
763645S SUPERCONDUCTIVITY Solutions 10 Fall 2015

1. Show by using the GL differential equations that in GL theory the continuity equation
∇· j = 0 and the boundary condition n̂ · j = 0 are satisfied, where j is the current density
and n̂ is the surface normal.

Solution:
The second GL equation is of the form

1

µ0

∇×B = j

where the current density is given by

j = γ
~
i
q(ψ∗∇ψ − ψ∇ψ∗)− 2γq2|ψ|2A

Now it follows quite trivially that

∇ · j =
1

µ0

∇ · (∇×B) = 0

Now let us rewrite the current density as

j = γq[ψ∗(
~
i
∇− qA)ψ + ψ(−~

i
∇− qA)ψ∗]

Now applying with the surface normal n̂ on this, we have

n̂ · j = γq[ψ∗n̂ · (~
i
∇− qA)ψ + ψn̂ · (−~

i
∇− qA)ψ∗] = 0

Here we applied n̂ · (~
i
∇ − qA)ψ = 0, which was assumed as a boundary condition for

the first GL equation. Thus that condition is equivalent requiring that no current passes
through the boundary.

2. In the lecture notes the behavior of the magnetic field was derived in the case of a
superconducting half space, when an external field is applied parallel to the surface.
Calculate the related vector potential, current density and the total current. (Hint: If
B = B(x)ẑ, you can assume that A = A(x)ŷ.)

Solution:
The exercise refers to the example 3 at page 25. The normal state occupies x < 0 and
the superconductor x > 0. The planar interface is thus in the yz plane at x = 0.



The magnetic field is known to be of the form

B = B0e
−x/λẑ

for x > 0. The is related to the vector potential A by B = ∇×A, and we would like to
find it. Assuming that A = Aŷ, we have

B = ∇× (Aŷ) = −x̂∂A
∂z

+ ẑ
∂A

∂x

Equating this with the above known epression of B, we have

∂A

∂x
= B0e

−x/λ

This can be integrated to

A(x) = −λB0e
−x/λ + C

The constant C will be chosen so that the current density vanishes at x → ∞, which
gives C = 0, as shown below.

The simplest way to get the current density is to use the Maxwell equation:

j =
1

µ0

∇×B =
1

µ0

∇× (B0e
−x/λẑ)

=
B0

µ0

[−ŷ ∂

∂x
(e−x/λ)] =

B0

µ0λ
e−x/λŷ

However, using the vector potential derived above, we get it also as follows. When the
phase of the order parameter is assumed constant, the current density is

j = −2q2γ|ψ|2A = − 1

µ0λ2
A =

1

µ0λ2
(λB0e

−x/λ − C)ŷ =
B0

µ0λ
e−x/λŷ

where we used |ψ|2 = −α/β = |α|/β and λ =
√
β/(2q2µ0γ|α|) and chose C = 0 so that

the current density would vanish at infinity.

Total current. Let us assume that the z-directional height of the sample is Lz. Then

I = Lz

∫ ∞
0

dxjy(x) =
B0Lz
µ0λ

∫ ∞
0

e−x/λdx =
B0Lz
µ0λ
|∞0 (−λ)e−x/λ =

B0Lz
µ0

Note: As always, there is some freedom in the choice of the vector potential A. The GL
free energy functional and hence the current density have been constructed so that they
are invariant under gauge transformations of the form A → A + ~

q
∇χ and φ → φ + χ,

where φ is the phase of the order parameter and χ is an arbitrary function. (Check this.
Note also that the electric scalar potential is simultaneously transformed as V → V − ~

q
χ̇,



as always in electromagnetism, but this is not needed in our time-independent equilibrium
GL theory.) Thus we could choose the constant C above differently, but then φ should be
position-dependent such that the current is still the one given by the Maxwell equation.

