
763645S SUPERCONDUCTIVITY Exercise 1 Fall 2015

1. Momentary electric field
Show that the Meissner effect causes momentarily E 6= 0 in superconductors.

2. Low temperature specific heat
Consider a two-state system, in which the Hamiltonian has only two eigenstates with an
energy difference ∆. By first calculating the free energy F , show that the specific heat of
the system is

C =
∆2e

∆
kBT

kBT 2
(

1 + e
∆
kBT

)2 .

Show that at low temperatures this behaves as

C ∝ e
− ∆
kBT .

(Hint: you can use Mathematica for derivations.)

3. Specific heat in normal and superconducting states

(a) At low temperatures, the specific heat of a normal state metal is linear in temper-
ature Cn(T ) = γT . Using the third law of thermodynamics (i. e. the entropy has to
vanish at T = 0) calculate the entropy of the normal state.

(b) A phase transition is said to be of order n if the n:th derivative of F (T ) is discon-
tinuous at TC but lower derivatives as well of F (T ) are continuous.

(i) Show that there is a latent heat associated with a first order transition (such
as melting), but a second order transition has discontinuity of specific heat
C(T ) but no latent heat.

(ii) Thus deduce that the superconducting transition is of second order.

(c) Show that the specific heat in the superconducting state Cs(T ) has to satisfy∫ Tc

0

Cs(T )

T
dT = γTc.

4. Basic relations for Helmholtz free energy
In the lecture notes it is explained how the thermodynamic relations

F = E − ST, dF = −SdT − PdV, dE = TdS − PdV

follow from the Gibbs distribution for a system in equilibrium with a heat bath at tem-
perature T . Show this in detail.
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1. Basic formulas for the grand potential
Using the approach given in lecture notes in connection of F , derive the equations

Ω = − 1

β
ln[Tr(e−β(Ĥ−µN̂))], Ω = E − µN − ST, dΩ = −SdT − pdV −Ndµ.

2. Ideal Bose gas
Calculate Ω for an ideal Bose-gas similarly as it is calculated for an ideal Fermi-gas in
the lecture notes. Show that Bose and Fermi distributions reduce to a classical Maxwell-
Boltzmann distribution

f(ε) = e−β(ε−µ), when β(ε− µ)� 1.

(Hint: The only difference in the calculation is that for bosons nα = 0, 1, 2, . . . instead of
nα = 0, 1.)

3. Ideal Fermi gas starting from Ω
Using the grand potential of an ideal Fermi-gas

Ω = −kBT
∑
α

ln[1 + eβ(µ−εα)],

(a) verify that

N = −∂Ω

∂µ
=
∑
α

fα where fα =
1

eβ(εα−µ) + 1
.

(b) Calculate S = −∂Ω/∂T and show that it can be written in the form

S = −kB
∑
α

[fα ln fα + (1− fα) ln(1− fα)]. (1)

[Hint: As an intermediate result derive

S = −kB
∑
α

[ln(1− fα) + β(µ− εα)fα].

and then seek how to write this into the form (1). Note: Equation (1) can also
be derived directly from the definition of entropy, and thus is valid also in non-
equilibrium cases.]

(c) Using E = Ω + ST + µN , show that

E =
∑
α

εαfα.



(d) Using p = −∂Ω/∂V , show that

p = −
∑
α

∂εα
∂V

fα.

(e) Starting from (1) show that

dS =
1

T

∑
α

(εα − µ)dfα.

(f) Using the previous results show that

dE = TdS − pdV + µdN =
∑
α

(εαdfα + fαdεα).

Notice that the change of the occupations (the first term) comes from changes in S
and N (TdS and µdN terms), whereas the change of level energies comes from the
change in V (−pdV term).

4. Ideal Fermi gas: pressure, entropy and energy
Show that an ideal (spin 1/2) Fermi-gas has a pressure

p =
2

3

E

V
,

at all temperatures and at T = 0

S = 0 and
E

N
=

3

5
εF .

