
763645S SUPERCONDUCTIVITY Solutions 5 Fall 2015

1. Fermion creation and annihilation opertators
The second quantization for fermions is based on the operator a and its hermitian con-
jugate a†. The only requirements on them are the anticommutator rules ({A,B} =
AB +BA)

{a, a†} = 1, {a, a} = {a†, a†} = 0. (1)

(i) Show that a†a† = aa = 0.

(ii) Prove the relation a†a(1 − a†a) = 0, which implies that the eigenvalues of the
operator a†a must be 0 and 1. Let |0〉 and |1〉 denote the eigenstates.

(iii) Prove the relations [a†a, a] = −a and [a†a, a†] = a†. Applying these on |0〉 and |1〉,
show that (with appropriate definitions of phases)

a† |0〉 = |1〉, a |1〉 = |0〉, a† |1〉 = 0, a |0〉 = 0. (2)

Note the important difference between 0 and |0〉.

Solution:

(i)

{a, a} = {a†, a†} = 0

aa+ aa = a†a† + a†a† = 0

2aa = 2a†a† = 0

aa = a†a† = 0

(ii)

{a, a†} = 1

aa† + a†a = 1

a†a(aa† + a†a) = a†a

a† aa︸︷︷︸
=0

a† + a†aa†a = a†a

0 = a†a(1− a†a)

Let us assume that the vector |n〉 is an eigenvector of the operator a†a with eigen-
value n, meaning that a†a |n〉 = n |n〉. But we do not know the possible values of n
yet. Let us now operate by operator a†a(1− a†a) on the vector |n〉:

a†a(1− a†a) |n〉 = (n− n2) |n〉 = n(1− n) |n〉 .



On the other hand we know that a†a(1 − a†a) |n〉 = 0 |n〉. Based on these two
relations we deduce that

n(1− n) = 0 → n = 0, 1.

So the only eigenvectors of a†a are |0〉 and |1〉, with eigenvalues 0 and 1, respectively:
a†a |0〉 = 0 · |0〉 and a†a |1〉 = 1 · |1〉. Let us normalize the vectors so that 〈0|0〉 =
〈1|1〉 = 1. If we furthermore assume that a and a† are Hermitian conjugates [call
this assumption (∗)], then a†a is Hermitian, and |0〉 and |1〉 are orthogonal: 〈0|1〉 =
〈0|1|1〉 = 〈0|a†a|1〉 = 〈0|0|1〉 = 0.

(iii) Here we need the relations a†a = 1 − aa† and aa† = 1 − a†a, deduced from the
anticommutator rules. Using them:

[a†a, a] = a† aa︸︷︷︸
=0

−aa†a = −a(1− aa†) = −a+ aa︸︷︷︸
=0

a† = −a

[a†a, a†] = a†aa† − a†a†︸︷︷︸
=0

a = a†(1− a†a) = a†.

Let us apply the left-hand side of the first of these on the vector |n〉. By using
a†a |n〉 = n |n〉, we can write [a†a, a] |n〉 = (a†aa − aa†a) |n〉 = (a†aa − an) |n〉 =
(a†a−n)a |n〉. This must equal −a |n〉. Rearranging, and then doing the same with
the second commutator relation we find

a†a(a |n〉) = (n− 1)(a |n〉)
a†a(a† |n〉) = (n+ 1)(a† |n〉).

All the four results follow from these by considering the cases n = 0, 1.

(1) We do not know a priori what the vector a† |0〉 is, but the above relations allow
us to “test” it by operating with a†a. We see that a†a(a† |0〉) = 1 · a† |0〉. Therefore
a† |0〉 is an eigenvector of a†a with eigenvalue 1. Thus we may write a† |0〉 = c |1〉,
where c is an arbitrary complex factor, because a† |0〉 need not be normalized. In
fact c = 0 is also possible as far as we know, but invoking assumption (∗), we can
calculate the norm: ‖a† |0〉‖2 = 〈0|aa†|0〉 = 〈0|(1−a†a)|0〉 = 1−0 = 1. Thus |c| = 1,
and we may choose c = 1, so that we have a† |0〉 = |1〉.

(2) Similarly a†a(a |1〉) = 0. Thus we conclude that a |1〉 is an eigenvector of a†a
with eigenvalue 0, and therefore a |1〉 = d |0〉. The normalization/phase factor d is
now fixed by application of a†, which yields |1〉 = da† |0〉. Thus d = c−1 = 1, and we
have a |1〉 = |0〉, with ‖a |1〉‖2 = 〈0|0〉 = 1. Under assumption (∗) this normalization
would follow directly: ‖a |1〉‖2 = 〈1|a†a|1〉 = 1.

