
763645S SUPERCONDUCTIVITY Solutions 9 Fall 2015

1. Derive the T = 0 relations shown in the lectures

Ω0 − Ω0(∆ = 0) = −1

2

∑
k

∆4

Ek(Ek + |ξk|)2
,

and
Ω0 − Ω0(∆ = 0) = −1

2
L3N(0)∆2.

(Hint: Apply the gap equation and use
∫∞
−∞

dx√
x2+1(

√
x2+1+|x|)2 = 1.)

Solution:

Let’s first study the energy functional in superconducting state at zero temeperature,
where the contribution due to excitations is absent:

Ωs,0 = 2
∑
k

(ξkv
2
k −∆vkuk) +

L3

g
∆2 = 2

∑
k

ξkv
2
k −∆(2

∑
k

vkuk −
L3

g
∆)

= 2
∑
k

ξkv
2
k −∆{2

∑
k

vkuk −
L3

g

g

L3

∑
k

ukvk[1− 2n(Ek)]}

Here we used the gap equation ∆ = g
L3

∑
k ukvk[1−2n(Ek)]. Now since Ek > 0 at T < Tc,

at T = 0 we have n(Ek) = 1
eEk/kT +1

= 0 and so

Ωs,0 = 2
∑
k

ξkv
2
k −∆{2

∑
k

vkuk −
∑
k

ukvk}

= 2
∑
k

ξkv
2
k −∆

∑
k

ukvk =
∑
k

(ξk −
ξ2
k

Ek
− ∆2

2Ek
)

Here we used v2
k = 1

2
(1 − ξk

Ek
) and ukvk = 1

2
∆
Ek

. (The same result would obviously follow
by starting from the other form we’ve seen before, Ωs,0 =

∑
k(ξk −Ek) + L3

g
∆2, and then

applying the gap equation in the form ∆ = g
2L3

∑
k

∆
Ek

tanh Ek

2kBT
= g

2L3

∑
k

∆
Ek

.)

Next the energy functional in normal state at zero temperature. This is obtained from
the above by setting ∆ = 0:

Ωn,0 =
∑
k

(ξk − |ξk|)



Then the difference of these:

Ωs,0 − Ωn,0 =
∑
k

(ξk −
ξ2
k

Ek
− ∆2

2Ek
)−

∑
k

(ξk − |ξk|) =
∑
k

(|ξk| −
ξ2
k

Ek
− ∆2

2Ek
)

=
∑
k

2Ek|ξk| − 2ξ2
k − (E2

k − ξ2
k)

2Ek
=
∑
k

2Ek|ξk| − ξ2
k − E2

k

2Ek

= −1

2

∑
k

E2
k − 2Ek|ξk|+ ξ2

k

Ek
= −1

2

∑
k

(Ek − |ξk|)2

Ek

= −1

2

∑
k

(Ek − |ξk|)2(Ek + |ξk|)2

Ek(Ek + |ξk|)2
= −1

2

∑
k

(E2
k − ξ2

k)
2

Ek(Ek + |ξk|)2

= −1

2

∑
k

∆4

Ek(Ek + |ξk|)2

This is the first part of what was to be shown. Now the rest.

The function 1
Ek(Ek+|ξk|)2

is peaked at ξk = 0, so when converting the sum to an integral,
we can use the approximation of (76). Thus

Ωs,0 − Ωn,0 = −N(0)L3

2

∫ ∞
−∞

∆4

Ek(Ek + |ξk|)2
dξk

Analyzing the integral manually is a bit tedious, but we can use Mathematica to find
directly

Ωs,0 − Ωn,0 = −N(0)L3∆4

2

∫ ∞
−∞

1

Ek(Ek + |ξk|)2
dξk

= −N(0)L3∆4

2

1

∆2
= −N(0)L3∆2

2

This completes the exercise.

Note: The physical interpretation of this result is simple. The condensation energy is
on the order of L3N(0)∆2/2, because L3N(0)∆ is roughly the total number of electrons
around the Fermi energy that are paired, and the energy gained in forming pairs is
approximately ∆ per electron.

2. Show that from the grand potential Ω(T, V, µ) = minvk,∆[Ω(T, V, µ, vk,∆)] one obtains
the specific heat

C =
L3N(0)

2kBT 2

∫ ∞
−∞

dξ
1

cosh2

√
ξ2+∆2

2kBT

(
ξ2 + ∆2 − T∆

d∆

dT

)
.



