
763645S SUPERCONDUCTIVITY Solutions 8 Fall 2015

1. BCS ground state
Show that γ̌kσ |ψ0〉 = 0 for the BCS ground state |ψ0〉, which means that |ψ0〉 is the
vacuum state for excitations. Consider at least the case σ =↑.

(Hint: It is useful to define ck = uk + vka
†
k↑a
†
−k↓ and to show that [ck, ck′ ] = 0.)

Solution:

Some preliminaries first. These should be useful also elsewhere. The BCS ground state is

|ψ0〉 =
∏
k

(uk + vka
†
k↑a
†
−k↓)|vac〉

where |vac〉 is the vacuum state: ak↑|vac〉 = 0. Defining ck = uk + vka
†
k↑a
†
−k↓, we may

write

|ψ0〉 =
∏
k

ck|vac〉

Is the order of cks in the product relevant, or can we freely commute them? Let’s see. For
k 6= l we find

ckcl = (uk + vka
†
k↑a
†
−k↓)(ul + vla

†
l↑a
†
−l↓)

= ukul + ukvla
†
l↑a
†
−l↓ + ulvka

†
k↑a
†
−k↓ + vkvla

†
k↑a
†
−k↓a

†
l↑a
†
−l↓

= uluk + ulvka
†
k↑a
†
−k↓ + ukvla

†
l↑a
†
−l↓ + vlvka

†
l↑a
†
−l↓a

†
k↑a
†
−k↓

= clck

Thus the operators commute. (Getting to the second to last line requires anticommuting
operators in the four-operator term 4 times (a†ia

†
j = −a†ja

†
i ), which thus keeps the sign

intact.)

Now to the problem itself. Using the above commutation result, we can isolate from the
BCS ground state an arbitrary ck = uk + vka

†
k↑a
†
−k↓ factor and bring it to the front of the

product. Thus we need to calculate for example

γk↑|ψ0〉 = γk↑ck
∏
l6=k

cl|vac〉



where γk↑ = ukak↑ − vka†−k↓. Now an intermediate result.

γk↑ck = (ukak↑ − vka†−k↓)(uk + vka
†
k↑a
†
−k↓)

= u2
kak↑ + ukvkak↑a

†
k↑a
†
−k↓ − ukvka

†
−k↓ − v

2
ka
†
−k↓a

†
k↑a
†
−k↓

= u2
kak↑ + ukvka

†
−k↓ − ukvka

†
k↑ak↑a

†
−k↓ − ukvka

†
−k↓ + v2

ka
†
k↑a
†
−k↓a

†
−k↓

= u2
kak↑ + ukvka

†
k↑a
†
−k↓ak↑ = ukckak↑

Since there is no ck-factor in the product
∏

l6=k cl (and [ak↑, c−k] = 0, as you may check),
we may move the ak↑ operator all the way through:

γk↑|ψ0〉 = γk↑ck
∏
l6=k

cl|vac〉 = ukckak↑
∏
l6=k

cl|vac〉 = ukck
∏
l6=k

clak↑|vac〉 = 0

A similar proof can be given for γk↓|ψ0〉 = 0. One can for example isolate c−k in front of
the product and take it on from there.

Note: One can in fact construct the state |ψ0〉 from the requirement that γk↑|ψ0〉 = 0.
This property leads directly to the guess that |ψ0〉 ∝

∏
k,σ γk,σ|vac〉 where ak,σ|vac〉 = 0.

One may first show that γk,↑γ−k,↓|vac〉 = vk(uk + vka
†
k,↑a

†
−k,↓)|vac〉 and then argue that

|ψ0〉 ∝
∏

k(γk,↑γ−k,↓)|vac〉 ∝
∏

k(uk + vka
†
k,↑a

†
−k,↓)|vac〉. This is left as an additional

exercise.

2. Normalization of the BCS ground state
Assuming that 〈vac|vac〉 = 1, show that the BCS ground state |ψ0〉 is normalized as
〈ψ0|ψ0〉 = 1.

Solution:

Define (once more) the operators ck = uk + vka
†
k↑a
†
−k↓, which satisfy [ck, cl] = 0. Then

〈ψ0|ψ0〉 = 〈vac|
∏
k

c†k
∏
l

cl|vac〉

Let us order the products as follows

〈ψ0|ψ0〉 = 〈vac|
∏
m 6=k

c†mc
†
kck

∏
l6=k

cl|vac〉

Here

c†kck = (u∗k + v∗ka−k↓ak↑)(uk + vka
†
k↑a
†
−k↓)

= |uk|2 + u∗kvka
†
k↑a
†
−k↓ + v∗kuka−k↓ak↑ + |vk|2a−k↓ak↑a†k↑a

†
−k↓

= |uk|2 + |vk|2a−k↓a†−k↓ − |vk|
2a−k↓a

†
k↑ak↑a

†
−k↓ + u∗kvka

†
k↑a
†
−k↓ + v∗kuka−k↓ak↑

= 1− |vk|2a†−k↓a−k↓ + |vk|2a−k↓a†k↑a
†
−k↓ak↑ + u∗kvka

†
k↑a
†
−k↓ + v∗kuka−k↓ak↑



where the anticommutation rules and |uk|2 + |vk|2 = 1 were used. The last four terms
clearly all produce zeroes in 〈ψ0|ψ0〉. What thus remains is simply