Note 2: Just in case it was unclear, this problem concerns a planar insulator–superconduc-
tor (I-S) interface. In this case the boundary condition n̂·(~

i
∇−qA)ψ = 0 implies that the

normal derivative of the order parameter ψ is zero even when a magnetic field is applied
(because in fact n̂ ·A = 0). Thus the amplitude of the superconducting order parameter
remains finite all the way to the surface. In the case of a normal metal–superconductor
(N-S) interface, ψ is suppressed close to the interface on a length scale ξGL. Don’t confuse
these things.

3. Show that by choosing units of length, energy, order parameter, and magnetic field prop-
erly, and neglecting constant energy terms, the GL free energy functional in a given
external field Bext = ∇×Aext at T < Tc can be written in the dimensionless form

G(Ψ,A) =

∫
d3x

[
−|Ψ|2 +

1

2
|Ψ|4 + |(∇+ iA)Ψ|2 + κ2|∇ × (A−Aext)|2

]
,

which contains only one dimensionless parameter κ = λ(T )/ξGL(T ).

Solution:
The GL free energy is

G =

∫
d3r[αψ∗ψ +

β

2
(ψ∗)2ψ2 + γ|(~

i
∇− qA)ψ|2 +

1

2µ0

B2 −B ·H]

Let us modify the last two terms a bit.

1

2µ0

B2 −B ·H =
1

2µ0

(B2 − µ0B ·H) =
1

2µ0

(B2 − 2µ0B ·H + µ2
0H

2)− µ0

2
H2

=
1

2µ0

(B− µ0H)2 − µ0

2
H2 =

1

2µ0

(B−Bext)
2 − µ0

2
H2

Here the last term is just a constant and may be dropped. Writing B = ∇ × A and
Bext = ∇×Aext we can put the GL free energy in the form

G =

∫
d3r{α|ψ|2 +

β

2
|ψ|4 + γ|(~∇− iqA)ψ|2 +

1

2µ0

[∇× (A−Aext)]
2}

Now we define new dimensionless quantities and denote them with all with a tilde symbol.
We do not yet know what are the “natural units” for energy and length, for example, but
let us denote them with E0 and L0, respectively. So let us write

G = G̃E0, r = r̃L0, ∇ = ∇̃/L0, A = Ãa, ψ = ψ̃b

Here a and b are also unknown.



Now let’s insert these into the free energy (we also write α = −|α|, since for T < Tc it is
true that α < 0):

E0G̃ =

∫
d3r̃L3

0{−|α|b2|ψ̃|2 +
β

2
b4|ψ̃|4 + γb2

~2

L2
0

|(∇̃ − iqaL0

~
Ã)ψ̃|2 +

1

2µ0

a2

L2
0

[∇× (A−Aext)]
2}

G̃ =

∫
d3r̃{−|α|b

2L3
0

E0

|ψ̃|2 +
β

2

b4L3
0

E0

|ψ̃|4 + γb2
~2L0

E0

|(∇̃+ iÃ)ψ̃|2 +
1

2µ0

~2

L0E0q2
[∇× (A−Aext)]

2}

Here in the second form we aready required qaL0

~ = −1, which gives us the first unknown
as a = −~/(L0q) = ~/(L0|q|), where we assumed q < 0. In order for this to be of the
desired form, we must additionally have

|α|b
2L3

0

E0

= 1, β
b4L3

0

E0

= 1, γb2
~2L0

E0

= 1

From these three equations we must solve for the three unknowns L0, E0, and b. Whatever
parameter combination remains in front of the fourth term in G̃ is then called κ2. By
dividing the first two of the three equations we find

|α|
β

1

b2
= 1 =⇒ b =

√
|α|
β

By inserting this b into the equations, we see that two independent equations remain for
the two unknowns L0, E0:

|α|2

β

L3
0

E0

= 1,
|α|γ
β

~2L0

E0

= 1

Again, by dividing the two, we find

|α|
γ

L2
0

~2
= 1 =⇒ L0 =

√
γ~2
|α|
≡ ξGL

This length scale ξGL is known as the GL coherence (or healing) length. Inserting this to
one the two equations, we finally have

(|α|)1/2(γ)3/2

β

~3

E0

= 1 =⇒ E0 =
|α|1/2γ3/2~3

β

All of our former unknows are now known. Let us insert them into prefactor in front of
the fourth term in G̃:

