763645S SUPERCONDUCTIVITY Solutions 6 Fall 2015

1. Fermion Hamiltonian in plane wave basis
The matrix elements including spin variables are defined
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|[Here we have assumed a spin-independent translation-invariant potential V(r,r’) =
V(r — 7').] Calculate the matrix elements using plane waves

1
qZSkA(’I",O') = me’k 5)\0. (1)

Show that the general Hamiltonian given in the lecture notes reduces to
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Here o, A = tor | and V (k) = [ d*rV (r)e .

(Hint: Change to coordinates 7 = r» — ' and R = (r + r’)/2 in the double integral:
[&r [ & = [dR [ d*F.)

Solution:

In plane wave basis
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The matrix element of the usual kinetic energy operator T' = —h*V?/2m:
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Thus the kinetic energy part of the Hamiltonian H =T + V is
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Let us move on to calculate the potential energy part. Since the potential is spin-
independent and translation-invariant, V(r, ') = V(r — '), we have
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The integral can be simplified by transforming to center-of-mass and relative coordinates
R,T:
1 1
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The integral then reads (Note: the Jacobian determinant equals 1)
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Now the first delta function says that k; + ko = k3 + ky = k; — kg = —(ky — ky). Thus
the whole integral has form
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Hence the matrix element is
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Using this matrix element we get the interaction part of H =T + V:
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We change the summation indices as ki <> k3, ko <> k4, Ay — 0 and Ay — A, and thus
obtain
. 1 . .
V= 23 Z Z Z Z (5k1+k2,k3+k4v<k3 - kl)a;rcgaa;fu)\akQ)\aklU‘
k1o ko) ks kg

Hence the Hamiltonian H =T + V is
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2. Contact interaction
As a special case of the previous exercise, consider a contact interaction V(r) = —gd(r).
Write the Hamiltonian in this case. Show that terms with ¢ = A vanish, and those with
o # A are equal, as mentioned in the lecture notes.

Solution:
In the case V(r) = —gd(r) we clearly have the Fourier transform V' (k) = —g. Thus
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Then if you look at one of the two terms with A = ¢ and use the anticommutation rule
Ak, 00k, 0 = —0k, o0k, 0, and finally relabel k; < ks, you get the same term but with a
negative sign. For example for the term A = o =7
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Thus the terms with A = ¢ must be zero, and you are left with
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Again here in the second term we may anticommute the operators so that le<3, iaLm

(ky 40K, | = dL TCVLIT(B | Qx| 0k, + and then by relabeling k; < ko k3 <> ky we see that the
two terms are equal. Thus

/= 1
Ve = S DTD Sttaba il i i -
ki ko ks ks
The Hamiltonian is
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3. Bogoliubov transformation
Do all the intermediate steps of the Bogoliubov transformation [Eqs. (148)-(156)] not
shown in the lecture notes. That is, check carefully the result Keg = >, Eri, ko + Qo



What is 257 You can save yourself some work by not following precisely the route implied
in the lecture notes, but rather starting from the matrix form (147), and inserting
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Require the coefficient matrix Uy, to be unitary (UyU T—U ,I U, = 1), and then require that
U;KkUk is diagonal, where K is the Hermitian matrix appearing in the Hamiltonian.
These two requirements give you the equations for u; and vy [(150) and (152)]. When
solving them, you can assume A to be real, as in the lecture notes.

Solution 1:
The Bogoliubov transformation is defined to be

i = UpYir + 'Uk;)/T_ki Ay, = Up Vi) — Uk’VYT_kT (148)
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Let us first show the inverse transformation (151) by substituting terms from (148)-(149)
to the inverse transformation:
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To express the spin dependence of § operators a shorthand notation is applied
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where a can have values + which naturally correspond values 1. Using this notation the
anticommutators are calculated in quite a compact notation:
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and
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In the calculation of the anticommutator {xa, Jxs}, the fact that the coeflicients u and
v are dependent on only the length of the vector k is applied: vjx| = v|_x| = v} etc. The

anticommutator {’Vylia, ’ylt, s} is a hermitian conjugate of the anticommutator {¥ia, Jis}

The next task is a brave and brute substitution of Bogoliubov transformation to the
Hamiltonian Keg of Eq. (144). Our goal is to express K¢ in terms of 4 instead of a. The
original Hamiltonian reads
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Here the constant term is C' = L?S|A|2. For simplicity we shall drop it in the following,
but it should be kept in mind for later! In the calculation we will need four types of
expressions
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The next step is to substitute the above expressions to Koz. We can apply two simplifying
tricks: 1) Coefficients are dependent only on length of k 2) The anticommutator rules just
derived for ¥ are available. So, a couple of manipulations in fashion of
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are made. The end result of the substitution and manipulation is
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Where the second row vanishes when Eq. (152) is required to hold, and the third row is
just a constant.

