
763645S SUPERCONDUCTIVITY Solutions 4 Fall 2015

1. Show that for an arbitrary function g(k)

1

L3

∑
k

g(k) =

∫
d2Ω

4π

∫
dεN(ε)g(k),

and argue that if g(k) 6= 0 only near the Fermi surface, one obtains the equation shown
in the lectures.

Solution:
First some preliminaries. The number of states with wave vectors of length less than k
(hence the subscript <) is N<(k) = 4π

3
k3/(2π

L
)3. Here 4π

3
k3 is the volume of a sphere of

radius k and (2π
L

)3 is the volume occupied by one allowed k point. The number dN< (k)
of states between spherical surfaces at radii k and k + dk is just

dN< (k) = N ′<(k) dk = 4πk2(
L

2π
)3 dk =

L3k2 dk
2π2

.

The relation between energy ε and wave vector k, ε = ~2k2/(2m), may be applied to put
these quantities in terms of energy. Thus, using

k = (
2mε

~2
)1/2, dk =

√
m

~
√

2ε
dε ,

we have N<(ε) = 4π
3

(2mε~2 )3/2( L
2π

)3 and

dN< (ε) = N ′<(ε)dε = L3m
3/2
√
ε

~3
√

2π2
dε = L3N(ε) dε ,

where N(ε) is the energy density of states at energy ε per unit volume of the system:
N(ε) = 1

L3

dN< (ε)
dε

. Note that dN< (k) = N ′<(k) dk = N ′<(ε) dε = dN< (ε) = L3N(ε) dε .

Now for the actual transformation. Let us separate the k dependence in g(k) to a depen-
dence on k = |k| and on k̂ = k/k, and write g(k) = g(k̂, k). Here k can be written as a
function of ε. So, replacing the k sum by an integral and remembering that for spherical
coordinates the volume element is d 3k = dΩ k̂k

2 dk , where dΩ k̂ = sin θ dθ dφ (θ and φ
being the polar and azimuthal angles of k̂), we develop

1

L3

∑
k

g(k) =

∫
d3k

(2π)3
g(k) =

∫
dΩk̂

4π

∫
k2dk

2π2
g(k̂, k)

=

∫
dΩk̂

4π

∫
dN <(k)

L3
g(k̂, k) =

∫
dΩk̂

4π

∫
dN <(ε)

L3
g(k̂, k(ε))

=

∫
dΩk̂

4π

∫
N(ε)g(k̂, k(ε)) dε =

∫
d2Ω k̂

4π

∫
N(ε)g(k) dε .



Here the k and ε integrals are all from 0 to ∞. The last form is the desired one — note
that a dependence of k on ε, θ, and φ is implied.

If g(k) 6= 0 “only near k = kF ”, then the density of states N(ε) may be approximated by
its Fermi-surface value N(εF ) = mkF/(~22π2) in the whole region where the integrand is
finite. The constant factor N(εF ) can then be taken out of the integral such that

1

L3

∑
k

g(k) = N(εF )

∫
d2Ω

4π

∫
g(k) dε .

Choosing the zero of energy at εF in all of the above definitions, like k2 = 2m(ε+ εF )/~2,
you can replace N(εF )→ N(0).

Note: There is another way of deriving the result that may be useful to mention. Let’s
assume that we can write g(k) = g(k̂, εk). Then

1

L3

∑
k

g(k) =

∫
d3k

(2π)3
g(k̂, εk) =

∫
k2dk

2π2

∫
dΩk̂

4π
g(k̂, εk)

=

∫
dε

∫
k2dk

2π2
δ(ε− εk)︸ ︷︷ ︸

N(ε)

∫
dΩk̂

4π
g(k̂, ε) =

∫
dεN(ε)

∫
dΩk̂

4π
g(k̂, ε),

because the (single-spin) density of states is always given by N(ε) = 1
L3

∑
k δ(ε − εk) =∫

d3k
(2π)3

δ(ε− εk) regardless of what the dispersion εk is.

Note 2: The approximation to the general result can be made more precise by expanding
N(ε) = N(εF ) +N ′(εF )(ε− εF ) +O[(ε− εF )2] and deducing that the neglected terms are
of higher order in the small parameter T/TF � 1, assuming that the energy width of g
is given by temperature T .

2. Particles with integer and half-integer total spin follow boson and fermion statistics,
respectively. By calculating the numbers of protons, neutrons and electrons (which all
have spin 1/2), deduce which of the following particles are bosons and which of them are
fermions:

1H, 3He, 4He, 6Li, 7Li, 23Na, 87Rb.

