
763645S SUPERCONDUCTIVITY Solutions 11 Fall 2015

1. Consider G-L equations in a thin wire, assuming that A = 0 and

Ψ(x) = Ceikx.

Calculate the supercurrent j and the G-L energy for this state. Minimize the energy
with respect to C at constant k. Describe C and j as functions of k. Find the maximum
supercurrent and the corresponding k.

Solution:
As instructed, we consider a solution to the 1-D G-L equations of the form ψ(x) = Ceikx.
First the supercurrrent:

j =
q~γ
i

(ψ∗
dψ

dx
− ψdψ

∗

dx
)

= 2q~γ|C|2k = 2q~γC2k

In the last step we exercised our freedom to choose C to be real. Next we calculate the
G-L free energy and minimize:

G =

∫
dx[α|ψ|2 +

β

2
|ψ|4 + γ~2|dψ

dx
|2]

G =

∫
dx[−|α|C2 +

β

2
C4 + γ~2C2k2]

G = L[−|α|C2 +
β

2
C4 + γ~2C2k2]

Here we considered a system of length L. Minimization of the free energy with respect to
C:

∂G

∂C
= 0, L[2(−|α|+ γ~2k2)C + 2βC3] = 0

C2 =
|α| − γ~2k2

β

(Note that this same equation would actually follow by inserting ψ(x) = Ceikx directly to
the 1-D G-L equation ~2γ∇2ψ−αψ− β|ψ|2ψ = 0.) There is another solution C = 0, but
that is not what we are interested in here. However, also the other solution vanishes if k
reaches a value k = kc2 =

√
|α|/γ~2 = 1/ξGL. The system can be in the superconducting

state only for k < kc2, and then the amplitude of the order parameter is

C(k) =

√
|α| − γ~2k2

β
=

√
γ~2

β
(k2
c2 − k2)



Now let us insert this into the supercurrent.

j(k) = 2q~γC2k = 2q~γk
|α| − γ~2k2

β
=

2q~γ
β

(|α|k − γ~2k3)

The maximal supercurrent is found from dj/dk = 0, which gives k = kc1 =
√
|α|/3γ~2 =

1/(
√

3ξGL) < kc2. The maximal value of the current is then

jc = j(kc1) =
2q~γ
β

(|α| 1√
3ξGL

− |α| 1

3
√

3ξGL
) =

q~γ|α|
βξGL

4

3
√

3

where we used k3
c1 = 1/(3

√
3ξ3
GL) and γ~3/|α| = ξ2

GL. This is the “critical” current density,
at least one way of writing it.

2. Calculate the energy of an interface between normal and superonducting states (in the
critical field Hc) in the limit κ→ 0, in which case the you can neglect the magnetic field
on the superconducting side and use the solution f(x) = tanh

(
x/
√

2ξGL
)
. Note again

that the free energy densities of the normal and superconducting states (at x = ±∞)
have to be the same in order to have a stable interface.

(Hint: In this limit the N-S interface is abrupt, and you can choose it to be at x = 0 for
example. At this point f is continuous. On the N side B = µ0Hc and f = 0.)

Solution:

We assume the normal metal (N) to occupy the space x . 0 and the superconductor (S)
x & 0. Normal and superconducting states in the same material can only coexist at the
critical field, so we assume H = Hc. Hence we cannot simply neglect the magnetic field.
However, in the limit κ = λ/ξGL → 0 the magnetic field B cannot exist in the same region
where ψ 6= 0. This simplifies the calculation because the N-S interface becomes clear-cut
so that we can choose N (ψ = 0, B 6= 0) to occupy the region x < 0 and S (B = 0, ψ 6= 0)
the region x > 0.

In equilibrium, the free energy densities of the normal state and the bulk of the super-
conductor are equal gs = f0− 1

2
|α|2
β

= gn = f0− 1
2
µ0H

2
c . Only in the interface region does

the energy density g(x) deviate from this value. Thus the “interface energy” (per area
S of interface) is well defined when calculated with respect to a state where the energy
density is equal to gs = gn everywhere. (So either with respect to pure superconducting
state or pure normal state.) Thus, it is defined as

σ = ∆G/S =

∫ ∞
−∞

dx[g(x)− gn,s]



where

g(x) = f0 +
|α|2

β

{
− f 2(x) +

1

2
f 4(x) + ξ2

GL[f ′(x)]2 +
q2γ

|α|
A2(x)f 2(x)