We have to solve Eq. (152) 2&,upvy—Aui+A*v; = 0 together with Eq. (150) |ug[*+]|v]? =
1. Assuming now that A (and hence uy and vy) are real, then

26 upvy — Aui + Av? =0

A Avp \ 2
06, A% A2, (ﬂ) ~0
U U

26 — A2+ 22 =0

v =8 T\ A2 = & + By

Qv _ =&k + Bk
Uk
A% = (=& + Be)*(1— vf)
P o 2 N G T ) e Tt 2 S PR
k A2 + (—fk + Ek)Q 2Ek(Ek — §k) 2F, 2 E,

and then from Eq. (150) v} = 1(1 + f;—’z) Above we chose the plus sign without com-
ment. You can check that the minus sign exchanges the results for u? and v?, which is
unacceptable on physical grounds. (The Bogoliubov transformation should reduce to the

normal-state canonical transformation, with v =1 for k < kr.)

Finally, inserting the solutions obtained for u; and vy into the remaining nonvanishing



terms of Hamiltonian we find
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Here the constant may be seen to be equal to C' = > (& — Ex). We already neglected
another such constant term earlier, which we called C'. Adding that one to C, the total
neglected constant is
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This constant is not of relevance here, but in other contexts it is.

Solution 2:
The effective Hamiltonian can be written as
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where the constant term is now D = )", & + %3|A|2. By defining
(& A _ [ Ot
ch - (—A* _gk y Qg = aT_IQ

Keff = ZaLKkak + D
k

we have

The matrix Ky is hermitian and is diagonalizable by a unitary transformation. Thus we
introduce the transformation (this follows directly from the equations in the notes)
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or, in a compact notation, ay = Up7yi. In this way

Keyr = Z’YlU]IKkUk'Yk + D
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Requiring U, to be unitary, that is UkU,I = UIIUk = 1, is equivalent to requiring |u?| +
|vx|? = 1. (You can check this. It can then also be checked that the transformation is not
only unitary, but also canonical in the sense that it preserves the fermion commutation
relations.) Note that since now U, = ,1, the inverse transformation follows very easily:

Y =U, ,Ia,k.
Now, applying the transformation on the matrix K} yields
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Requiring this to be diagonal, i.e.
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where di = & (Jug|* — |vr]?) + (A*ujvg + Augo;) leads to the condition
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Combining this with the unitarity condition |ug|* + |vi|*> = 1 allows one to solve for wuy

and vg. (Here one may assume for simplicity that A is real.) The calculation is given
above, and leads to the result dy = Ej, = /& + |A]?. So now we have
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Upon application of the anticommutator and changing k — —k this gives
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where the constant is Qg = D — >, Ej, with D = >, &+ %3|A]2, just as above. In the

future it will be best to use the form Qo = D — 3, di, where d, = & (Jug|® — |vg|?) +
(A*ufvp + Augvy), and where |ug|* = 1 — |vg|? etc. and vy, is kept free. Minimization of
Qo with respect to v, then leads to the correct values for v, and u, and hence d, = Ej.

Solution 3:
There is at least yet another way of proceeding, which is similar to the first case in spirit,
but less troublesome. The goal is to insert the inverse transformation
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into
Kepy = Z Ej (’VYLT(T”VYkT + ’VY}Tq”VYkO + Qo
k
and identify the terms of the result with the terms of
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(You have to relabel k <+ —k in some terms to show that they are equal.) This gives now
the following equations for u; and wvy:

Ex(|uxl* = Jve|*) = & (150)

and additionally 2 Fyuv; = A*. (By eliminating Fj you should be able to show that these
equations are equivalent with 2&,u,vr — Aui + A*0v? = 0.) Adding the absolute squares
of these two equations gives

Ey(Juel® + Juel*)* = & + 1A

But since |ug|? + |vx]? = 1 due to the transformation being canonical, we have

By =/ &+ A2

The constants €2y and C' can be identified as before. Notice that there was not need to
assume a real A here. We have the full solution right away. It is also clear how the phases
of uj, and vy are related to the phase of A. If we write A = |A|e®, uy, = |ug|e’®, and
v, = |vg|e®”, then from the second of (150) we clearly have ¢, — ¢, = ¢ + 27n, where we
can choose n = 0. Choosing also ¢, = 0, we have ¢, = ¢.