(3,4) The remaining two relations state that a†a(a |0〉) = −1·(a |0〉) and a†a(a† |1〉) =
2 · (a† |1〉), which would appear to imply that a |0〉 and a† |1〉 are eigenvectors of
a†a with eigenvalues −1 and 2, respectively. However, we know they do not ex-
ist, and indeed a direct application of a†a† = aa = 0 would give a†a(a |0〉) = 0



and a†a(a† |1〉) = (1 − aa†)(a† |1〉) = 1 · a† |1〉. These would now imply that a |0〉
and a† |1〉 are eigenvectors of a†a with eigenvalues 0 and 1, again. This is a con-
tradiction, and so we must have a |0〉 = a† |1〉 = 0. A similar conclusion fol-
lows by assuming the first two relations [(1),(2)] to hold and then by applying
a†a† = aa = 0: a† |1〉 = a†a† |0〉 = 0 and a |0〉 = aa |1〉 = 0. Note also that under the
assumption of (∗), these would be proved directly by ‖a |0〉‖2 = 〈0|a†a|0〉 = 0, and
‖a† |1〉‖2 = 〈1|aa†|1〉 = 〈1|(1− a†a)|1〉 = 1− 1 = 0.

Note: In the original formulation of the problem it was implied that the Hermitian
conjugateness of a and a† (∗) need not be assumed, but that it follows from the
results a† |0〉 = |1〉, a |1〉 = |0〉, a† |1〉 = 0, and a |0〉 = 0, because then 〈m|a†|n〉 =
〈n|a|m〉∗, with m,n = 0, 1. However, this at least requires the result 〈0|1〉 = 0,
which follows trivially only if a†a is Hermitian. If it is not, then we should actually
define separate left and right eigenvectors, which gets complicated! So while the
proof may be possible to carry out more generally, it is best to skip it here.

2. Fermion many-body states
Consider a fermion system in occupation-number representation, where the basis vectors
have the form

|n1, n2, n3, ..., n∞〉 . (3)

Here 1, 2, ... label the levels, and n1, n2, . . . are their occupations (= 0 or 1). Second
quantization means simply a new notation, where the approach of the previous exercise
is applied to each level separately, i.e. for each level there are separate ai and a†i ’s. The
previous anticommutator rules are generalized trivially:

{ar, a†s} = δrs, {ar, as} = {a†r, a†s} = 0. (4)

(a) Show that the number operators for states i and j commute: [a†iai, a
†
jaj] = 0.

Because of the anticommutation of the operators on different levels, one has to be careful
in defining the signs in Eq. (3) correctly. One consistent way is to define

|n1, n2, ..., n∞〉 = (a†1)
n1(a†2)

n2 ...(a†∞)n∞ |0, 0, ..., 0〉 , (5)

where the levels always appear in the same (but otherwise arbitrary) order. Correspond-
ingly we write

〈n1, n2, ..., n∞| = 〈0, 0, ..., 0| an∞
∞ . . . an1

2 a
n1
1 (6)

because (AB)† = B†A†. We assume the vacuum states normalized, 〈0, 0, . . . |0, 0, . . .〉 = 1.

(b) Prove that the states |{nk}〉 ≡ |n1, n1, . . . , n∞〉 are orthonormal: 〈{nk}|{n′k}〉 =
δn1,n′

1
δn2,n′

2
· · · .

(c) Show that 〈{nk}|a†iaj|{nk}〉 = δijni.

(d) Express the state auat|0, 0, ..., 1k, ..., 1l, ...〉 in a simpler form. Here k and l label
two levels and all the occupation numbers not shown are zero.