+
β

2µ0|α|2
([A′(x)]2 − 2µ0A

′(x)H)

}
where A(x) is the y component of vector potential, assuming the magnetic field to point
in the direction z. This energy density is derived in another exercise. Here it is not needed
in this general form, because in the limit κ→ 0 (λ� ξGL) we can set f = 0 on the normal
side and A = 0 on the superconducting side. Assuming the N-S interface to be at x = 0,
in the normal region x < 0 we have g(x) = gn and the interface energy simplifies to

σ = ∆G/S =

∫ ∞
0

dx[g(x)− gs]

with

g(x) = f0 +
|α|2

β

{
− f 2(x) +

1

2
f 4(x) + ξ2

GL[f ′(x)]2
}

We could have written down this form also directly. The integral is thus

σ =
|α|2

β

∫ ∞
0

dx

{
− f 2(x) +

1

2
f 4(x) + ξ2

GL[f ′(x)]2 +
1

2

}
Here we may now insert f(x) = tanh(x/

√
2ξGL), which has previously been shown to solve

the 1-D G-L equation, and it therefore mimimizes the free energy. Note that f(0) = 0, so
f(x) is continuous across the interface as it should. (If the interface were at x = x0, then
we could simply shift the solution so that f(x0) = 0.) So using

f ′(x) =
1√

2ξGL
[1− tanh2(

x√
2ξGL

)] =
1√

2ξGL
(1− f 2)

we have

σ =
|α|2

β

∫ ∞
0

dx

{
− f 2 +

1

2
f 4 +

1

2
(1− f 2)2 +

1

2

}
=
|α|2

β

∫ ∞
0

dx

{
1− 2f 2 + f 4

}
=
|α|2
√

2ξGL
β

∫ ∞
0

dx

{
(1− f 2)

1√
2ξGL

(1− f 2)︸ ︷︷ ︸
f ′

}

=
|α|2
√

2ξGL
β

∫ ∞
0

dx(1− f 2)f ′ =
|α|2
√

2ξGL
β

∣∣∣∣∞
0

(f − 1

3
f 3) =

2
√

2|α|2ξGL
3β



This is the interface energy. Note that it is > 0, which is the defining property of a type
I superconductor. This is consistent with our assumption κ� 1.

Note: We did not utilize our knowledge of the “first integral” ξ2
GL(f ′)2 + f 2 − 1

2
f 4 = 1

2

above. Somehow I have the feeling that that could have been useful. Perhaps you can
spot how.

3. Determine the density of vortices (number per cross-sectional area) in a rotating superfuid
by starting from the assumption that the velocity on the edge of the cylindrical container
is on average the same as the velocity of the edge. How many vortices are there in a
cylinder of radius 5 mm that makes one revolution per second? Consider separately 3He
and 4He.

(Hint: The circulation
∮
dl · vs around N vortices is N h

m
.)

Solution:
The line integral of vs satisfies ∮

dl · vs = N
h

m

where N is the number of vortices enclosed in the integration loop. This can also be
formulated so that a vortex at (2D) location ri creates a vorticity ∇× vs = ẑ h

m
δ(r− ri).

Thus if there are N vortices, ∇ × vs = ẑ h
m

∑N
i=1 δ(r − ri), and by the Stokes theorem∮

dl · vs =
∫
da · ∇ × vs = N h

m
.

If the fluid would move completely with the container, then the velocity at any point r
would be given by vs = Ω× r = Ωrφ̂ where Ω = Ωẑ, with Ω the angular velocity of the
container. (The vorticity would then be∇×vs = 2Ω, as you may check.) The vortex-filled
superfluid mimics this behavior “on average”, because the vortex lattice rotates with the
container.

Let the radius of the container be R. Then the cross-sectional area is A = πR2. The
density of vortices is n = N/A. The average velocity on the edge of the container is
vs = ΩR. Thus we may write

2πRvs = An
h

m

2πΩR2 = πR2n
h

m

2Ω = n
h

m

n =
2mΩ

h

The connection between angular velocity Ω and the frequency f (or rotation period
T = 1/f) is Ω = 2πf , so we may write this also as

n =
2m(2πf)

h
=

2mf

(h/2π)
=

2mf

~



Now consider a cylinder with radius R = 5 mm, and f = 1 Hz. For 3He the mass is
m = 2m3 = 6u and for For 4He m = m4 = 4u, where u is the atomic mass unit:

N3 = An3 = πR2 2(2m3)f

~
= π · (5 · 10−3 m)2 · 2 · 6 · 1.6605 · 10−27 kg · 1 Hz

1.0546 · 10−34 Js
≈ 14840

N4 = An4 = πR2 2m4f

~
= π · (5 · 10−3 m)2 · 2 · 4 · 1.6605 · 10−27 kg · 1 Hz

1.0546 · 10−34 Js
≈ 9894

Quite many, it seems.