1

2µ0

~2

L0E0q2
=

1

2µ0

~2

q2

√
|α|
γ~2

β

|α|1/2γ3/2~3
=

1

2µ0

~2

q2
=

1

2µ0

β

γ2~2q2



We want to isolate from this the proportionality to L−20 = ξ−2GL coming from the ∇. So we
continue

1

2µ0

~2

L0E0q2
=

1

2µ0

β

γ2~2q2
γ~2

|α|
1

ξ2GL
=

1

2µ0

β

γq2|α|
1

ξ2GL
≡ λ2

ξ2GL
≡ κ2

Here we defined the magnetic penetration length

λ =

√
1

2µ0

β

γq2|α|

and denoted the dimensionless ratio λ/ξGL by κ. In this way we finally have

G̃[ψ̃, Ã] =

∫
d3r̃{−|ψ̃|2 +

1

2
|ψ̃|4 + |(∇̃+ iÃ)ψ̃|2 + κ2[∇× (Ã− Ãext)]

2}

where only some symbols differ from the desired form.

4. Consider the one-dimensonal GL equation

ξ2GL
d2f

dx2
+ f − f 3 = 0.

Its first integral can be derived by analogy, by comparing the GL energy to the action
integral S =

∫
dtL({q̇i}, {qi}, t) where L = T − V , and noting that when ∂L/∂t = 0, the

Hamiltonian H =
∑

i q̇i
∂L
∂q̇i
− L is constant due to the equation of motion d

dt
∂L
∂q̇i
− ∂L

∂qi
= 0

(which in this analogy is the GL equation). Do this. Show that

f(x) = tanh
x√

2ξGL

satisfies the first-integral equation. You can find the first integral also without the analogy
and solve it for f directly, if you prefer that.

Solution:
The one-dimensional GL energy functional in the absence of a magnetic field is

G =

∫
dx(α|ψ|2 +

1

2
|ψ|4 + γ~2|dψ

dx
|2)

We assume ψ to be real and write ψ =
√
|α|/βf :

G =

∫
dx[−|α|

2

β
f 2 +

1

2

|α|2

β
f 4 + γ~2

|α|
β

(
dψ

dx
)2]

=
|α|2

β

∫
dx[−f 2 +

1

2
f 4 +

γ~2

|α|
(
dψ

dx
)2]

=
|α|2

β

∫
dx[−f 2 +

1

2
f 4 + ξ2GL(

df

dx
)2]



Or defining Ḡ = Gβ/|α|2

Ḡ =

∫
dx[−f 2 +

1

2
f 4 + ξ2GL(

df

dx
)2]

(Note: this Ḡ is not dimensionless.) In analytical mechanics one defines the action integral
S =

∫
dtL(q̇, q, t) where L = T − V , the difference of the kinetic and potential energies.

The above GL integral is clearly of this form, just with the replacement of t by x, and so
we can rely on some analogies. Thus we define

Ḡ =

∫
dxL(f ′, f, x),

where the “Lagrangian” is

L(f ′, f, x) = ξ2GL(f ′)2︸ ︷︷ ︸
T

− (f 2 − 1

2
f 4)︸ ︷︷ ︸

V

and where prime denotes x-derivative. There is no explicit x dependence, ∂L/∂x = 0, so
that the Lagrangian equation of motion is just d

dx
∂L
∂f ′
− ∂L

∂f
= 0, which gives the 1-D GL

equation

ξ2GLf
′′ + f − f 3 = 0

The fact that ∂L/∂x = 0 means that the corresponding “Hamiltonian” H = constant:

H = f ′
∂L

∂f ′
− L = f ′(2ξ2GLf

′)− [ξ2GL(f ′)2 − (f 2 − 1

2
f 4)]

= ξ2GL(f ′)2 + f 2 − 1

2
f 4

This is thus the “first integral” of the 1-D GL equation. You can check that by differenti-
ating this on both sides gives the GL equation.

