
763645S SUPERCONDUCTIVITY Solutions 2 Fall 2015

1. Using the approach given in lecture notes, derive the equations

Ω = E − µN − ST, Ω = − 1

β
ln[Tr(e−β(Ĥ−µN̂))], dΩ = −SdT − pdV −Ndµ

Solution: The probability density operator in the presence of variable particle number
is ρ̂ = eβ(Ω−Ĥ+µN̂). Now:

i)

ρ̂ = eβ(Ω−Ĥ+µN̂)

ln ρ̂ = β(Ω + Ĥ + µN̂)

Ω = Ĥ − µN̂ + kBT ln ρ̂

〈Ω〉 = 〈Ĥ〉 − µ〈N̂〉 − T (−kB〈ln ρ̂〉)
Ω = E − µN − TS

ii)

ρ̂ = eβ(Ω−Ĥ+µN̂)

ρ̂ = eβΩe−β(Ĥ−µN̂)

e−βΩρ̂ = e−β(Ĥ−µN̂)

e−βΩ Trρ̂︸︷︷︸
=1

= Tre−β(Ĥ−µN̂)

e−βΩ = Tre−β(Ĥ−µN̂)

−βΩ = ln[Tre−β(Ĥ−µN̂)]

Ω = − 1

β
ln[Tre−β(Ĥ−µN̂)]

iii)

Tr(ρ̂) = 1,

d(Trρ̂) = 0

Tr(dρ̂) = 0



Tr

{
β

[
dΩ− dĤ

dλ
dλ+ N̂dµ+ µdN̂ − (Ω− Ĥ + µN̂)

dT

T

]
ρ̂

}
= 0

β

[
dΩ Trρ̂︸︷︷︸

=1

−Tr(
dĤ

dλ
ρ̂)︸ ︷︷ ︸

=−p

dλ︸︷︷︸
=dV

+ Tr(N̂ ρ̂)︸ ︷︷ ︸
〈N̂〉=N

dµ+ µTr(ρ̂dN̂)︸ ︷︷ ︸
=0

−Tr[(Ω− Ĥ + µN̂)ρ̂]︸ ︷︷ ︸
=Ω−E+µN=−ST

dT

T

]
= 0

β[dΩ + pdV +Ndµ+ SdT ] = 0

Thus for equilibrium states dΩ = −pdV −Ndµ− SdT .
Note: Above we used Tr[(Ω−Ĥ+µN̂)ρ̂] = kBTr[ρ̂ ln ρ̂]T = −ST . We also set Tr(ρ̂dN̂) = 0,
because while 〈N̂〉 can depend on λ = V via ρ̂ (since Ĥ does), the operator N̂ itself does
not. (This argument is not very satisfying, though.)

2. Calculate Ω for an ideal Bose-gas similarly as it is calculated for an ideal Fermi-gas in
the lecture notes. Show that Bose and Fermi distributions reduce to a classical Maxwell-
Boltzmann distribution

f(ε) = e−β(ε−µ), when β(ε− µ)� 1.

(Hint: The only difference in the calculation is that for bosons nα = 0, 1, 2, . . . instead of
nα = 0, 1.)

Solution: The grand potential Ω for bosons is calculated similarly as for fermions, starting
from equation (30) in the lectures. The only difference is that ni = 0, 1, 2, . . . So, using
(Ĥ − µN̂)|n1n2 . . .〉 = (

∑
j εjnj − µ

∑
j nj)|n1n2 . . .〉, we have

e−βΩ = Tre−β(Ĥ−µN̂) =
∞∑

n1=0

∞∑
n2=0

. . . 〈n1n2 . . . |e−β(Ĥ−µN̂)|n1n2 . . .〉

=
∞∑

n1=0

∞∑
n2=0

. . . 〈n1n2 . . . |e−β
∑
j(εj−µ)nj |n1n2 . . .〉

=
∞∑

n1=0

∞∑
n2=0

. . . e−β(ε1−µ)n1e−β(ε2−µ)n2 · · ·

=
∞∑

n1=0

e−β(ε1−µ)n1

∞∑
n2=0

e−β(ε2−µ)n2 · · · =
∏
α

∞∑
nα=0

[e−β(εα−µ)]nα

For a geometric series we have
∑∞

j=0 q
j = 1/(1 − q), if |q| < 1. For Bose gas ε − µ > 0

and so the sum converges. Thus

e−βΩ =
∏
α

1

1− e−β(εα−µ)

