1. Verify that the dimension of length is in accordance with the given field of 1 Tesla in the experimental vortex lattice picture given in the lecture notes.

Solution:

This concerns the figure on p. 28 of the 2015 lecture notes. The number of vortex lines is 42. So the total flux is $\Phi = 42\Phi_0 = 42(h/2e) = 8.7 \cdot 10^{-14}$ Wb. The area is roughly $A = 300 \times 300 \text{ nm}^2 = 9 \cdot 10^{-14} \text{ m}^2$, so the expected flux at $B = 1$ T is $\Phi = BA = 9 \cdot 10^{-14}$ Wb. Seems to be right.

2. Show that the density of the single-particle energies $E_k = \sqrt{\xi_k^2 + \Delta^2}$ (i.e. density of states) in a superconductor is 0 for $0 < E < \Delta$ and

$$
N_s(E) = \frac{N_n(0)E}{\sqrt{E^2 - \Delta^2}}
$$

for $E > \Delta$, where $N_n(0)$ is the corresponding normal-state $(\Delta = 0)$ density of states.

Solution:

In the following we adopt a "particle picture" rather than "excitation picture", so that the energy dispersion is

$$
E_k = \begin{cases} \sqrt{\xi_k^2 + \Delta^2}, & \xi_k > 0\\ -\sqrt{\xi_k^2 + \Delta^2}, & \xi_k < 0 \end{cases}
$$

where $\xi_k = \epsilon_k - \mu$. Thus the "hole" states, defined here by $\xi_k < 0$, now appear at negative energies. (This is done just to make ξ_k uniquely defined for given E_k , which makes the discussion a bit cleaner — see below. If it bothers you, consider only the case $\xi_k > 0$.) In the normal state ($\Delta = 0$) this dispersion reduces to $E_k = \xi_k$. Since the density of the states on the " ξ axis" is therefore the same for both normal and superconducting cases, no states are "lost" in the superconducting transition. They just get redistributed on the " E axis".

Therefore the normal-state DOS $N_n(\xi)$ and the superconducting-state DOS $N_s(E)$ should satisfy (for $E > \Delta$, say) " $N_s(E_s) dE_s = N_n(E_n) dE_n$ ", that is

$$
N_s(E)dE = N_n(\xi)d\xi
$$

where $E = \sqrt{\xi^2 + \Delta^2}$ or $\xi =$ √ $\sqrt{E^2 - \Delta^2}$. Thus by differentiation we find $d\xi = EdE/\sqrt{E^2 - \Delta^2}$ and so

$$
N_s(E) = N_n(0) \frac{E}{\sqrt{E^2 - \Delta^2}}, \quad E > \Delta
$$

where we additionally assumed that $N_n(\xi) \approx N_n(0)$. For $0 < E < \Delta$ we obviously have $N_s(E) = 0$. For $E < 0$ similar arguments can be given, so that in general

$$
N_s(E) = N_n(0) \frac{|E|}{\sqrt{E^2 - \Delta^2}}, \quad |E| > \Delta
$$

and $N_s(E) = 0$ for $|E| < \Delta$. In the "excitation picture" also the "hole" states would be counted at positive energies, and then you have to think of including a factor 2 in $N_n(0)$ in the above result and only consider $E > 0$. So then $N_n(0) = 2N(0)$, where $N(0)$ is our usual notation for the single-spin DOS around Fermi energy.

A more technical way is roughly as follows. The energy density of states per unit volume is defined as

$$
N_s(E) = \frac{1}{L^3} \sum_{\mathbf{k}} \delta(E - E_k)
$$

where $E_k = \text{sign}(\xi_k) \sqrt{\xi_k^2 + \Delta^2}$. Since $|E_k|$ can only have values > Δ , it is clear that $N_s(E) = 0$ if $|E| < \Delta$. So below we assume $|E| > \Delta$. Here we need a delta function formula. In general, for a function $g(x)$ with zeros at $x = x_i$ (that is $g(x_i) = 0$) we have

$$
\delta[g(x)] = \sum_{i} \frac{1}{|g'(x_i)|} \delta(x - x_i)
$$

Applying this to our case, we define

$$
g(\xi_k) = E - \text{sign}(\xi_k) \sqrt{\xi_k^2 + \Delta^2}
$$

This has zeros at $\xi_k = \xi_k^{(0)}$ with $\xi_k^{(0)} = \text{sign}(E)$ √ $E^2 - \Delta^2$. Now

$$
g'(\xi_k) = \frac{|\xi_k|}{\sqrt{\xi_k^2 + \Delta^2}}
$$

and

$$
g'(\xi_k^{(0)})=\frac{\sqrt{E^2-\Delta^2}}{|E|}
$$

Thus

$$
N_s(E) = \frac{1}{L^3} \sum_{\mathbf{k}} \frac{|E|}{\sqrt{E^2 - \Delta^2}} \delta(\xi_k - \xi_k^{(0)})
$$