The first integral can be solved by the given Ansatz f(x) = tanh(x/
√

2ξGL), with

f ′(x) = (1− tanh2 x√
2ξGL

)
1√

2ξGL

Inserting these we have

H = ξ2GL[(1− tanh2 x√
2ξGL

)
1√

2ξGL
]2 + tanh2 x√

2ξGL
− 1

2
tanh2 x√

2ξGL

=
1

2
− tanh2 x√

2ξGL
+

1

2
tanh4 x√

2ξGL
+ tanh2 x√

2ξGL
− 1

2
tanh4 x√

2ξGL

=
1

2



So the Hamiltonian, or the first integral, is indeed constant for this form of f(x). Thus
f(x) = tanh(x/

√
2ξGL) is a solution to the one-dimensional GL equation.

We could solve the first integral also directly. First of all, the GL equation gives (let
ξGL → ξ)

−ξ2f ′′ − f + f 3 = 0

−ξ2f ′′f ′ − ff ′ + f 3f ′ = 0

d

dx
[
1

2
ξ2(f ′)2 +

1

2
f 2 − 1

4
f 4] = 0

d

dx
[ξ2(f ′)2 + f 2 − 1

2
f 4] = 0

ξ2(f ′)2 + f 2 − 1

2
f 4 = H

where H is a constant. This is just as above. Now to have f(x→∞) = 1, we must have
H = 1/2. So

ξ2(f ′)2 − 1

2
(1− 2f 2 + f 4) = 0

ξ2(f ′)2 − 1

2
(1− f 2)2 = 0

Choose f ′ > 0. Then

f ′ =
1√
2ξ

(1− f 2)

Separate variables:∫
df

1− f 2
=

1√
2ξ

∫
dx →

artanhf = (x− x0)/
√

2ξ → f(x) = tanh[(x− x0)/
√

2ξ]

Here x0 is a constant. If f(0) = 0, then x0 = 0.

5. Calculate the discontinuity ∆C of the specific heat at T = Tc in the G-L theory. Using the
microscopic (BCS) values for the G-L parameters and the known result for the specific
heat Cn(T ) of the normal state, show that

∆C

Cn(Tc)
=

12

7ζ(3)
= 1.43.

(Hint: The specific heat is, as usual C = −T (∂2G/∂T 2).)



Solution:
We have previously calculated the specific heat for the normal state:

Cn(T ) =
2π2

3
L3N(0)k2BT

The specific heat for the superconducting state can be calculated from the free energy G
as

Cs(T ) = −T
(
∂2G

∂T 2

)
H,V,µ

where the free energy is calculated in the G-L theory from the functional

G = F0 +

∫
d3r[α|ψ|2 +

β

2
|ψ|4 + γ|(~

i
∇− qA)ψ|2 +

1

2µ0

B2 −B ·H]

where F0 is the free energy of normal state. At T = Tc there cannot be magnetic fields
present. We also assume the superconducting state to be spatially homogeneous, meaning
that A = B = 0 and ∇ψ = 0 and then ψ =

√
|α|
β
, as suggested by Eq. (218). The G-L

energy thus reduces to

G = F0 +

∫
d3r

(
−|α|

2

β
+

1

2

|α|2

β

)
= F0 −

|α|2L3

2β

For this calculation we need the microscopic values for the G-L parameters, which are
given in the lecture notes. They follow from BCS theory:

α = N(0)
T − Tc
Tc

β =
7ζ(3)N(0)

8π2k2BT
2
c

By substituting these into the energy:

G = F0 −
4N(0)π2k2BL

3(T − Tc)2

7ζ(3)

Now

Cs(T ) = −T
(
∂2G

∂T 2

)
H,V,µ

= Cn(T ) +
8N(0)π2k2BL

3T

7ζ(3)

where Cn(T ) = −T ∂2F0

∂T 2 has the expression quoted above. Then

∆C(Tc)

Cn(Tc)
=
Cs(Tc)− Cn(Tc)

Cn(Tc)
=

8N(0)π2k2BL
3Tc

7ζ(3)

2π2

3
L3N(0)k2BTc

=
12

7ζ(3)
=

12

7 · 1.203
= 1.43