5. Level occupation directly from operator (Optional exercise, no points)
In the lecture notes we identified the Fermi distribution from the expression for the total
particle number for noninteracting fermions. Show, using a similar calculation, that the
Fermi and Bose distributions follow also directly from

〈n̂α〉 = Tr[n̂αe
β(Ω−Ĥ+µN̂)] =

1

eβ(εα−µ) ± 1

Here Ĥ =
∑

α εαn̂α and N̂ =
∑

α n̂α, where n̂α is the number operator for the single-
particle level α and εα is its energy. For fermions (upper sign) n̂α has the eigenvalues
nα = 0, 1 and for bosons (lower sign) nα = 0, 1, 2, . . ..
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1. Energy conservation in electromagnetic field
Derive the equation

− dt
∮

da · (E ×H) =

∫
dV (E · dD + H · dB + E · jF dt ).

2. Work done by a current source
In the lectures it was claimed that when the magnetic flux density B inside the sample
changes, the current source has to do a work VH · dB in order to keep the current in
the coil constant. Prove this more accurately. In order for the field to be homogeneous
inside the sample (with b− a� r) and zero elsewhere, it is easiest to think of a toroidal
coil surrounding a toroidal sample (see figure).

3. Normal-superconducting transition
Calculate the latent heat and the change in the specific heat in a normal metal-superconductor
phase transition, using

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]
.

Sketch the results as a function of temperature.

4. Critical current in a superconducting wire
Consider a superconducting wire with a radius R. Calculate the maximum supercurrent
Ic that can flow so that the field caused by the current itself does not exceed the critical
field Hc at the surface of the wire.

5. Fermi temperature
Estimate the Fermi temperature for aluminum using the mass density ρ = 2.7 g/cm3,
the atomic weight and assuming 3 (noninteracting) conducting electrons/atom with an
effective mass of a free electron me. Calculate the ratio Tc/TF .
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1. Momentum integration
Show that for an arbitrary function g(k)

1

L3

∑
k

g(k) =

∫
d2Ω

4π

∫
dεN(ε)g(k),

and argue that if g(k) 6= 0 only near the Fermi surface, one obtains the equation shown
in the lectures.

2. Bosonic and fermionic atoms
Particles with integer and half-integer total spin follow boson and fermion statistics,
respectively. By calculating the numbers of protons, neutrons and electrons (which all
have spin 1/2), deduce which of the following particles are bosons and which of them are
fermions:

1H, 3He, 4He, 6Li, 7Li, 23Na, 87Rb.

3. Bose condensation and Fermi temperatures
In the course of statistical physics it is shown, that the Bose condensation (for spin=0
particles) occurs below the temperature

TBOSE = 3.31
~2

mkB

(
N

V

)2/3

,

wherem is the mass of the boson andN/V the number density. Using the mass densities of
3He and 4He (ρ3 = 0.081 g/cm3 and ρ4 = 0.145 g/cm3) calculate the Fermi temperature
for 3He and the Bose condensation temperature for 4He, and compare them with the
superfluid transition temperatures T3 = 0.93 mK and T4 = 2.17 K observed for the two
helium isotopes.

4. Cooper problem
Check all the intermediate steps in the Cooper problem shown in the lecture notes.

(Hint: Orthonormality of plane waves
∫
ei(k−q)·rd3r = L3δk,q.)

5. Repulsive Cooper problem
Think of Cooper’s problem for a repulsive interaction, i.e. g < 0 in the notation of the
lecture notes. Where does the calculation differ from the case of an attractive interaction,
g > 0? In both cases you can look at the weak-coupling limit |g|N(0)� 1.

[Hint: Solve
1

N(0)g
=

1

2
ln

2εF − E + 2εc
2εF − E

. (2)

exactly before making assumptions on the sign or magnitude of gN(0).]
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1. Fermion creation and annihilation opertators
The second quantization for fermions is based on the operator a and its hermitian con-
jugate a†. The only requirements on them are the anticommutator rules ({A,B} =
AB +BA)

{a, a†} = 1, {a, a} = {a†, a†} = 0. (3)

(i) Show that a†a† = aa = 0.