Then we use the usual substitution of the sum by an integral, assuming the normal-state density of states to be constant

$$
N_s(E) = N_n(0) \int d\xi_k \frac{|E|}{\sqrt{E^2 - \Delta^2}} \delta(\xi_k - \text{sign}(E)\sqrt{E^2 - \Delta^2})
$$

The integral over the delta function gives the result 1 and so

$$
N_s(E) = N_n(0) \frac{|E|}{\sqrt{E^2 - \Delta^2}}, \quad |E| > \Delta
$$

For any energy E we may write

$$
N_s(E) = N_n(0) \frac{|E|}{\sqrt{E^2 - \Delta^2}} \theta(|E| - \Delta)
$$

where $\theta(x)$ is the Heaviside step function.

3. Show, as instructed in the lecture notes, that if the Jospehson coupling energy is $F_J(\Delta \phi)$ = $-E_J \cos \Delta \phi$, then the Josephson current is $J = \frac{|q|}{\hbar} E_J \sin \Delta \phi$. Thus consider for simplicity a quasi-one-dimensional model, with a first superconductor at $-L < x < 0$ connected to a second one at $0 < x < L$ via a tunnel barrier at $x = 0$. The energy is of the form $F = S \int_{-L}^{0} dx f(x) + S \int_{0}^{L} dx f(x) + F_{J}$, where S is a cross-sectional area, $f(x)$ is the GL energy density at zero magnetic field, with $\psi(x) = \psi_0 e^{i\phi(x)}$, where ψ_0 is a real constant, and $\Delta \phi = \phi(0^-) - \phi(0^+)$. By considering variations $\phi(x) \rightarrow \phi(x) + \delta \phi(x)$ where $\delta \phi(\pm L) = 0$, show that the equilibrium conditions arising from the surface terms of $\delta F = 0$ at $x = 0^{\pm}$ imply that the current $J = Sj(0^-) = Sj(0^+)$ satisfies $J = \frac{|q|}{\hbar}$ $\frac{q_{\parallel}}{\hbar} \partial F_{J}(\Delta\phi)/\partial \Delta\phi.$

Solution:

Denote the phase fields at $x < 0$ and $x > 0$ by ϕ_1 and ϕ_2 , respectively. Since the amplitudes $|\psi| = \psi_0$ of the order parameters are just constants, GL free energy is then of the form

$$
F[\phi_1, \phi_2] = S \int_{-L}^{0} dx[f + \hbar^2 \gamma |\psi|^2 (\phi_1')^2] + S \int_{0}^{L} dx[f + \hbar^2 \gamma |\psi|^2 (\phi_2')^2] + F_J[\phi_1(0^-) - \phi_2(0^+)]
$$

where $f = \alpha |\psi|^2 + \frac{\beta}{2}$ $\frac{\beta}{2}|\psi|^4$ is an unimportant constant energy density and S is the crosssectional area. By differentiation

$$
\delta F = S \int_{-L}^{0} dx \left[2\hbar^2 \gamma |\psi|^2 \phi_1' (\delta \phi_1)' \right] + S \int_{0}^{L} dx \left[2\hbar^2 \gamma |\psi|^2 \phi_2' (\delta \phi_2)' \right] + F_J' [\phi_1(0^-) - \phi_2(0^+)] \left[\delta \phi_1(0^-) - \delta \phi_2(0^+) \right]
$$

