=0

αn√
n!
|n〉 .

2. Number states represented as pointer states
Verify first the completeness relation of the Glauber states

1

π

∫
|α〉 〈α| d2α = 1

and after that find the representation of a number state |n〉 as a superposition of Glauber
states

|n〉 =

∫
d2αf(α)|α〉.

Hint: The integral
∫
|α〉 〈α| d2α is over the whole complex plane. Split the integral in

the radial and angular parts. Use Mathematica to solve the radial integration, or use
integration by parts repeatedly.

3. Anharmonic oscillator
Consider a particle in a sinusoidal potential described by the Hamiltonian

H =
p2

2m
−mω2

0q
2
0 cos

(
q

q0

)
,

where q0 =
√
~/mω0. If the particle is trapped nearby the potential energy minimum

q = 0, it can be described as a harmonic oscillator using the expansion cos (q/q0) ≈
1− 1

2!
(q/q0)2.

Find the corrections to the oscillator’s energy levels due to the first anharmonic term
1
4!

(q/q0)4 of the expansion. Use the first order perturbation theory and express q4 in
terms of a and a†.
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1. Cooper-pair-box
By treating the Josephson junction as a capacitor CJ in parallel with a Josephson po-
tential energy −EJ cos

(
2πΦ
Φ0

)
, show that the Hamiltonian of the Cooper-pair-box can be

presented in the form

HCPB(Φ, Q) =
(Q+Q0)2

2CΣ

− EJ cos

(
2πΦ

Φ0

)
,

where CΣ = CJ + Cg and Q0 = CgU . The circuit diagram is shown after the Eq. (192)
in the lecture notes. Note that there is one more closed loop because of the parallel
capacitor

2. Charge qubit
The eigenstates of the Cooper-pair-box for EJ = 0, labeled as the charge states |n〉 (n ∈
Z), correspond to excess number of Cooper pairs on the island between the capacitors.
These can be used as a convenient basis for HCPB. The Hamiltonian is then

HCPB =
∑
n

[
4Ec

(
n+

Q0

2e

)2

|n〉 〈n| − EJ
2

(|n+ 1〉 〈n|+ |n− 1〉 〈n|)

]
.

It is a sum of a charging energy of the island and a Cooper pair tunneling operator due
to the Josephson effect. Assuming that Q0 ≈ −e and EJ � Ec, find the ground state
and the first excited state and their eigenenergies nearby the avoided level crossing point
Q0 = −e.
Hint: Write Q0 = (p − 1)e, where p is a small parameter. Only the two lowest charge
states |0〉 and |1〉 are needed for writing the approximate 2×2 Hamiltonian for this case.

3. Rabi oscillations
Do all the intermediate steps not shown in the lecture notes of the Rabi oscillations, i.e.
equations (211)-(218).
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1. Bloch sphere description
Verify that the density matrix equation of motion for a two-state system can be written
as

dP
dt

= Ω× P

where the vectors P and Ω are determined from the relations

ρ =
1

2
(I + P · σ) H = cI +

~
2
Ω · σ.

2. Polarization vector
(a) Find the states that correspond to the cases P = i, P = j and P = k.
(b) Show that

P 2 ≤ 1,

and that the equality holds only for a pure state.

3. Master equation for the two-state system
Verify that the master equation for the two-state system with no driving is explicitly

ρ̇aa = −γ(N + 1)ρaa + γNρbb

ρ̇ab = −iΩ0ρab − γ(N +
1

2
)ρab

ρ̇ba = iΩ0ρba − γ(N +
1

2
)ρba

ρ̇bb = γ(N + 1)ρaa − γNρbb.

4. State manipulation of the two-state system: π/2-pulse
Let us consider an undriven two-state system in a rotating frame: U = exp(−iΩ0tσz/2).
Suppose that the two-state system is in the ground state P = −k at the initial time
t = 0.
(a) In that frame a gate, i. e. perturbation H1 = ~

2
Ωxσx, is then switched on at t = 0.

The coefficient Ωx is taken as a fixed constant. Find the trajectory P (t) for t ≥ 0.
(b) The gate is switched off at t = T . Find T which takes the system to a state for

which Pz = 0 (for t ≥ T ).
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1. Energy balance in a two-level system
In the case of harmonic oscillator we derived

Ė = Pabs − Pdis.

Find the corresponding relation for a two-level system using E = 1
2
~Ω0Pz and the

Allen&Eberly Bloch equations. What are the expressions for Pabs and Pdis in the steady
state? Verify that they have a Lorentzian form and calculate their line widths.

2. Autocorrelations and the spectral density
Consider a closed system described by the Hamiltonian H at thermal equilibrium. Dy-
namical properties of a physical quantity A can be studied via the autocorrelation function
RA(τ) = 〈A(t)A(t− τ)〉, where A is the corresponding Hermitian operator.
(a) Show first that the autocorrelation function is invariant in time translations, i.e.