Solution:

The grand potential is given by

Ω(T, V, µ, vk,∆) = 2
∑
k

(ξkv
2
k −∆ukvk) +

L3

g
∆2 − 2kBT

∑
k

ln(1 + e−Ek/kBT ),

where Ek =
√
ξ2
k + ∆2 and uk =

√
1− v2

k. In equilibrium this is minimized with respect
to vk and ∆. (For notational simplicity, we only consider Ω to be a function of a single
vk. See note below for discussion of other notation issues.)

The specific heat is defined C = T (dS/dT )V,µ, where the entropy is S = −(dΩ/dT )V,µ.
First we calculate the entropy:

S = −(
dΩ

dT
)V,µ = −(

∂Ω

∂T
+
∂Ω

∂∆︸︷︷︸
=0

∂∆

∂T
+
∂Ω

∂vk︸︷︷︸
=0

∂vk
∂T

) = −∂Ω

∂T

where we used the stationarity (equilibrium) conditions. So it follows that only the last
term in Ω contributes to the equilibrium entropy:

S = 2kB
∑
k

ln(1 + e−Ek/kBT ) + 2kBT
∑
k

e−Ek/kBT ( Ek

kBT 2 )

1 + e−Ek/kBT

= 2kB
∑
k

ln(1 + e−Ek/kBT ) +
2

T

∑
k

Eke
−Ek/kBT

1 + e−Ek/kBT

= 2kB
∑
k

ln(1 + e−Ek/kBT ) +
2

T

∑
k

Ek
eEk/kBT + 1

This could still be written in the form S = −kB
∑

α[fα ln fα + (1 − fα) ln(1 − fα)] as in
the case of an ideal fermion gas, but that is not essential here. Note, however, that the
depedence on vk and uk =

√
1− v2

k has dropped out and only the excitation energies Ek
are left. This makes physical sense somehow: only the excitations contribute to entropy.
The pair condensate does not, because there all the particles are ordered in pairs that are
“in the same macroscopic quantum state”.

So now we calculate the specific heat.

C = T (
dS

dT
)V,µ = T (

∂S

∂T
+
∂S

∂∆

∂∆

∂T
+
∂S

∂vk︸︷︷︸
=0

∂vk
∂T

) = T (
∂S

∂T
+
∂S

∂∆

∂∆

∂T
)

There is no reason for “stationarity” conditions on S in general, but still apparently



∂S/∂vk = 0, as noted above. So we need

∂S

∂T
= 2kB

∑
k

e−Ek/kBT Ek

kBT 2

1 + e−Ek/kBT
− 2

T 2

∑
k

Ek
eEk/kBT + 1

+
2

T

∑
k

Eke
Ek/kBT Ek

kBT 2

(eEk/kBT + 1)2

=
2

kBT 3

∑
k

E2
ke
Ek/kBT

(eEk/kBT + 1)2

Now the other derivative. We will need ∂Ek

∂∆
= ∆

Ek
.

∂S

∂∆
= 2kB

∑
k

e−Ek/kBT (−∆/Ek

kBT
)

1 + e−Ek/kBT
+

2

T

∑
k

∆/Ek
eEk/kBT + 1

− 2

T

∑
k

Eke
Ek/kBT ∆

EkkBT

(eEk/kBT + 1)2

= − 2∆

kBT 2

∑
k

eEk/kBT

(eEk/kBT + 1)2

So now

C = T (
∂S

∂T
+
∂S

∂∆

∂∆

∂T
) =

2

kBT 2

∑
k

eEk/kBT

(eEk/kBT + 1)2
(E2

k −∆T
∂∆

∂T
)

=
2

kBT 2

∑
k

eEk/kBT

(eEk/kBT + 1)2
(ξ2
k + ∆2 −∆T

∂∆

∂T
)

=
2

kBT 2

∑
k

1

(eEk/2kBT + e−Ek/2kBT )2
(ξ2
k + ∆2 −∆T

∂∆

∂T
)

=
2

kBT 2

∑
k

1

4 cosh2 Ek

2kBT

(ξ2
k + ∆2 −∆T

∂∆

∂T
)

Finally, using the usual approximation for a function peaked around the Fermi energy:

C =
N(0)L3

2kBT 2

∫ ∞
−∞

dξk
1

cosh2 Ek

2kBT

(ξ2
k + ∆2 −∆T

∂∆

∂T
)

This is the desired result.