(ii) Prove the relation a†a(1 − a†a) = 0, which implies that the eigenvalues of the
operator a†a must be 0 and 1. Let |0〉 and |1〉 denote the eigenstates.

(iii) Prove the relations [a†a, a] = −a and [a†a, a†] = a†. Applying these on |0〉 and |1〉,
show that (with appropriate definitions of phases)

a† |0〉 = |1〉, a |1〉 = |0〉, a† |1〉 = 0, a |0〉 = 0. (4)

Note the important difference between 0 and |0〉.

2. Fermion many-body states
Consider a fermion system in occupation-number representation, where the basis vectors
have the form

|n1, n2, n3, ..., n∞〉 . (5)

Here 1, 2, ... label the levels, and n1, n2, . . . are their occupations (= 0 or 1). Second
quantization means simply a new notation, where the approach of the previous exercise
is applied to each level separately, i.e. for each level there are separate ai and a†i ’s. The
previous anticommutator rules are generalized trivially:

{ar, a†s} = δrs, {ar, as} = {a†r, a†s} = 0. (6)

(a) Show that the number operators for states i and j commute: [a†iai, a
†
jaj] = 0.

Because of the anticommutation of the operators on different levels, one has to be careful
in defining the signs in Eq. (5) correctly. One consistent way is to define

|n1, n2, ..., n∞〉 = (a†1)n1(a†2)n2 ...(a†∞)n∞ |0, 0, ..., 0〉 , (7)

where the levels always appear in the same (but otherwise arbitrary) order. Correspond-
ingly we write

〈n1, n2, ..., n∞| = 〈0, 0, ..., 0| an∞∞ . . . an2
2 a

n1
1 (8)

because (AB)† = B†A†. We assume the vacuum states normalized, 〈0, 0, . . . |0, 0, . . .〉 = 1.

(b) Prove that the states |{nk}〉 ≡ |n1, n1, . . . , n∞〉 are orthonormal: 〈{nk}|{n′k}〉 =
δn1,n′1

δn2,n′2
· · · .



(c) Show that 〈{nk}|a†iaj|{nk}〉 = δijni.

(d) Express the state auat|0, 0, ..., 1k, ..., 1l, ...〉 in a simpler form. Here k and l label
two levels and all the occupation numbers not shown are zero.

3. Fermion Hamiltonian
Consider now the usual Hamiltonian in the “first” quantization H =

∑N
k=1 T (rk) +

1
2

∑N
k 6=l=1 V (rk, rl), where N is the number of particles, T (rk) = −~2∇2

rk
/2m is the kinetic

energy operator and V (rk, rl) the interaction potential. In the “second” quantization, this
operator transforms to

Ĥ =
∑
rs

a†rTrsas +
1

2

∑
rstu

a†ra
†
sVrs,tuauat, (9)

where Trs and Vrs,tu are the matrix elements of T (rk) and V (rk, rl) (in Vrs,tu states t
and u are the initial states, and r and t refer to the same particle). Without trying to
go through the lengthy and dull derivation of Eq. (9) (see for example, Fetter-Walecka,
Quantum Theory of Many-Particle Systems, pages 3-18), use the equations of previous
problem to calculate the following matrix elements and interpret the results:

〈0, 0, ...|Ĥ|0, 0, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ...〉
〈0, 0, ..., 1k, ...|Ĥ|0, 0, ..., 1l, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1k, ..., 1l, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1v, ..., 1w, ...〉.

Here all the occupation numbers not shown are zero, and k, l, v and w refer to different
levels. (Notice that the exchange terms are automatically included.)