RA(τ) = 〈A(τ)A(0)〉 .

(b) Show then that it satisfies

RA(−τ) = (RA(τ))∗.

(c) Finally, show that its spectral density

SA(ω) =

∫ ∞
−∞

dτeiωτRA(τ)

is a real valued function and verify that for “classical” correlations, for which
RA(τ) = RA(τ)∗, the spectral density is an even function of ω i. e. SA(−ω)=SA(ω).

3. Spontaneous vs. induced emission
Express

SF (ω) =
2~ωmγ(|ω|)

1− e−
~ω
kBT

as a sum of two terms that correspond to the induced emission or absorption (vanishes
at T = 0) and to the spontaneous emission (independent on T ). What special symmetry
does the induced part have? At what frequency the spontaneous emission becomes the
dominant cause of emission at
(a) room temperature
(b) T = 1 K?
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1. Jaynes-Cummings model (double points)
Do the intermediate steps from Eq. (247) to Eq. (250) and find the energy eigenstates
|±, n〉 of the JC Hamiltonian

HJC =
~Ω0

2
σz + ~ω0

(
a†a+

1

2

)
− ~g(σ+a+ σ−a†).

Show that the eigenstates can be expressed in the form

|−, n〉 =

(
sin θn

2
|n〉

cos θn
2
|n+ 1〉

)
|+, n〉 =

(
cos θn

2
|n〉

− sin θn
2
|n+ 1〉

)
.

where tan θn = 2g
√
n+1

Ω0−ω0
, 0 ≤ θn ≤ π. The above notation means that(

ψ1|n〉
ψ2|n+ 1〉

)
= ψ1 |a, n〉+ ψ2 |b, n+ 1〉 , ψ1,2 ∈ C.

2. Jaynes-Cummings model with dissipation (double points)
By coupling the oscillator of the JC model to a bath at T = 0 (producing spontaneous
emission) we obtain the master equation

ρ̇ = − i

~
[HJC, ρ] +

γ

2
(2aρa† − a†aρ− ρa†a).

This can be represented either in the bare basis |a/b, n〉 or the dressed basis |±, n〉 of the
JC model.
By cutting the master equation to two lowest states in the dressed basis, write down
the resulting equations for the evolution of the density matrix. Plot the decay rate of
the excited state as a function of the qubit’s level splitting and explain physically what
happens for the decay rate.

Hint: The cut density matrix in the dressed basis is

ρ = ρbb |b, 0〉 〈b, 0|+ ρb− |b, 0〉 〈−, 0|+ ρ−b |−, 0〉 〈b, 0|+ ρ−− |−, 0〉 〈−, 0| ,

where ρij are time-dependent coefficients, |b, 0〉 is the singlet state and the state |−, 0〉 is
derived in the Ex. 10.1.
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1. Shannon wavelet
Calculate the integral

φ(t) =

∫ ω2

ω1

dωe−iωt.

Plot this “Shannon wavelet” (neglect the complex phase factor) and the next orthogonal
to this obtained by a translation in time.

2. Transverse modes and the quantum resistance
In the lectures the transverse modes were assumed to be a result of a hard wall confinement
in the conducting wire. Suppose that the confinement is parabolic. Sketch qualitatively
the differences that this would make to the behavior of the conductivity. Also consider
how would the “quantum resistance” change if there would be no spin degree of freedom,
and if (in addition to this) the smallest charge would be a Cooper pair (treating it as a
fermion).

3. Poisson distribution
Consider particles that arrive randomly and independently of each other with a constant
rate λ. Justify that the probability Pn(t) for the arrival of n particles during time t obeys
the differential equation (n ≥ 1)

dPn
dt

= λ(Pn−1 − Pn).

For P0(t) we take the initial condition P0(0) = 1. What is the equation for P0(t)? Show
that the solution with initial conditions Pn(0) = δn,0 is the Poisson distribution

Pn(t) = e−λt
(λt)n

n!
,

with average 〈n(t)〉 = λt.

4. Shot noise due to a tunnel junction (double points)
Calculate the classical spectral density of current fluctuations across the resistor (T = 0)
in a voltage-biased (V = e/C) RC-circuit (voltage source, resistor and capacitor in series)
whose capacitor “leaks” electrons so that they have a constant tunneling rate λ across
the capacitor (to the direction that produces positively signed current). Assume that the
time between the tunnelings is much larger than that of recharging of the capacitor so
that you can treat the tunneling events independent of each other.
Hint:

• Calculate the current of recharging the capacitor after leaking an electron.



• Express then the current as a sum of independent reloading events and calculate the mean
current 〈I(t)〉

• Deduce then a non-zero realization of the entity I(t)I(0). Finally calculate the correlator
〈I(t)I(0)〉 as a sum of the all possible non-zero realizations.