〈ψ0|ψ0〉 = 〈vac|
∏
m 6=k

c†m
∏
l6=k

cl|vac〉 = . . . = 〈vac|vac〉 = 1

The dots mean that we can repeat the above procedure by isolating some other c†mcm
with m 6= k in the center of the sandwich. When this is done for all wave vectors, all that
remains is 〈vac|vac〉, which equals 1 by assumption.

3. Excitations of BCS state
Let |ψ0〉 be the BCS ground state. Show that the excited states γ̌†kσ |ψ0〉 are of the form
where the single-particle state kσ (to which particles are created by ǎ†kσ) is populated
and −k − σ is empty. You can limit to the case σ =↑.
Solution:

Define (again) the operators ck = uk + vka
†
k↑a
†
−k↓, which satisfy [ck, cl] = 0. Now first

γ†k↑|ψ0〉 = γ†k↑ck
∏
l6=k

cl|vac〉

Then by using the anticommutation relations

γ†k↑ck = (u∗ka
†
k↑ − v

∗
ka−k↓)(uk + vka

†
k↑a
†
−k↓)

= |uk|2a†k↑ + u∗kvka
†
k↑a
†
k↑a
†
−k↓ − v

∗
kuka−k↓ − |vk|2a−k↓a

†
k↑a
†
−k↓

= |uk|2a†k↑ − v
∗
kuka−k↓ + |vk|2a†k↑a−k↓a

†
−k↓

= |uk|2a†k↑ − v
∗
kuka−k↓ + |vk|2a†k↑ − |vk|

2a†k↑a
†
−k↓a−k↓

= a†k↑ − v
∗
kcka−k↓

Note that we used |uk|2 + |vk|2 = 1. Now back to what we were doing:

γ†k↑|ψ0〉 = γ†k↑ck
∏
l6=k

cl|vac〉 = a†k↑
∏
l6=k

cl|vac〉 − v∗kcka−k↓
∏
l6=k

cl|vac〉

= a†k↑
∏
l6=k

cl|vac〉 − v∗k
∏
l

cla−k↓|vac〉 = a†k↑
∏
l6=k

cl|vac〉

In this state clearly the level −k ↓ is empty, and k ↑ is filled. A similar proof can be
repeated for γ†k↓|ψ0〉.

4. Energy functional
Show that for the energy functional (u2

k = 1− v2
k, ξk = ~2k2/2m− µ)

Ω(T, V, µ, vk,∆) =2
∑
k

(ξkv
2
k −∆ukvk) +

L3

g
∆2

− 2kBT
∑
k

ln(1 + e−
√
ξ2k+∆2/kBT ),



the relations

∂Ω

∂vk
= 0,

∂Ω

∂∆
= 0,

are equivalent with the conditions (152) and (158) of the lecture notes.

Solution:

The energy functional is

Ω(T, V, µ, vk,∆) =2
∑
k

(ξkv
2
k −∆ukvk) +

L3

g
∆2

− 2kBT
∑
k

ln(1 + e−
√
ξ2k+∆2/kBT ),

First,

∂Ω

∂vk
= 2(2ξkvk −∆uk −∆vk

∂uk
∂vk

)

Here we note that uk =
√

1− v2
k and thus

∂uk
∂vk

= − 2vk

2
√

1− v2
k

= −vk
uk

So

∂Ω

∂vk
= 0

2ξkvk −∆uk + ∆v2
k/uk = 0

2ξkukvk −∆u2
k + ∆v2

k = 0

This is equal to (152). (Note that, for notational simplicity, we’ve only considered Ω to
be a function of a single vk, but of course there is one for each k.)

Second,

∂Ω

∂∆
= −2

∑
k

ukvk + 2
L3

g
∆− 2kBT

∑
k

e−Ek/kBT

1 + e−Ek/kBT
(− 1

kBT
)
∂Ek
∂∆

Here we use Ek =
√
ξ2
k + ∆2 so that

∂Ek
∂∆

= − ∆√
ξ2
k + ∆2

=
∆

Ek



Further, we note that ukvk = 1
2

√
1− ξ2k

E2
k

= 1
2

∆
Ek

. Then

∂Ω

∂∆
= 0

−2
∑
k

ukvk + 2
L3

g
∆ + 2

∑
k

∆/Ek
1 + eEk/kBT

= 0

−2
∑
k

ukvk[1− 2
1

1 + eEk/kBT
] + 2

L3

g
∆ = 0

But this just equals the gap equation (158):

∆ =
g

L3

∑
k

ukvk[1− 2
1

eEk/kBT + 1
]

Done.