4. Fourier transforms
When using the “box-normalized” (L-periodic) plane waves φk(r) = (1/

√
L3)eik·r as a

basis, the following definitions for the Fourier transformation and its inverse are conve-
nient:

F (k) =

∫
d3re−ik·rf(r), f(r) =

1

L3

∑
k

eik·rF (k).

Check by substitution of one into the other that they are consistent with each other if

1

L3

∫
d3re±i(k−k

′)·r = δk,k′ ,
1

L3

∑
k

e±ik·(r−r
′) = δ(r − r′).

These are the “orthonormality” and “completeness” relations. Above, all r integrals are
over a cube with sides of length L, and the k sums are over the discrete values k =
2π
L

(nx, ny, nz), where nx,y,z are integers. Calculate the orthonormality integral explicitly
at least in the case of one dimension.
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1. Fermion Hamiltonian in plane wave basis
The matrix elements including spin variables are defined

〈k1λ1|T |k2λ2〉 =
∑
σ

∫
d3r φ∗k1λ1

(r, σ)

(
− ~2

2m
∇2

)
φk2λ2(r, σ),

〈k1λ1k2λ2|V |k3λ3k4λ4〉

=
∑
σ

∑
σ′

∫
d3r

∫
d3r′ φ∗k1λ1

(r, σ)φ∗k2λ2
(r′, σ′)V (r − r′)φk3λ3(r, σ)φk4λ4(r′, σ′).

[Here we have assumed a spin-independent translation-invariant potential V (r, r′) =
V (r − r′).] Calculate the matrix elements using plane waves

φkλ(r, σ) =
1

L3/2
eik·rδλσ. (10)

Show that the general Hamiltonian given in the lecture notes reduces to

Ȟ =
∑
k,σ

εkǎ
†
kσǎkσ +

1

2L3

∑
k1,σ

∑
k2,λ

∑
k3

∑
k4

V (k1 − k3)δk1+k2,k3+k4 ǎ
†
k1σ
ǎ†k2λ

ǎk4λǎk3σ.

Here σ, λ = ↑ or ↓ and V (k) =
∫
d3rV (r)e−ik·r.

(Hint: Change to coordinates r̃ = r − r′ and R = (r + r′)/2 in the double integral:∫
d3r
∫
d3r′ =

∫
d3R

∫
d3r̃.)

2. Contact interaction
As a special case of the previous exercise, consider a contact interaction V (r) = −gδ(r).
Write the Hamiltonian in this case. Show that terms with σ = λ vanish, and those with
σ 6= λ are equal, as mentioned in the lecture notes.

3. Bogoliubov transformation
Do all the intermediate steps of the Bogoliubov transformation [Eqs. (148)-(156)] not
shown in the lecture notes. That is, check carefully the result Ǩeff =

∑
kσ Ekγ̌

†
kσγ̌kσ + Ω0.

What is Ω0? You can save yourself some work by not following precisely the route implied
in the lecture notes, but rather starting from the matrix form (147), and inserting(

ǎk↑
ǎ†−k↓

)
= Uk

(
γ̌k↑
γ̌†−k↓

)
=

(
u∗k vk
−v∗k uk

)(
γ̌k↑
γ̌†−k↓

)
.

Require the coefficient matrix Uk to be unitary (UkU †k = U †kUk = 1), and then require that
U †kKkUk is diagonal, where Kk is the Hermitian matrix appearing in the Hamiltonian.
These two requirements give you the equations for uk and vk [(150) and (152)]. When
solving them, you can assume ∆ to be real, as in the lecture notes.



763645S SUPERCONDUCTIVITY Exercise 7 Fall 2015

1. Grand potential for a superconductor
Calculate the grand potential Ω = − ln[Tr e−βǨ ]/β for Ǩeff =

∑
k,σ Ekγ̌

†
kσγ̌kσ + Ω0 to

obtain the result
Ω = Ω0 −

2

β

∑
k

ln
(
1 + e−βEk

)
.

