763645S SUPERCONDUCTIVITY Solutions 7 Fall 2011

1. Grand potential for a superconductor )
Calculate the grand potential Q@ = —In[Tre #X]/8 for K.g = > ko Ek’%ta%a + Qg to

obtain the result 5
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(Hint: Calculate the trace Tr[---] = Z‘l{nka}:oana” -+ {nko}) in the basis of the ~
number operator ﬁ,taikUanlg/}) = Ngo|{ N0 })-)

Solution: )
We have to calculate Tr e ?%ef where Koq = Z,w Ek‘y,ig’yka + €. As hinted, it is easiest
to calculate the trace Tr[---| = Z}nka}:0<{nkg}| -+ {nro}) in the basis of the v number

operator W,Tw%o|{nk/g,}> = Npo|{nwe}). This is because the effective Hamiltonian K.g is
diagonal in this basis. Now,
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From this we calculate
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In the last step we summed over spin, and noted that the summand does not depend on
spin.

. Gap equation: derivation
Do all the intermediate steps in deriving the gap equation [(163)] from the definition

I~
A=13 D (k).
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(Hint: Make use of the previous exercise to show () Fxe) = n(Ey), where n(E) =
1/(e?F 4 1), and (ko Twor) = (T Thior) = 0.)

Solution:

We have to calculate
. 1 .. 8K
(a-syliy) = ——5g Tr(@-wdipe™ "),

where e = Tr(e PKess). Tt is again easiest to calculate the trace in the eigenbasis of
the number operator ’y,ta’vykg, ”VYILJ’VYka|{nk/U/}> = Npo |[{Nkror }).
Now, using
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we have
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In exercise 1 we calculated e™#? = e # ], 1 + exp (—(E;)]. Following the same pro-
cedure we have
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We now have

(i) = won(1 = () = () + () o) = (i )
= wjvp[l — n(Ey) — n(Ey)] + (u)? -0 —v3 - 0
= wjvy [1 — 2n(Ey)] .

Next, we assume A etc. to be real. Then using
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with x = SE}, we have
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Where in the final step the symmetry of the integrand was used. This is the gap equation.

dgp,

. Hartree-Fock interaction

Show that the Hartree-Fock (not anomalous) interaction energy (Vip) is the same for
normal and superconducting states. This demonstrates a posteriori that the neglect of
non-anomalous HF terms in the treatment of the superconducting state is allowed. The
HF potential energy for a spin-conserving contact interaction can be written as
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(Hint: as intermediate results show that <d23¢ék1¢> = Ok by Oy and (Vigr) = (g/L%) (32, Cr)?
and deduce that the sum for || < €. is independent of A.)

Solution:

The main idea here is to show that the Hartree-Fock energy in the superconducting state
is independent of A, which, in the normal state, is zero.

The expectation value of the HF potential energy is
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The last two terms cancel to yield:
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Now the idea is again to use the Bogoliubov transformation to express a operators in
terms of v operators:

it = UpVier + Uk’vyilq Ay = UpHie, — Uk;YT—kT (2)
dLT = Ulﬁlﬁ + Uik dfq = uk’?lti — Uikt (3)
and use the fact that expectation values of the type () and (y'y") vanish. Thus we have
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where we used the commutation relations and the previously derived results for the Fermi
funtion n(F).

Here
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The second term in the integrand is antisymmetric and gives zero. Therefore
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which is independent of A, and thus must be the same for superconducting and normal
states. Indeed, if one would set A = 0 in the beginning and modify u; and vy accordingly,
the calculation would fully correspond to the normal-state calculation. Note that this
result is correctly proportional to the volume L3 and has units of energy.

. Gap equation at T'=T,

Prove the result . 1 ¢ % o
c €.€
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where 7 is a certain constant given by the definite integral:
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(Hint: use £~ = d(In€)/d¢ and integrate by parts. Verify that the integral converges, so
that you can take the limit €, — o0. )

Solution:

Consider the integral

€c 1 5
/o d& E tanh ST

Change of variable: x = £/(2kpT,), d§ = 2kgT,.dzx, 1/§ = 1/(2kgT,.x). Now €. > 2kgT,
implies €. = ¢./(2kpT.) > 1.
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Here % tanhz = 1/cosh®z ~ 472", so we can take é. — oo in the integral and it still
converges. In the first term the limit x — 0 converges because Inxtanhz ~ xlnz — 0.
The term In €. tanh €. ~ In €. must be kept, however. So
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Here the remaining integral can be done with Mathematica, for example, giving
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where v is the Euler-Mascheroni constant, defined as v = lim, o[> p_; £ — In(n)] =

0.5772. Thus
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which was to be shown.

. Gap equation: elimination of g/N(0) and e,
Show that the gap equation (in weak coupling approximation gN(0) < 1) can be written
in the form

lng B /‘X’ tanh(§/2kpT)  tanh(\/&* + A?/2kpT) i
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Verify that the integral converges, so that it is possible to put €. — oo. In this way the
two parameters g/N(0) and €, have been replaced by a single one: T..

Solution:

The gap equation is
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At T =T, we know that A = 0, and so
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This integral was calculated previously:
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Now, consider the same integral, but with T, — T

1 ¢ 2¢e.e”
d¢ > tanh —1 .
/0 Sgtanh o =T

By comparing these two integrals we see that
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Thus we may write the gap equation at T'= T, as
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Subtracting the general gap equation from this, we have
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In the limit ¢, > kg7, the integrand can get values & > A, kgT. In this limit we may
replace the tanh-functions by 1 so that the integrand is of the form
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Clearly, the integral of this converges in the upper limit even if we take ¢, — oo, and this
is a good approximation if €. > kgT..