Solution:

(a) The number operators commute:

a†iaia
†
jaj = a†i (δij − a

†
jai)aj = δija

†
iaj − a

†
ia
†
jaiaj = δija

†
iaj − a

†
ja
†
iajai

= δija
†
iaj − a

†
j(δij − aja

†
i )ai = a†jaja

†
iai

(b) The number states can be proved to be orthonormal for instance as follows. Con-
sider first the case where {n′k} = {nk}:

〈{nk}|{nk}〉 = 〈0| · · · an2
2 a

n1
1 (a†1)

n1(a†2)
n2 · · · |0〉 = 〈0| · · · ajaia†ia

†
j · · · |0〉

where in the second form only operators where ni = 1 are kept. Then by repeatedly
using the anticommutation result aia†i = 1 − a†iai and observing that the second
term must be zero because ai|0〉 = 0, the final step yields 〈{nk}|{nk}〉 = 〈0|0〉 = 1.
The proof that 〈{nk}|{n′k}〉 = 0 when {n′k} 6= {nk} is similar: at some point in the
anticommutation process the situation is encountered

〈{nk}|{n′k}〉 = 〈0| · · · an2
2 a

n1
1 (a†1)

n′
1(a†2)

n′
2 · · · |0〉 = 〈0| · · · ajaia†ka

†
l · · · |0〉

where k 6= i. Then applying aia†k = −a†kai only gives a single term which vanishes
because of ai|0〉 = 0. Hence 〈{nk}|{n′k}〉 = δn1,n′

1
δn2,n′

2
· · · .

(c) Using a†iai|{nk}〉 = ni|{nk}〉 and the normalization 〈{nk}|{nk}〉 = 1, it is now
clear that for i = j we have 〈{nk}|a†iai|{nk}〉 = ni. For i 6= j, 〈{nk}|a†iaj|{nk}〉
can be shown to vanish for example by considering the four possible cases for the
occupation numbers ni and nj, which are (ni, nj) = (0, 0), (0, 1), (1, 0), (1, 1). All
cases yield zero either due to aj|nj = 0〉 = 0, a†i |ni = 1〉 = 0, or 〈ni = 0|a†i = 0.
Let us go through the most complicated case (although not very complicated),
which is when ni = nj = 1. Then aj|{nk}〉 = aj| . . . ni = 1 . . . nj = 1 . . .〉 =
±| . . . ni = 1 . . . nj = 0 . . .〉, where the ±-sign is caused by the anticommutation
rule. Similarly 〈{nk}|a†i = 〈. . . ni = 1 . . . nj = 1 . . . |a†i = ±〈. . . ni = 0 . . . nj = 1 . . . |.
Hence 〈{nk}|a†iaj|{nk}〉 = ±〈. . . ni = 0 . . . nj = 1 . . . | . . . ni = 1 . . . nj = 0 . . .〉 = 0,
since the number states are orthogonal (see (b)).

Thus 〈{nk}|a†iaj|{nk}〉 = niδij.



(d)

auat|0, 0, . . . , 1k, . . . , 1l, . . .〉
= auata

†
ka
†
l |vac〉

= au(δtk − a†kat)a
†
l |vac〉

= δtkaua
†
l |vac〉 − aua

†
kata

†
l |vac〉

= δtk(δul − a†lau)|vac〉 − aua
†
k(δtl − a

†
lat)|vac〉

= δtkδul|vac〉 − δtka†l au|vac〉︸ ︷︷ ︸
=0

−δtlaua†k|vac〉+ aua
†
ka
†
l at|vac〉︸ ︷︷ ︸

=0

= δtkδul|vac〉 − δtl(δuk − a†kau)|vac〉
= δtkδul|vac〉 − δtlδuk|vac〉+ δtla

†
k au|vac〉︸ ︷︷ ︸

=0

= (δtkδul − δtlδuk)|vac〉

3. Fermion Hamiltonian
Consider now the usual Hamiltonian in the “first” quantization H =

∑N
k=1 T (rk) +

1
2

∑N
k 6=l=1 V (rk, rl), where N is the number of particles, T (rk) = −~2∇2

rk
/2m is

the kinetic energy operator and V (rk, rl) the interaction potential. In the “second”
quantization, this operator transforms to

Ĥ =
∑
rs

a†rTrsas +
1

2

∑
rstu

a†ra
†
sVrs,tuauat, (7)

where Trs and Vrs,tu are the matrix elements of T (rk) and V (rk, rl) (in Vrs,tu states
t and u are the initial states, and r and t refer to the same particle). Without trying
to go through the lengthy and dull derivation of Eq. (7) (see for example, Fetter-
Walecka, Quantum Theory of Many-Particle Systems, pages 3-18), use the equations
of previous problem to calculate the following matrix elements and interpret the
results:

〈0, 0, ...|Ĥ|0, 0, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ...〉
〈0, 0, ..., 1k, ...|Ĥ|0, 0, ..., 1l, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1k, ..., 1l, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1v, ..., 1w, ...〉.