(Hint: Calculate the trace Tr[· · · ] =
∑1
{nkσ}=0〈{nkσ}| · · · |{nkσ}〉 in the basis of the γ

number operator γ̌†kσγ̌kσ|{nk′σ′}〉 = nkσ|{nk′σ′}〉.)

2. Gap equation: derivation
Do all the intermediate steps in deriving the gap equation [(163)] from the definition

∆ =
g

L3

∑
k

〈ǎ−k↓ǎk↑〉.

(Hint: Make use of the previous exercise to show 〈γ̌†kσγ̌kσ〉 = n(Ek), where n(E) =

1/(eβE + 1), and 〈γ̌kσγ̌k′σ′〉 = 〈γ̌†kσγ̌
†
k′σ′〉 = 0. )

3. Hartree-Fock interaction
Show that the Hartree-Fock (not anomalous) interaction energy 〈V̌HF〉 is the same for
normal and superconducting states. This demonstrates a posteriori that the neglect of
non-anomalous HF terms in the treatment of the superconducting state is allowed. The
HF potential energy for a spin-conserving contact interaction can be written as

V̌HF =
g

L3

∑
k1

∑
k2

∑
k3

∑
k4

δk1+k2,k3+k4

(
〈ǎ†k3↑ǎk1↑〉ǎ

†
k4↓ǎk2↓ + 〈ǎ†k4↓ǎk2↓〉ǎ

†
k3↑ǎk1↑

− 〈ǎ†k4↓ǎk2↓〉〈ǎ
†
k3↑ǎk1↑〉

)
.

(Hint: as intermediate results show that 〈ǎ†k3↑ǎk1↑〉 = δk3,k1Ck1 and 〈V̌HF〉 = (g/L3)(
∑

k Ck)
2

and deduce that the sum for |ξk| < εc is independent of ∆.)

4. Gap equation at T = Tc
Prove the result ∫ εc

0

dξ
1

ξ
tanh

ξ

2kBTc
= ln

2εce
γ

πkBTc
,

where γ is a certain constant given by the definite integral:∫ ∞
0

dx
lnx

cosh2 x
= −γ + ln

π

4
.

(Hint: use ξ−1 = d(ln ξ)/dξ and integrate by parts. Verify that the integral converges, so
that you can take the limit εc →∞. )



5. Gap equation: elimination of gN(0) and εc
Show that the gap equation (in weak coupling approximation gN(0)� 1) can be written
in the form

ln
Tc
T

=

∫ ∞
0

(
tanh(ξ/2kBT )

ξ
− tanh(

√
ξ2 + ∆2/2kBT )√
ξ2 + ∆2

)
dξ.

Verify that the integral converges, so that it is possible to put εc → ∞. In this way the
two parameters gN(0) and εc have been replaced by a single one: Tc.
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1. BCS ground state
Show that γ̌kσ |ψ0〉 = 0 for the BCS ground state |ψ0〉, which means that |ψ0〉 is the
vacuum state for excitations. Consider at least the case σ =↑.

(Hint: It is useful to define ck = uk + vka
†
k↑a
†
−k↓ and to show that [ck, ck′ ] = 0.)

2. Normalization of the BCS ground state
Assuming that 〈vac|vac〉 = 1, show that the BCS ground state |ψ0〉 is normalized as
〈ψ0|ψ0〉 = 1.

3. Excitations of BCS state
Let |ψ0〉 be the BCS ground state. Show that the excited states γ̌†kσ |ψ0〉 are of the form
where the single-particle state kσ (to which particles are created by ǎ†kσ) is populated
and −k − σ is empty. You can limit to the case σ =↑.