Ω = − 1

β
ln

[∏
α

1

1− e−β(εα−µ)

]
=

1

β

∑
α

ln
[
1− e−β(εα−µ)

]



and

N = −
(
dΩ

dµ

)
T,V

= − 1

β

∑
α

−βe−β(εα−µ)

1− e−β(εα−µ)
=
∑
α

1

eβ(εα−µ) − 1

So identifying N =
∑

α fα, we have

fα =
1

eβ(εα−µ) − 1

which is the Bose-Einstein distribution. Now consider the limit β(εα − µ) � 1. Clearly
then eβ(εα−µ) � 1 and thus fα ≈ e−β(εα−µ), which is the classical (Maxwell-Boltzmann)
distribution Similarly for fermions we had the Fermi-Dirac distribution

fα =
1

eβ(εα−µ) + 1

Also here, if β(εα − µ) � 1, we have eβ(εα−µ) � 1 and the classical result is obtained.
Thus in this limit there is no distinction between bosons and fermions.

3. Using the grand potential of an ideal Fermi-gas

Ω = −kBT
∑
α

ln[1 + eβ(µ−εα)],

(a) verify that

N = −∂Ω

∂µ
=
∑
α

fα where fα =
1

eβ(εα−µ) + 1
.

(b) Calculate S = −∂Ω
∂T

and show that it can be written in the form

S = −kB
∑
α

[fα ln fα + (1− fα) ln(1− fα)].

(Hint: You may find this useful: x = ln(1− 1
ex+1

)− ln( 1
ex+1

).)

(c) Using E = Ω + ST + µN , show that

E =
∑
α

εαfα.

(d) Using p = − ∂Ω
∂V

, show that

p = −
∑
α

∂εα
∂V

fα.



(e) Show that

dS =
1

T

∑
α

(εα − µ)dfα.

(f) Using the previous results show that

dE = TdS − pdV + µdN.

Give an interpretation for the two terms (TdS and −pdV ) in the special case
N =constant.

Solution: The grand potential of an ideal Fermi gas

Ω = −kBT
∑
α

ln[1 + eβ(µ−εα)]

a)

N = −
(
∂Ω

∂µ

)
T,V

= +kBT
∑
α

βeβ(µ−εα)

1 + eβ(µ−εα)
=
∑
α

1

eβ(εα−µ) + 1
=
∑
α

fα

b)

S = −
(
∂Ω

∂T

)
V,µ

= kB
∑
α

ln[1 + eβ(µ−εα)] + kBT
∑
α

−β 1
T

(µ− εα)eβ(µ−εα)

1 + eβ(µ−εα)

= −kB
∑
α

{
− ln[1 + eβ(µ−εα)] +

β(µ− εα)

eβ(εα−µ) + 1

}
Some playing around with logarithms and fermi functions is needed. The expression is
we must develop is of the form

− ln[1 + e−x]− x

ex + 1
= − ln[e−x(ex + 1)]− x

ex + 1
= x+ ln

1

ex + 1
− x

ex + 1

= ln
1

ex + 1
+ x

(
1− 1

ex + 1

)
Now here

x = ln ex = ln

(
ex

ex+1
1

ex+1

)
= ln

(
1− 1

ex+1
1

ex+1

)
= ln

(
1− 1

ex + 1

)
− ln

(
1

ex + 1

)
and inserting this to the previous expression we find

− ln[1 + e−x]− x

ex + 1
=

1

ex + 1
ln

1

ex + 1
+

(
1− 1

ex + 1

)
ln

(
1− 1

ex + 1

)



Applying this with x = β(εα − µ) we finally have the desired result

S = −kB
∑
α

[fα ln fα + (1− fα) ln(1− fα)]

where fα = 1/(eβ(εα−µ) + 1).