Note: You may find the notations and the logic above a bit confusing. More “precisely”
you could think as follows. We define the “generalized” grand potential Ω̃(V, µ, T, {vk},∆)
as before, just with a tilde added for clarity. In equilibrium at given T this should be
minimized with respect to the extra variables {vk} and ∆, which means that ∂Ω̃/∂vk = 0
and ∂Ω̃/∂∆ = 0. These give some equilibrium values for vk and ∆, denoted as veqk (T )
and ∆eq(T ), which depend on T , in principle. So the equilibrium grand potential may be
written as Ω(V, µ, T ) = Ω̃(V, µ, T, {veqk (T )},∆eq(T )). Now, for example S = −∂Ω

∂T
= −dΩ̃

dT
,

where the total derivative in the latter form means that you have to differentiate with
respect to veqk (T ) and ∆eq(T ) as well. It’s just that the derivative of veqk (T ) drops out,



because ∂Ω̃/∂vk = 0, and so on. (On the other hand, veqk also does not have an “explicit”
temperature dependence, because it only depends on it via ∆. Is this relevant? I don’t
think so.)

Note 2: By the way, similarly to the equilibrium entropy calculated above, only the
excitations can transport heat. (Heat and entropy are related by dQ = TdS.) There is
no heat or entropy transfer associated with the supercurrents that are carried by the
condensed electrons, and at low temperature there are only few excitations because of
the energy gap. That is why a superconductor, while being a good conductor of charge,
is a bad conductor of heat.

3. Show that for the specific heat of the normal state one obtains

C =
2π2

3
L3N(0)k2

BT.

(Hint: Use
∫∞
−∞

x2

cosh2 x
dx = π2

6
. )

Solution:

For the normal state we can use the result of the superconducting state by setting ∆ = 0.

C =
N(0)L3

2kBT 2

∫ ∞
−∞

dξk
ξ2
k

cosh2 |ξk|
2kBT

=
N(0)L3

2kBT 2

∫ ∞
−∞

dξk
ξ2
k

cosh2 ξk
2kBT

Change to variable x = ξ/2kBT :

C = 4N(0)L3k2
BT

∫ ∞
−∞

dx
x2

cosh2 x︸ ︷︷ ︸
=π2/6

=
2π2

3
L3N(0)k2

BT

And that is the result. Note that the normal-state specific heat is linear in T .

We could have derived this result also independently of the result for the superconducting
state by starting from the expression of Ω for the free electron gas: Ω = − 2

β

∑
k ln(1 +

e−β(εk−µ)) and using C = −T (∂
2Ω
∂T 2 ). However, it is perhaps simpler to start from the

internal energy E and use C = ∂E
∂T

. (This intuitive result follows formally from Ω =
E − TS − µN by applying ∂

∂T
and then using ∂Ω

∂T
= −S and T ∂S

∂T
= C.) The internal

energy for a free fermion gas is

E = 2
∑
k

εkf(εk, T ), where f(εk, T ) =
1

eβ(εk−µ) + 1

Noting that d
dx

1
ex+1

= − 1
4 cosh2(x/2)

we have

∂

∂T
f(εk, T ) =

εk − µ
kBT 2

1

cosh2[β(εk − µ)]



This decays rapidly away from the energy εk = µ, so we may use the usual approximation
to write

C =
∂E

∂T
= 2L3N(0)

∫
dεε

ε− µ
kBT 2

1

4 cosh2[β(ε− µ)/2]

and since
∫
dε ε−µ

cosh2[β(ε−µ)]
= 0, we may subtract a zero term to write this as

C = 2L3N(0)

∫
dε

(ε− µ)2

kBT 2

1

4 cosh2[β(ε− µ)/2]

= 2L3N(0)

∫
dξ

ξ2

kBT 2

1

4 cosh2(βξ/2)

= 4L3N(0)k2
BT

∫ ∞
−∞

dx
x2

cosh2 x
=

2π2

3
L3N(0)k2

BT

Here we used
∫∞
−∞

x2

cosh2 x
dx = π2

6
.