4. Energy functional
Show that for the energy functional (u2

k = 1− v2
k, ξk = ~2k2/2m− µ)

Ω(T, V, µ, vk,∆) =2
∑
k

(ξkv
2
k −∆ukvk) +

L3

g
∆2

− 2kBT
∑
k

ln(1 + e−
√
ξ2
k+∆2/kBT ),

the relations

∂Ω

∂vk
= 0,

∂Ω

∂∆
= 0,

are equivalent with the conditions (152) and (158) of the lecture notes.
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1. Superconducting ground state energy
Derive the T = 0 relations shown in the lectures

Ω0 − Ω0(∆ = 0) = −1

2

∑
k

∆4

Ek(Ek + |ξk|)2
,

and
Ω0 − Ω0(∆ = 0) = −1

2
L3N(0)∆2.

(Hint: Apply the gap equation and use
∫∞
−∞

dx√
x2+1(

√
x2+1+|x|)2 = 1.)

2. Specific heat
Show that from the grand potential Ω(T, V, µ) = minvk,∆[Ω(T, V, µ, vk,∆)] one obtains
the specific heat

C =
L3N(0)

2kBT 2

∫ ∞
−∞

dξ
1

cosh2

√
ξ2+∆2

2kBT

(
ξ2 + ∆2 − T∆

d∆

dT

)
.

3. Normal state specific heat
Show that for the specific heat of the normal state one obtains

C =
2π2

3
L3N(0)k2

BT.

(Hint: Use
∫∞
−∞

x2

cosh2 x
dx = π2

6
. )

4. Variation of Ginzburg-Landau energy functional
A variation ψ∗ → ψ∗ + δψ∗ or A → A + δA, for example, changes the GL energy
functional according to G → G + δG. Derive the GL differential equations and their
boundary conditions by requiring δG = 0 to lowest order in arbitrary variations.

(Hint: You may first want to prove the more general result that the minimum conditions
for G[ψ∗,A] =

∫
d3rg(ψ∗,∇ψ∗,A,∇×A) are ∂g

∂ψ∗
−∇ · ∂g

∂∇ψ∗ = 0, ∂g
∂A

+∇× ∂g
∂∇×A = 0,

n̂ · ∂g
∂∇ψ∗ = 0, n̂× ∂g

∂∇×A = 0. Use relations like C · ∇φ = ∇ · (Cφ)− (∇ ·C)φ. )
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1. Boundary conditions of GL theory
Show by using the GL differential equations that in GL theory the continuity equation
∇ · j = 0 and the boundary condition n̂ · j = 0 are satisfied, where j is the current
density and n̂ is the surface normal.

2. Surface current in applied magnetic field
In the lecture notes the behavior of the magnetic field was derived in the case of a
superconducting half space, when an external field is applied parallel to the surface.
Calculate the related vector potential, current density and the total current. (Hint: If
B = B(x)ẑ, you can assume that A = A(x)ŷ.)

3. Dimensionless GL theory
Show that by choosing units of length, energy, order parameter, and magnetic field prop-
erly, and neglecting constant energy terms, the GL free energy functional in a given
external field Bext = ∇×Aext at T < Tc can be written in the dimensionless form

G(Ψ,A) =

∫
d3x

[
−|Ψ|2 +

1

2
|Ψ|4 + |(∇ + iA)Ψ|2 + κ2|∇× (A−Aext)|2

]
,

which contains only one dimensionless parameter κ = λ(T )/ξGL(T ).

4. GL equation in 1 D
Consider the one-dimensonal GL equation

ξ2
GL

d2f

dx2
+ f − f 3 = 0.

Its first integral can be derived by analogy, by comparing the GL energy to the action
integral S =

∫
dtL({q̇i}, {qi}, t) where L = T − V , and noting that when ∂L/∂t = 0, the

Hamiltonian H =
∑

i q̇i
∂L
∂q̇i
− L is constant due to the equation of motion d

dt
∂L
∂q̇i
− ∂L

∂qi
= 0

(which in this analogy is the GL equation). Do this. Show that

f(x) = tanh
x√

2ξGL

satisfies the first-integral equation. You can find the first integral also without the analogy
and solve it for f directly, if you prefer that.