c) From the previous consideration we know that

Ω = −kBT ln(1 + eβ(µ−εα)) = −kBT
∑
α

[− ln(1− fα)] = kBT
∑
α

ln(1− fα)

Then

E = Ω + ST + µN

= kBT
∑
α

ln(1− fα)− kBT
∑
α

[fα ln fα − fα ln(1− fα) + ln(1− fα)] + µ
∑
α

fα

=
∑
α

[
− 1

β
fα ln

fα
1− fα

+ µfα

]
=
∑
α

[
−β
β

(µ− εα)fα + µfα

]
=
∑
α

εαfα

d) The only quantities depending on the volume are the single-particle energies εα. So

p = −
(
dΩ

dV

)
µ,T

= kBT
∑
α

−β ∂εα
∂V
eβ(µ−εα)

1 + eβ(µ−εα)

= −
∑
α

∂εα
∂V

1

eβ(εα−µ) + 1
= −

∑
α

∂εα
∂V

fα

e) We just proved

S = −kB
∑
α

[fα ln fα + (1− fα) ln(1− fα)]

So now

dS = −kB
∑
α

[dfα ln fα + fα
dfα
fα
− dfα ln(1− fα)− (1− fα)

dfα
1− fα

]

= −kB
∑
α

dfα ln
fα

1− fα
= −kB

∑
α

dfαβ(µ− εα) =
1

T

∑
α

(εα − µ)dfα

f) The result dE = TdS−pdV +µdN follows generally by differentiating Ω = E−µN−TS
and using dΩ = −SdT − pdV −Ndµ. Using the results of this exercise, we can write

TdS − pdV + µdN =
∑
α

(εα − µ)dfα +

(∑
α

∂εα
∂V

fα

)
dV + µ

∑
α

dfα

=
∑
α

(εαdfα + fαdεα)− µ
∑
α

dfα + µ
∑
α

dfα

=
∑
α

(εαdfα + fαdεα)



which is indeed equal to dE = d (
∑

α εαfα). Here we identidfied dεα = ∂εα
∂V
dV . This result

now gives a microscopic view to the origin of dE.

The last term, originating here from −pdV , describes the effects of “slow” changes. Just
the energy levels εα are shifted, but the occupation probabilities fα remain unchanged.
Such changes can be reversed without dissipation of heat to the environment.

The first term, originating from TdS, describes the effects of “fast” changes. Here the
occupation probabilities fα of the levels (also) change. A change like this is typically
irreversible. (The system can be returned to its initial equlibrium state, but not without
dissipating heat to the environment.)

Note: The assumption of constant N seems not to be of much relevance. It would allow
us to set dN =

∑
α dfα = 0 above, but the corresponding terms cancel anyway.

4. Show that an ideal (spin 1/2) Fermi-gas has a pressure

p =
2

3

E

V
,

at all temperatures and at T = 0

S = 0 and
E

N
=

3

5
εF .

Solution: For ideal Fermi gas the single-particle energy levels have the expression

εα =
~2k2

2m
=

~2

2m

(
2π

L

)2

(n2
x + n2

y + n2
z) =

4π2~2

2m

1

L2
n̄2
α =

βα
V 2/3

Here we used periodic boundary conditions, giving kx = (2π/L)nx, nx = 0,±1,±2, . . .
and so on. We also denoted (nx, ny, nz) → n̄α and then βα = 4π2~2n̄2

α/2m for brevity.
Now

p = −
∑
α

∂εα
∂V

fα = −
∑
α

βα
−2/3

V 5/3
fα =

2

3

1

V

∑
α

βα
V 2/3

fα =
2

3

1

V

∑
α

εαfα =
2

3

E

V

This result is independent of temperature. As T → 0 all the single-particle states with
εα < εF become filled (fα → 1), where εF is the Fermi energy. The states with εα > εF



are emptied (fα → 0). Now the entropy becomes

S = −kB
∑
α

[fα ln fα + (1− fα) ln(1− fα)]

→ −kB
{ ∑
α filled

[fα ln fα + (1− fα) ln(1− fα)]

+
∑

α empty

[fα ln fα + (1− fα) ln(1− fα)]

}

→ −kB

[ ∑
α filled

(1− fα) ln(1− fα) +
∑

α empty

fα ln fα

]
→ 0

Here we used the limit (L’Hôpital rule)

lim
x→0

x lnx = lim
x→0

lnx
1
x

= lim
x→0

1
x

− 1
x2

= lim
x→0

x = 0

Thus we conclude that at T = 0 the entropy vanishes, S = 0. (Third law of thermody-
namics.)