Here all the occupation numbers not shown are zero, and k, l, v and w refer to
different levels. (Notice that the exchange terms are automatically included.)



Solution:
Taking the matrix elements (e.g. 〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1v, ..., 1w, ...〉) re-
duces to the calculation of two different kind of matrix elements:

〈0, 0, ..., 1k, ..., 1l, ...|a†ras|0, 0, ..., 1v, ..., 1w, ...〉
〈0, 0, ..., 1k, ..., 1l, ...|a†ra†sauat|0, 0, ..., 1v, ..., 1w, ...〉.

The main idea is to express kets |0, 0, ..., 1v, ..., 1w, ...〉 and bras 〈0, 0, ..., 1k, ..., 1l, ...|
in the form

|0, 0, ..., 1v, ..., 1w, ...〉 = a†va
†
w |0, . . . , 0, . . .〉 = a†va

†
w |vac〉

and
〈0, 0, ..., 1k, ..., 1l, ...| = 〈0, . . . , 0, . . .| alak = 〈vac| alak

[note order of operators: (AB)† = B†A†] and then to change the order of the
operators so that one may apply . . . ar |vac〉 = 0 or 〈vac| a†s . . . = 0. The changing of
the order of the operators is done by using the anticommutator relation: {ar, a†s} =
ara
†
s + a†sar = δrs.

Here is an example with one of the hardest inner products

〈0, 0, ..., 1k, ..., 1l, ...|a†ras|0, 0, ..., 1v, ..., 1w, ...〉

and all others go similarly:

〈0, 0, ..., 1k, ..., 1l, ...|a†ras|0, 0, ..., 1v, ..., 1w, ...〉
= 〈0, . . . , 0, . . . |al aka

†
r︸︷︷︸

δkr−a†rak

asa
†
va
†
w|0, . . . , 0, . . .〉

= δkr〈vac|al asa
†
v︸︷︷︸

δsv−a†vas

a†w|vac〉 − 〈vac|ala†rakasa†va†w|vac〉︸ ︷︷ ︸
A

= δkrδsv〈vac| ala
†
w︸︷︷︸

δlw−a†wal

|vac〉 − δkr〈vac|ala†vasa†w|vac〉 − A

= δkrδsvδlw 〈vac|vac〉︸ ︷︷ ︸
=1

−〈vac|a†wal|vac〉︸ ︷︷ ︸
=0

−δkr〈vac|ala†vasa†w|vac〉 − A

...
= δkrδsvδlw − δkrδswδlv + δlrδswδkv − δlrδsvδkw.

1)
Using the calculation method introduced above we find that

〈0, 0, ...|Ĥ|0, 0, ...〉 =
∑
rs

Trs · 0 +
1

2

∑
rstu

Vrs,tu · 0 = 0



as is natural. There are no particles in vacuum, so there is no kinetic or interaction
energy.

2)
Clearly

〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ...〉 = 0

This is natural also, because the initial state |0, 0, . . .〉 is the vacuum while the final
state has two particles in it. One cannot simply excite particles from the vacuum
with any “normal” particle-conserving interaction V . (This will be different in the
BCS theory of superconductors.)

3)
The single particle at l:th momentum state is the initial state and the single particle
at k:th momentum state the final state:

〈0, 0, ..., 1k, ...|Ĥ|0, 0, ..., 1l, ...〉 = Tkl

Interaction must involve at least two particles, so in the absence of a second one,
there is only kinetic energy.

4)
Here it should be noted that only the case k 6= l makes sense, because k = l would
correspond to a double occupation of the state. So with that in mind

〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1k, ..., 1l, ...〉

= Tkk + Tll +
1

2
(Vkl,kl − Vlk,kl − Vkl,lk + Vlk,lk)

This describes the kinetic energy of two particles and the interaction between them,
with all possible exchanges of particle enumeration, i.e. the exchange terms. The
result is best obtained as a special case of 5 below.

5)
Actually just a more general version of case 4.

〈0, 0, ..., 1k, ..., 1l, ...|Ĥ|0, 0, ..., 1v, ..., 1w, ...〉

= Tkvδlw − Tkwδlv − Tlvδkw + Tlwδkv +
1

2
(Vkl,vw − Vlk,vw − Vkl,wv + Vlk,wv)

Again, only k 6= l and v 6= w makes sense, but the result has been written without
these restrictions. It is easy to see that the result is zero if k = l or v = w. And if
k = v 6= l = w, then case 4 is reproduced. In the case where k = w 6= l = v, the
kinetic-energy terms have negative signs. And if k 6= l 6= v 6= w, then all the kinetic-
energy-terms are zero. (Maybe this was the original idea behind having separate
cases 4 and 5, and in this order.)

