
763645S SUPERCONDUCTIVITY Solutions 1 Fall 2015

1. Show that the Meissner effect causes momentarily E 6= 0 in superconductors.

Solution: Meissner effect: the exclusion of magnetic field in the superconducting phase
transition. See the Figure at page 2 of the lecture notes.

Let us assume that E(t) = 0 for all times t and apply Maxwell equation:

∇× E = −∂B
∂t

⇒ B(t) = C

But B(t) = C is in conflict with the Meissner effect: B is not constant in time. It must
hold: E 6= momentarily during the superconducting phase transition.

2. Consider a two-state system, in which the Hamiltonian has only two eigenstates with an
energy difference ∆. By first calculating the free energy F , show that the specific heat of
the system is

C =
∆2e

∆
kBT

kBT 2
(

1 + e
∆

kBT

)2 .
Show that at low temperatures this behaves as

C ∝ e
− ∆

kBT .

(Hint: you can use Mathematica for derivations.)

Solution: Let us choose the energy levels without loss of generality: E0 = 0 and E1 = ∆.
The definition of free energy in the case of two-level system stands

F = −kBT ln(
1∑
i=0

e−βEi) = −kBT ln(1 + e
− ∆

kBT ).

The specific heat of the system at constant volume is calculated from equation

CV = −T
(
∂2F

∂T 2

)
V

.

The assumption of constant volume implies that the energy levels remain unchanged
during the change of temperature. Let us, for simplicity, set kB = 1 in the following. The
final result must then be divided by kB to reinstate the correct units. (In other words, we
change the variable temporarily from T to kBT and rename it as T .) The first derivative

∂F

∂T
= − ln(1 + e−

∆
T )− ∆

T

1

1 + e
∆
T



and the second derivative

∂2F

∂T 2
= − ∆

T 2

e−
∆
T

1 + e−
∆
T

+
∆

T 2

1

1 + e
∆
T

− ∆2

T 3

e
∆
T

(1 + e
∆
T )2

are calculated by brute force. In the second derivative the first two terms cancel each
other. Finally, the specific heat has the right form

C =
∆2

T 2

e
∆
T

(1 + e
∆
T )2

or, putting the the kBs back

C =
∆2

kBT 2

e
∆

kBT

(1 + e
∆

kBT )2
.

At low temperatures (kBT � ∆ and so also e
∆

kBT � 1) the result simplifies to

C ≈ ∆2

kBT 2

e
∆

kBT

(e
∆

kBT )2
=

∆2

kBT 2
e
− ∆

kBT ∝ e
− ∆

kBT ,

where the last step just means that ex overwhelms all powers of x as x→∞, so that C
is exponentially suppressed at low temperature despite the factor 1/T 2. Such exponen-
tial behavior is typical of systems with discrete energy levels or otherwise a gap in the
excitation spectrum.

3.

(a) At low temperatures, the specific heat of a normal state metal is linear in temper-
ature Cn(T ) = γT . Using the third law of thermodynamics (i. e. the entropy has to
vanish at T = 0) calculate the entropy of the normal state.

(b) A phase transition is said to be of order n if the n:th derivative of F (T ) is discon-
tinuous at TC but lower derivatives as well of F (T ) are continuous.

(i) Show that there is a latent heat associated with a first order transition (such
as melting), but a second order transition has discontinuity of specific heat
C(T ) but no latent heat.

(ii) Thus deduce that the superconducting transition is of second order.

(c) Show that the specific heat in the superconducting state Cs(T ) has to satisfy∫ Tc

0

Cs(T )

T
dT = γTc.



Solution:

(a) The entropy S and specific heat are related through: Cn(T ) = T dS
dT . Now

dS =
CndT
T

⇒
∫ S(T )

S(0)

dS =

∫ T

0

CndT
T

⇒ Sn(T ) = γT

where the given facts S(0) = 0 and Cn(T ) = γT are applied .

(b)

(i) The latent heat is defined as the finite heat release/absorption occurring at
a phase transition, during which the temperature remains constant. Thus it
is ∆Q = T∆S, where

∆S = S2 − S1 = −
[(

∂F

∂T

)
2

−
(
∂F

∂T

)
1

]
.

The relation S = −∂F/∂T between free energy F and entropy S is seen from
the relation: dF = −S dT − p dV . In the case of first order phase transition
it holds

[(
∂F
∂T

)
2
−
(
∂F
∂T

)
1

]
6= 0 and thus ∆S 6= 0 and ∆Q 6= 0. In the second

order transition
[(

∂F
∂T

)
2
−
(
∂F
∂T

)
1

]
= 0 and so ∆S = 0 and ∆Q = 0. The

specific heat is defined through

C = −T
(
∂2F

∂T 2

)
.

The discontinuity stands as

C2 − C1 = −T
[(

∂2F

∂T 2

)
2

−
(
∂2F

∂T 2

)
1

]
.

In the case of second-order phase transition, the second T derivative of free
energy F is discontinous, the specific heat C is also discontinous.

(ii) In the lecture notes (at the page 2) it is shown in the figure that the specific
heat of superconducting phase transition is discontinous at T = Tc. It is
also mentioned that no latent heat is associated with the transition. The
superconducting phase transition is therefore of second order.

(c) The superconducting phase transition is of second order ⇒ the first derivative of
dF
dT is continous ⇒ Entropy S is continous, Ss(Tc) = Sn(Tc) = γTC .

dSs =
CsdT
T

⇒
∫ Ss(Tc)

Ss(0)

dS =

∫ Tc

0

CsdT
T

⇒
∫ Tc

0

CsdT
T

= γTc

4. In the lecture notes it is explained how the thermodynamic relations

F = E − ST, dF = −SdT − PdV, dE = TdS − PdV



follow from the Gibbs distribution for a system in equilibrium with a heat bath at tem-
perature T . Show this in detail.

Solution:
The first formula:

ρ̂ = eβ(F−Ĥ) ⇒ ln ρ̂ = β(F − Ĥ) ⇒ 〈ln ρ̂〉 = β(F − 〈Ĥ〉)

The operation 〈·〉 is linear and 〈F 〉 = F as F is constant or number, not operator as ρ̂ or
Ĥ.

F = 〈Ĥ〉 − T (−kb〈ln ρ̂〉) = E − TS

The second formula:

Tr (ρ̂) = 1 ⇒ dTr (ρ̂) = 0 ⇒ Tr ( dρ̂ ) = 0

The operation Tr is linear and in addition, commutative with the differential operator.

0 = Tr
(
deβ(F−Ĥ)

)
= Tr

(
β dF eβ(F−Ĥ) − β dĤ

dλ
dλ eβ(F−Ĥ) − dT

kbT 2
(F − Ĥ)eβ(F−Ĥ)

)

= β dF Tr (ρ̂)− β dλTr

(
dĤ
dλ

ρ̂

)
− dT

T
Tr (ρ̂ ln ρ̂)

= β dF + βP dV + β dT S

⇒ dF = −P dV − dT S

The third formula:
E = F + ST

dE = −P dV − dT S + T dS + S dT
= T dS − P dV