Note: The physical interpretation of this result is simple. The internal energy (relative
to zero temperature) is on the order of L3N(0)(kBT )2, because L3N(0)kBT is roughly
the total number of electrons excited from below the Fermi energy to above it, and the
average energy gained by each electron is approximately kBT .

4. A variation ψ∗ → ψ∗ + δψ∗ or A → A + δA, for example, changes the GL energy
functional according to G → G + δG. Derive the GL differential equations and their
boundary conditions by requiring δG = 0 to lowest order in arbitrary variations.

(Hint: You may first want to prove the more general result that the minimum conditions
for G[ψ∗,A] =

∫
d3rg(ψ∗,∇ψ∗,A,∇×A) are ∂g

∂ψ∗ −∇ · ∂g
∂∇ψ∗ = 0, ∂g

∂A
+∇× ∂g

∂∇×A = 0,
n̂ · ∂g

∂∇ψ∗ = 0, n̂× ∂g
∂∇×A = 0. Use relations like C · ∇φ = ∇ · (Cφ)− (∇ ·C)φ. )

Solution:
The GL free energy functional is

G =

∫
d3r[αψ∗ψ +

β

2
(ψ∗)2ψ2 + γ|(~

i
∇− qA)ψ|2 +

1

2µ0

B2 −B ·H]

=

∫
d3r[αψ∗ψ +

β

2
(ψ∗)2ψ2 + γ(−~

i
∇− qA)ψ∗ · (~

i
∇− qA)ψ +

1

2µ0

B2 −B ·H]

If ψ∗ corresponds to the minimum of G, then small arbitrary variations ψ∗ → ψ∗ + δψ∗

should leave G unchanged, that is δG = G[ψ∗ + δψ∗]−G[ψ∗] = 0, to linear order in δψ∗.
Let us differentiate

δG =

∫
d3r[αψδψ∗ + βψ∗ψ2δψ∗ + γ(

~
i
∇− qA)ψ · (−~

i
∇− qA)δψ∗]

=

∫
d3r[αψ + βψ∗ψ2 + γ(

~
i
∇− qA)ψ · (−qA)]δψ∗ +

∫
d3r[γ(

~
i
∇− qA)ψ · (−~

i
∇δψ∗)]︸ ︷︷ ︸

I2



Here in the second term we should “integrate by parts”, or use one of the Green formulas.
Equivalently, we may use the vector identity

∇ · (Cφ) = C · ∇φ+ (∇ ·C)φ

C · ∇φ = ∇ · (Cφ)− (∇ ·C)φ

So

I2 = γ

∫
d3r∇ · [(~

i
∇− qA)ψ(−~

i
)δψ∗]− γ

∫
d3r[∇ · (~

i
∇− qA)ψ(−~

i
)]δψ∗

= γ

∫
dS · (~2∇ψ + q

~
i
Aψ)δψ∗ − γ

∫
d3r[∇ · (~2∇+ q

~
i
A)ψ]δψ∗

= −γ
∫
d3r[~2∇2ψ + q

~
i
∇ · (Aψ)]δψ∗

In order for the surface integral to vanish, as we assumed above, the boundary condition
n̂ · [(~/i)∇− qA]ψ = 0 must hold. Putting the rest of the terms together:

δG =

∫
d3r{αψ + βψ∗ψ2 − γ[~2∇2ψ + q

~
i
∇ · (Aψ)] + γ(

~
i
∇− qA)ψ · (−qA)}δψ∗

=

∫
d3r[αψ + βψ∗ψ2 − γ~2∇2ψ − γq~

i
∇ · (Aψ)− γq~

i
∇ψ ·A + γq2ψA ·A]δψ∗

=

∫
d3r[αψ + βψ∗ψ2 + γ(

~
i
∇− qA) · (~

i
∇ψ − qAψ)]δψ∗

=

∫
d3r[αψ + βψ∗ψ2 + γ(

~
i
∇− qA)2ψ]δψ∗

Since δψ∗ is arbitrary, the factor in front of it must vanish identically in order for δG = 0
to be satisfied. Thus we have the first GL equation

αψ + βψ∗ψ2 + γ(
~
i
∇− qA)2ψ = 0

This is to be complemented by the assumed boundary condition: n̂ · [(~/i)∇− qA]ψ = 0.
(Below we see that this boundary condition means that there is no current through the
boundary.) Varying with respect to ψ would just give the complex conjugate of this
equation.