Note: The fact that the vortex lattice rotates together with the container, approximat-
ing solid-body rotation, follows from minimizing the free energy in a coordinate system
rotating with the container. (You can only have equilibrium in a reference frame where
external potentials are time-independent.) The energy to be minimized should be of the
form F = FΩ=0 − Ω · L where L is the total angular momentum L =

∫
d3rr × (ρsvs).

Apart from constants, this gives F =
∫
d3r 1

2
ρs(vs −Ω × r)2, where vs = ~

m
∇φ. Here vs

is the velocity in the inertial frame, and vs − Ω × r the velocity in the rotating frame.
So in the vortex configuration and associated velocity field that minimized the energy,
averaging over a few sites in the vortex lattice we should have 〈vs〉ave = Ω× r, although
this cannot be satisfied exactly for vs at every point in space.

4. In a superconductor one can define the velocity of the superconducting part as

vs =
1

m
(~∇χ− qA) .

When rotating the superconductor, no vortices are generated, but a uniform magnetic
field is. Calculate it. You can assume the condensate to rotate as a solid body together
with the atomic lattice.

Solution:

The superfluid velocity is

vs =
~
m
∇χ− q

m
A

Consider some closed integration path within the superconductor. Then∮
dl · vs =

~
m

∮
dl · ∇χ− q

m

∮
dl ·A

Assuming that there are no vortices, the first term on the right-hand side vanishes:
∮
dl ·

∇χ = 0. Then by using the Stokes formula∮
dl · vs = − q

m

∮
dl ·A∫

dS · ∇ × vs = − q

m

∫
dS · ∇ ×A = − q

m

∫
dS ·B



In vector form we can similarly conclude that ∇×∇χ = 0 and so

∇× vs = − q

m
∇×A = − q

m
B

For an uncharged superfluid with q = 0 this (absence of vortices) would imply ∇×vs = 0.

Now consider a superconductor being rotated at an angular velocity Ω = Ωẑ around some
orbitrary origin r = 0. If the superfluid were uncharged, linear vortices would form, in
the cores of which the “vorticity” ∇×vs is locally nonzero. The vortex lattice would then
mimic the solid-body rotation on average. However, in the case of a charged superfluid,
this is not the only possibility and, indeed, does not happen (see note below). Instead of
forming vortices, the superconducting electrons can rotate together with the lattice like
a solid body, having the velocity

vs = Ω× r

and thus the vorticity

∇× vs = 2Ω

which follows by applying ∇×(a×b) = (b ·∇)a−(a ·∇)b+a(∇·b)−b(∇·a) and noting
that ∇ · r = 3 etc. So, equating now the two forms ∇× vs = − q

m
B and ∇× vs = 2Ω we

find that

B = −2m

q
Ω

Thus a magnetic field proportional to the angular velocity is generated. This magnetic
field has been measured, and has precisely the magnitude given by the above formula —
see for example A. F. Hildebrandt, Phys. Rev. Lett. 12, 190 (1964). Note that here the
mass m and the charge q must both be those of the “Cooper pair”, or then of a single
electron.

Note: To see that the condensate chooses to rotate with the lattice and form a uniform
magnetic field instead of generating vortices, one should look at the energy functional in
a rotating coordinate system and minimize that. The energy to be minimized is of the
form F = 1

2

∫
d3rρs(vs−Ω×r)2 + B2

2µ0
. (Probably you should assume κ� 1?) You cannot

minimize both the first and second terms at the same time, and so it is a matter of which
one “costs more” to leave unminimized. Apparently it is usually favorable to minimize the
first term so that vs = Ω × r, although the magnetic field energy B2/2µ0 ∝ Ω2 is then
large. In the case of an uncharged superfluid, the only option would be to form vortices.
Then you can still have 〈vs〉ave = Ω× r.