5. Specific heat discontinuity
Calculate the discontinuity ∆C of the specific heat at T = Tc in the G-L theory. Using the
microscopic (BCS) values for the G-L parameters and the known result for the specific
heat Cn(T ) of the normal state, show that

∆C

Cn(Tc)
=

12

7ζ(3)
= 1.43.

(Hint: The specific heat is, as usual C = −T (∂2G/∂T 2).)
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1. Critical current in a wire
Consider G-L equations in a thin wire, assuming that A = 0 and

Ψ(x) = Ceikx.

Calculate the supercurrent j and the G-L energy for this state. Minimize the energy
with respect to C at constant k. Describe C and j as functions of k. Find the maximum
supercurrent and the corresponding k.

2. Normal-superconductor interface: λ� ξGL

Calculate the energy of an interface between normal and superonducting states (in the
critical field Hc) in the limit κ→ 0, in which case the you can neglect the magnetic field
on the superconducting side and use the solution f(x) = tanh

(
x/
√

2ξGL
)
. Note that the

free energy densities of the normal and superconducting states (at x = ±∞) have to be
the same in order to have a stable interface.

(Hint: In this limit the N-S interface is abrupt, and you can choose it to be at x = 0 for
example. At this point f is continuous. On the N side B = µ0Hc and f = 0.)

3. Vortex density
Determine the density of vortices (number per cross-sectional area) in a rotating superfuid
by starting from the assumption that the velocity on the edge of the cylindrical container
is on average the same as the velocity of the edge. How many vortices are there in a
cylinder of radius 5 mm that makes one revolution per second? Consider separately 3He
and 4He.

(Hint: The circulation
∮
dl · vs around N vortices is N h

m
.)

4. Rotating superconductor
In a superconductor one can define the velocity of the superconducting part as

vs =
1

m
(~∇χ− qA) .

When rotating the superconductor, no vortices are generated, but a uniform magnetic
field is. Calculate it. You can assume the condensate to rotate as a solid body together
with the atomic lattice.
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1. Flux line density
Verify that the dimension of length is in accordance with the given field of 1 Tesla in the
experimental vortex lattice picture given in the lecture notes.

2. Level density in a superconductor
Show that the density of the single-particle energies Ek =

√
ξ2
k + ∆2 (i.e. density of levels)

in a superconductor is 0 for 0 < E < ∆ and

Ns(E) =
Nn(0)E√
E2 −∆2

for E > ∆, where Nn(0) is the corresponding normal-state (∆ = 0) density of levels.

3. Josephson current
Show, as instructed in the lecture notes, that if the Jospehson coupling energy is FJ(∆φ) =

−EJ cos ∆φ, then the Josephson current is J = |q|
~ EJ sin ∆φ. Thus consider for simplicity

a quasi-one-dimensional model, with a first superconductor at −L < x < 0 connected
to a second one at 0 < x < L via a tunnel barrier at x = 0. The energy is of the form
F = S

∫ 0

−L dxf(x) + S
∫ L

0
dxf(x) + FJ , where S is a cross-sectional area, f(x) is the GL

energy density at zero magnetic field, with ψ(x) = ψ0e
iφ(x), where ψ0 is a real constant, and

∆φ = φ(0−)− φ(0+). By considering variations φ(x)→ φ(x) + δφ(x) where δφ(±L) = 0,
show that the equilibrium conditions arising from the surface terms of δF = 0 at x = 0±

imply that the current J = Sj(0−) = Sj(0+) satisfies J = |q|
~ ∂FJ(∆φ)/∂∆φ.

4. DC SQUID
Starting from the equations in the lectures

∆φ1 + ∆φ2 =
2πΦ

Φ0

+ 2πN

J = Jc1 sin(∆φ1)− Jc2 sin(∆φ2), (11)

show that for Jc1 = Jc2 = Jc the current can be written

J = 2Jc(−1)N cos
πΦ

Φ0

sin
∆φ1 −∆φ2

2
. (12)