At zero temperature the energy can be written

E =
∑

α in Fermi sea

εα = 2
∑

k,|k|<kF

h2k2

2m
.

Where we used α = (k, σ) and εα = ε|k| = h2k2

2m
. In the limit L → ∞ the k sum can be

transformed to an integral by noting that one k-point occupies the volume ∆k = (2π/L)3:∑
k

= (
L

2π
)3
∑
k

∆k→ (
L

2π
)3

∫
d3k.

Now since the energies only depend on |k|, the angular integral just gives 4π and we have

E = 2(
L

2π
)34π

∫ kF

0

k2dk
~2k2

2m
=
L3

π2

~2

2m

∫ kF

0

k4dk =
~2

2m

L3

π2

k5
F

5

Similarly

N =
∑

α in Fermi sea

= 2
∑

k,|k|<kF

=
L3

π2

∫ kF

0

k2dk =
L3

π2

k3
F

3

Dividing these and using εF =
~2k2F
2m

we find

E

N
=

3

5
εF .



5. (DEMO – no need to calculate) In the lecture notes we identified the Fermi distribution
from the expression for the total particle number for noninteracting fermions. Show, using
a similar calculation, that the Fermi and Bose distributions follow also directly from

〈n̂α〉 = Tr[n̂αe
β(Ω−Ĥ+µN̂)] =

1

eβ(εα−µ) ± 1

Here Ĥ =
∑

α εαn̂α and N̂ =
∑

α n̂α, where n̂α is the number operator for the single-
particle level α and εα is its energy. For fermions (upper sign) n̂α has the eigenvalues
nα = 0, 1 and for bosons (lower sign) nα = 0, 1, 2, . . ..

Solution:

In the lecture notes it was shown that for fermions

e−βΩ = Tr[e−β(Ĥ−µN̂)] =
∏
α

[1 + e−β(εα−µ)]

Now very similarly to that calculation, we have

〈n̂α〉 = Tr[n̂αe
β(Ω−Ĥ+µN̂)] = eβΩTr[n̂αe

−β(Ĥ−µN̂)]

= eβΩ

1∑
n1=0

1∑
n2=0

· · · 〈n1, n2, . . . |n̂αe−β(Ĥ−µN̂)]|n1, n2, . . .〉

= eβΩ(
1∑

nα=0

nαe
−β(εα−µ)nα)

∏
γ 6=α

1∑
nγ=0

e−β(εγ−µ)nγ

= eβΩe−β(εα−µ)
∏
γ 6=α

[1 + e−β(εγ−µ)]

Then, inserting e−βΩ from above

〈n̂α〉 =
e−β(εα−µ)

∏
γ 6=α[1 + e−β(εγ−µ)]∏

γ[1 + e−β(εγ−µ)]
=

e−β(εα−µ)

1 + e−β(εα−µ)
=

1

eβ(εα−µ) + 1

The boson calculation is similar, giving first

e−βΩ = Tr[e−β(Ĥ−µN̂)] =
∏
α

1

1− e−β(εα−µ)



Then

〈n̂α〉 = eβΩ

∞∑
nα=0

nαe
−β(ε1−µ)nα

∏
γ 6=α

∞∑
nγ=0

[e−β(εγ−µ)]nγ

= −eβΩ[
∂

∂β(εα − µ)

∞∑
nα=0

e−β(εα−µ)nα ]
∏
γ 6=α

∞∑
nγ=0

[e−β(εγ−µ)]nγ

= −eβΩ[
∂

∂β(εα − µ)

1

1− e−β(εα−µ)
]
∏
γ 6=α

1

1− e−β(εγ−µ)

= eβΩ e−β(εα−µ)

(1− eβ(εα−µ))2

∏
γ 6=α

1

1− e−β(εγ−µ)
=

1

eβ(εα−µ) − 1