Next we consider variations in A, writing B = ∇×A, so that

G =

∫
d3r[αψ∗ψ +

β

2
(ψ∗)2ψ2

+ γ~2∇ψ∗ · ∇ψ + γq
~
i
ψ∇ψ∗ ·A− γq~

i
ψ∗∇ψ ·A + γq2|ψ|2A ·A

+
1

2µ0

(∇×A) · (∇×A)− (∇×A) ·H]



Then

δG =

∫
d3r[−γ~

i
q(ψ∗∇ψ − ψ∇ψ∗) + 2γq2|ψ|2A] · δA

+

∫
d3r[

1

µ0

(∇×A) · (∇× δA)−H · (∇× δA)]︸ ︷︷ ︸
I3

To develop the integral I3 we need the following vector differential formula

∇ · (G× F) = F · (∇×G)−G · (∇× F)

F · (∇×G) = ∇ · (G× F) + G · (∇× F)

Using this

I3 =
1

µ0

∫
d3r[B− µ0H] · (∇× δA)

=
1

µ0

∫
d3r∇ · [δA× (B− µ0H)] +

1

µ0

∫
d3r[∇× (B− µ0H)] · δA

=
1

µ0

∫
dS · [δA× (B− µ0H)] +

1

µ0

∫
d3r(∇×B) · δA

In the latter term we assumed ∇×H = 0, which is valid in the absence of free currents.
(See note below.) The surface term, on the other hand, vanishes at least by assuming
n̂× (B− µ0H) = 0 on the surface.

Now, taking all terms together again

δG =

∫
d3r[−γ~

i
q(ψ∗∇ψ − ψ∇ψ∗) + 2γq2A +

1

µ0

∇×B] · δA

Since δA is arbitrary, δG = 0 requires

1

µ0

∇×B =
q~γ
i

(ψ∗∇ψ − ψ∇ψ∗)− 2γq2|ψ|2A

This is the second GL equation, and it must be solved with the boundary condition
n̂× (B− µ0H) = 0. It follows from Maxwell’s equations that the right-hand side is to be
interpreted as a current density.

Note: In the simplest geometry of a long narrow cylinder parallel to the externally applied
field, H is just constant, equal to the given external field “at infinity”. If we take this for
granted, then ∇×H = 0 trivially. However, in general also H must be solved by including
the energy of the magnetic field outside of the superconductor into G and minimizing with
respect to that as well. This should yield the equilibrium condition ∇×H = 0 as a result.
(Check it as an exercise, if you like.)



Note 2: The above results would follow much more compactly by applying general results
along the following lines. Assume that S[f,g] =

∫
d3rs(f,∇f,g,∇ × g). Then consider

arbitrary variations f → f + δf and g→ g + δg. By Taylor expansion

δS = S[f + δf,g + δg]− S[f,g]

=

∫
d3r[

∂s

∂f
δf +

∂s

∂∇f
· (∇δf) +

∂s

∂g
· δg +

∂s

∂∇× g
· (∇× δg)]

Then by applying C ·∇φ = ∇·(Cφ)−(∇·C)φ and F ·(∇×G) = ∇·(G×F)+(∇×F) ·G
we find

δS =

∫
d3r[

∂s

∂f
δf +∇ · ( ∂s

∂∇f
δf)− (∇ · ∂s

∂∇f
)δf

+
∂s

∂g
· δg +∇ · (δg × ∂s

∂∇× g
) + (∇× ∂s

∂∇× g
) · δg]

And by using the Gauss theorem

δS =

∫
d3r[

∂s

∂f
δf − (∇ · ∂s

∂∇f
)δf +

∂s

∂g
· δg + (∇× ∂s

∂∇× g
) · δg]

+

∫
da · ( ∂s

∂∇f
δf + δg × ∂s

∂∇× g
)

where da = n̂da is a surface differential. Now since the variations are arbitrary, in order
to have δS = 0, the following equations and boundary conditions must hold:

∂s

∂f
−∇ · ∂s

∂∇f
= 0, n̂ · ∂s

∂∇f
= 0

∂s

∂g
+∇× ∂s

∂∇× g
= 0, n̂× ∂s

∂∇× g
= 0

Apply these with S = G, s = g, f = ψ∗ and g = A.