Solution:
The table lists the isotopes AX of element X, with atomic mass number A, the number
of protons Np (usually called the atomic number Z), the number of neutrons Nn (usually
denoted N), and the number of electrons Ne:



Atom Np Nn Ne fermion/boson nature
1H 1 0 1 boson
3He 2 1 2 fermion
4He 2 2 2 boson
6Li 3 3 3 fermion
7Li 3 4 3 boson

23Na 11 12 11 boson
87Rb 37 50 37 boson

These satisfy A = Np + Nn and Ne = Np. Protons, neutrons, and electrons all carry a
spin 1/2. The atom is a boson if the total spin is an integer, otherwise it is a fermion. An
even number of spin 1/2s always yields a total spin that is an integer and an odd number
leads to a half-integer. (See rules for quantum-mechanical addition of angular momenta if
needed.) Now, the total number of the spin-carrying particles is Nn+Np+Ne = Nn+2Np.
Since 2Np is even, only the number of neutrons Nn really counts.

Let us take 1H as an example. It consists of two spin-1/2 particles. The total spin of two
spin-1/2 particles is either 0 or 1, so in any case the total spin is integer and 1H atom
has bosonic nature in many particle statistics. The second example is 3He-atom which
consists of five spin-1/2 particles. Five halves cannot be summed to any integer number.
The 3He-atom is thus considered as fermion.

3. In the course of statistical physics it is shown, that the Bose condensation (for spin=0
particles) occurs below the temperature

TBOSE = 3.31
~2

mkB

(
N

V

)2/3

,

wherem is the mass of the boson andN/V the number density. Using the mass densities of
3He and 4He (ρ3 = 0.081 g/cm3 and ρ4 = 0.145 g/cm3) calculate the Fermi temperature
for 3He and the Bose condensation temperature for 4He, and compare them with the
superfluid transition temperatures T3 = 0.93 mK and T4 = 2.17 K observed for the two
helium isotopes.

Solution:
In the previous problem the 3He atom was deduced as fermion and 4He as boson. Thus for
3He the Fermi temperature is calculated and for 4He the Bose condensation temperature.
Given values for densities and atomic masses:

ρ3 = 81 kg/m3, ρ4 = 145 kg/m3, m3 = 3u, m4 = 4u

where u = 1.66053·10−27 kg is the atomic mass unit. The number density is then naturally
N/V = ρ/m.



The Bose condensation temperature TBOSE,4 for 4He (using ~ = 1.054571 · 10−34 Js and
kB = 1.38065 · 10−23 J/K):

TBOSE,4 = 3.31
~2

m4kB

(
ρ4
m4

)2/3

= 3.31
~2

m
5/3
4 kB

ρ
2/3
4 = 3.1 K

which is of the same order with the experimental transition temperature for superfluidity,
T4 = 2.17K.

The Fermi temperature TF for 3He is calculated from the chain of definitions: εF = kBTF,
εF = ~2k2F/(2m3) and kF = (3π2N/V )1/3. So it reads:

TF =
~2

2m
5/3
3 kB

(3π2ρ3)
2/3 = 4.9 K.

The superfluid transition temperature is T3 = 0.93 mK. The ratio of these two is T3/TF =
1.9 · 10−4. This is similar to Tc/TF in the case of superconducting transition of electrons
in a metal.

As a conclusion, superfluidity in 4He probably has something to do with Bose-Einstein
condensation and superfluidity in 3He with Cooper pairing as in superconductivity. The
case of 3He may be discussed later in the lectures.

4. Check all the intermediate steps in the Cooper problem shown in the lecture notes.

(Hint: Orthonormality of plane waves
∫
ei(k−q)·rd3r = L3δk,q.)

Solution:
Let us start with the Schrödinger equation (SE) [Eq. (85) in the notes][

− ~2

2m
(∇2

1 +∇2
2) + V (r1, r2)

]
φ(r1, r2) = Eφ(r1, r2) (1)

As mentioned in the lecture, we assume the center of mass of the pair to be at rest and
thus write the wave function as

φ(r1, r2) =
1

L3

∑
k

χ(k)eik·(r1−r2). (2)

After plugging this into SE and calculating the derivatives (∇2
1 +∇2

2) we are left with

1

L3

∑
k

χ(k)

2

εk︷ ︸︸ ︷
~2k2

2m
+V (r1, r2)

 eik·(r1−r2) =
E

L3

∑
k

χ(k)eik·(r1−r2) (3)

which after a little manipulation reads

1

L3

∑
k

(2εk − E)χ(k)eik·(r1−r2) = − 1

L3

∑
k

χ(k)V (r1, r2)e
ik·(r1−r2). (4)



Now the above equation is multiplied with L3e−iq·(r1−r2) and after that integrated over
both spaces r1 and r2∑

k

(2εk − E)χ(k)

∫ ∫
e−i(q−k)·r1+i(q−k)·r2 d3r1 d3r2︸ ︷︷ ︸

(L3δq,k)2=L6δq,k

= −
∑
k

χ(k)

∫ ∫
V (r1, r2)e

−i(q−k)·r1+i(q−k)·r2 d3r1 d3r2︸ ︷︷ ︸
L6〈q,−q|V |k,−k〉

.