Note: You may additionally check that these results, obtained here from the second-
quantized formalism, can really be derived directly from the first-quantized theory



in cases where particle numbers in the matrix elements are the same on the left and
right sides of the matrix elements. Thus if we define for example the two-particle
Slater deteminants (we drop spin indices for simplicity, although for fermions they
should be there)

Φ
(2)
kl (r1, r2) =

1√
2

[φk(r1)φl(r2)− φl(r1)φk(r2)]

then, for example, the case 5 above should be obtained as

〈k, l|H(2)|v, w〉 =

∫
d3r1

∫
d3r2[Φ

(2)
kl (r1, r2)]

∗H(2)(r1, r2)Φ
(2)
vw(r1, r2)

= Tkvδlw − Tkwδlv − Tlvδkw + Tlwδkv +
1

2
(Vkl,vw − Vlk,vw − Vkl,wv + Vlk,wv)

Here H(2) is the first-quantized Hamiltonian for a two-particle system and we de-
fine Tkl =

∫
d3r1φ

∗
k(r1)T (r1)φk(r1) etc. as in the lecture notes. It is instructive to

see how the terms with negative signs are those where the particle indices have
been exchanged. Clearly, doing things this way is much messier than in second
quantization, especially when the number of particles begins to increase.

4. Fourier transforms
When using the “box-normalized” (L-periodic) plane waves φk(r) = (1/

√
L3)eik·r

as a basis, the following definitions for the Fourier transformation and its inverse
are convenient:

F (k) =

∫
d3re−ik·rf(r), f(r) =

1

L3

∑
k

eik·rF (k).

Check by substitution of one into the other that they are consistent with each other
if

1

L3

∫
d3re±i(k−k

′)·r = δk,k′ ,
1

L3

∑
k

e±ik·(r−r
′) = δ(r − r′).

These are the “orthonormality” and “completeness” relations. Above, all r integrals
are over a cube with sides of length L, and the k sums are over the discrete values
k = 2π

L
(nx, ny, nz), where nx,y,z are integers. Calculate the orthonormality integral

explicitly at least in the case of one dimension.

Solution:
Let’s just subtitute the second one in the first and see:∫

d3re−ik·rf(r) =

∫
d3re−ik·r

1

L3

∑
q

eiq·rF (q)

=
∑
q

F (q)
1

L3

∫
d3re−i(k−q)·r︸ ︷︷ ︸
δk,q

= F (k),



which is as expected. The same in the other direction:

1

L3

∑
k

eik·rF (k) =
1

L3

∑
k

eik·r
∫
d3r′e−ik·r

′
f(r′)

=

∫
d3r′f(r′)

1

L3

∑
k

eik·(r−r
′)

︸ ︷︷ ︸
δ(r−r′)

= f(r).

Also what it should be. That these relations work in practice is sufficient for us.
However, the orthonormality is needed frequently enough that it is good to prove
it directly. In one dimension

1

L

∫ L

0

dxei(k−k
′)x =

1

L

∫ L

0

dxe2πi(n−n
′)x/L =

∫ 1

0

dse2πi(n−n
′)s

where n, n′ are integers. Clearly, if n′ = n, then the integral equals one. If n′ 6= n,∫ 1

0

dse2πi(n−n
′)s =

1

2πi(n− n′)
|10e2πi(n−n

′)s = 0

because e2πin = 1 for any integer n. (You can also do this by first applying eiα =
cosα + i sinα, if you trust the purely real integrals more.) So∫ 1

0

dse2πi(n−n
′)s = δn,n′

which can still be recast in terms of k and k′.

Note: The “orthonormality” just means that the functions φk(r) = 1√
L3
eik·r are

orthonormal with respect to the inner product (A,B) =
∫
d3rA∗(r)B(r):

(φk, φk′) =

∫
d3rφ∗k(r)φk′(r) = δk,k′ .

The “completeness” relation, which can be written as∑
k

φk(r)φ∗k(r′) = δ(r− r′),

just means that any function f(r) can be represented in the basis φk(r) as a series
f(r) =

∑
k φk(r)Fk, where the expansion coefficients are Fk =

∫
d3r′φ∗k(r′)f(r′), as

can be seen by multiplying the completeness relation by f(r′) and integrating over
r′.