(5)

where we used the notation in Eq. (88) of the lecture notes. The first identification with a
Kronecker delta arises from elementary complex integration and can be seen representing
the Fourier transform of unity, or orthonormality of plane waves under the assumption
of periodic boundary conditions:

∫
d3rei(k−q)·r = L3δk,q (prove this!). Thus we have [Eq.

(87) of the notes]

(2εq − E)χ(q) = −
∑
k

〈q,−q|V |k,−k〉χ(k) (6)

Here we should insert [(90) of notes]

〈q,−q|V |k,−k〉 =

{
− g
L3 |εk − εF | < εc, |εq − εF | < εc

0 otherwise
(7)

Then (6) reduces to
(2εq − E)χ(q) = I (8)

where the right-hand is just a constant (independent of q as long as |εq − εF | < εc):

I =
g

L3

∑
k,εF−εc<εk<εF+εc

χ(k) (9)

From (8) we deduce [(91) of notes]

χ(q) =
I

2εq − E
θ(q − kF ), (10)

where the Heaviside step function θ(x) is now added to take into account the Pauli
principle: χ(q) = 0 for q < kF . (See note below.) Inserting (10) into (9) and noting that
Is cancel we have [(92) of notes]

1 =
g

L3

∑
k,εF<εk<εF+εc

1

2εk − E
(11)

which yields, upon applying Eq. (76) of the notes,

1

N(0)g
=

∫ εF+εc

εF

dε
1

2ε− E
(12)



This gives [(93) of notes]
1

N(0)g
=

1

2
ln

2εF − E + 2εc
2εF − E

(13)

Now if 2εF − E � 2εc, then the ratio reduces just to form
2εF − E + 2εc

2εF − E
=

2εc
2εF − E

.

With this reduction the equation (13) is easy to solve and see that the energy E given in
the equation [(94) of notes]:

E = 2εF − 2εce
−2/gN(0) (14)

Note: The requirement that χ(k) = 0 for k < kF is an ad hoc procedure that needs
to be introduced at some point in the calculation, because we are trying to describe a
many-body problem as a two-body one. We could just as well have restricted to k, q > kF
from the beginning, replacing also |εk,q − εF | < εc in (7) with 0 < εk,q − εF < εc. (See de
Gennes.) That’s not what is done in the notes, because in the general BCS many-body
calculation to be considered later on, the interaction should be finite also for k < kF .

Note 2: One of the main results of the Cooper calculation is that on the Fermi surface the
pairs can form with an arbitrarily weak attractive interaction. This should be contrasted
with the case of two isolated particles, which is basically obtained from the Cooper prob-
lem by shrinking the Fermi sphere to a point: kF = εF = 0. Then the density of states
is N(ε) ∝

√
ε and it cannot be approximated with a constant around “ε = εF ” (that

is ε = 0). In this case it is (apparently) found that the interaction must exceed some
threshold in order for pairs to form. See de Gennes.

Note 3: The original reference for this calculation is L. N. Cooper, Phys. Rev. 104, 1189–
1190 (1956). The full BCS theory followed a year later, in J. Bardeen, L. N. Cooper, and
J. R. Schrieffer, Phys. Rev. 108, 1175–1204 (1957).

5. Think of Cooper’s problem for a repulsive interaction, i.e. g < 0 in the notation of the
lecture notes. Where does the calculation differ from the case of an attractive interaction,
g > 0? In both cases you can look at the weak-coupling limit |g|N(0)� 1.

(Hint: You can actually solve for the energy of the pair state without assumptions on the
sign or magnitude of gN(0). After that it’s easier to consider the special cases.)

Solution: The energy E can be solved from Eq. (93) of the lecture notes without any
approximations. Using a shorthand notation A = 2/gN(0):

1

gN(0)
=

1

2
ln

(
2εF − E + 2εc

2εF − E

)
eA =

(
2εF − E + 2εc

2εF − E

)
E = 2εF −

2

eA − 1
εc



Attractive interaction means g > 0. Then, in the weak-coupling limit gN(0) � 1 →
A� 1, which gives eA � 1 and therefore

Eatt = 2εF −
2

eA − 1
εc ≈ 2εF − 2e−Aεc

as solved in lectures. When the interaction is repulsive, g < 0. Now the weak-coupling
limit is |g|N(0)� 1 → A� −1, leading to eA ≈ 0 and thus

Erep = 2εF −
2

eA − 1
εc ≈ 2εf + 2εc

which is larger than 2εF and thus the pair ’formed’ by repulsive interaction is not stable.