and by integration by parts

$$
\delta F = S \Big|_{-L}^{0} (2\hbar^{2}\gamma |\psi|^{2} \phi_{1}^{\prime}) \delta \phi_{1} - S \int_{-L}^{0} dx (2\hbar^{2}\gamma |\psi|^{2} \phi_{1}^{\prime\prime}) \delta \phi_{1} \n+ S \Big|_{0}^{L} (2\hbar^{2}\gamma |\psi|^{2} \phi_{2}^{\prime}) \delta \phi_{2} - S \int_{0}^{L} dx (2\hbar^{2}\gamma |\psi|^{2} \phi_{2}^{\prime\prime}) \delta \phi_{2} \n+ F_{J}^{\prime} [\phi_{1}(0^{-}) - \phi_{2}(0^{+})] [\delta \phi_{1}(0^{-}) - \delta \phi_{2}(0^{+})] \n= -S 2\hbar^{2} \gamma |\psi|^{2} \left\{ \int_{-L}^{0} dx \phi_{1}^{\prime\prime} \delta \phi_{1} + \int_{0}^{L} dx \phi_{2}^{\prime\prime} \delta \phi_{2} \right\} \n+ \delta \phi_{1}(0^{-}) \left\{ S 2\hbar^{2} \gamma |\psi|^{2} \phi_{1}^{\prime}(0^{-}) + F_{J}^{\prime} [\phi_{1}(0^{-}) - \phi_{2}(0^{+})] \right\} \n- \delta \phi_{1}(-L) \left\{ S 2\hbar^{2} \gamma |\psi|^{2} \phi_{1}^{\prime}(-L) \right\} \n- \delta \phi_{2}(0^{+}) \left\{ S 2\hbar^{2} \gamma |\psi|^{2} \phi_{2}^{\prime}(0^{+}) + F_{J}^{\prime} [\phi_{1}(0^{-}) - \phi_{2}(0^{+})] \right\} \n+ \delta \phi_{2}(L) \left\{ S 2\hbar^{2} \gamma |\psi|^{2} \phi_{2}^{\prime}(L) \right\}.
$$

In equilibrium $\delta F = 0$. As usual, we fix $\delta \phi_1(-L) = 0$ and $\delta \phi_2(L) = 0$. Since the variation is arbitrary, the integrands must vanish. Thus $\phi_1'' = 0 = \phi_2''$. The variations at the origin are also arbitrary, and thus

$$
S2\hbar^2\gamma|\psi|^2\phi_1'(0^-) + F_J'[\phi_1(0^-) - \phi_2(0^+)] = 0
$$

$$
S2\hbar^2\gamma|\psi|^2\phi_2'(0^+) + F_J'[\phi_1(0^-) - \phi_2(0^+)] = 0
$$

Using the definition of the current density $j = 2q\hbar\gamma |\psi|^2 \phi'$, these can be written as

$$
Sj(0^-) = Sj(0^+) = -\frac{q}{\hbar}F'_J[\phi_1(0^-) - \phi_2(0^+)]
$$

Using $F_J(\Delta \phi) = -E_J \cos \Delta \phi$, this becomes

$$
Sj(0^-) = Sj(0^+) = -\frac{q}{\hbar}E_J\sin[\phi_1(0^-) - \phi_2(0^+)]
$$

Defining $J = Sj(0^-) = Sj(0^+), I_c = |q|E_J/\hbar$, and $\Delta\phi = \phi_1(0^-) - \phi_2(0^+),$ this is the desired result:

$$
J = \frac{|q|}{\hbar} F'_J(\Delta \phi) = I_c \sin(\Delta \phi)
$$

4. DC SQUID

Starting from the equations in the lectures

$$
\Delta\phi_1 + \Delta\phi_2 = \frac{2\pi\Phi}{\Phi_0} + 2\pi N
$$

\n
$$
J = J_{c1}\sin(\Delta\phi_1) - J_{c2}\sin(\Delta\phi_2),
$$
\n(1)

show that for $J_{c1} = J_{c2} = J_c$ the current can be written

$$
J = 2J_c(-1)^N \cos \frac{\pi \Phi}{\Phi_0} \sin \frac{\Delta \phi_1 - \Delta \phi_2}{2}.
$$
 (2)

Solution:

Since $J_{c1} = J_{c2} = J_c$, we have

$$
J = J_c \left[\sin \left(\Delta \phi_1 \right) - \sin \left(\Delta \phi_2 \right) \right]. \tag{3}
$$

Using the trigonometric identity

$$
\sin x - \sin y = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) \tag{4}
$$

we have

$$
J = 2J_c \sin\left(\frac{\Delta\phi_1 - \Delta\phi_2}{2}\right) \cos\left(\frac{\Delta\phi_1 + \Delta\phi_2}{2}\right) \tag{5}
$$

Because

$$
\Delta\phi_1 + \Delta\phi_2 = \frac{2\pi\Phi}{\Phi_0} + 2\pi N,\tag{6}
$$

we obtain

$$
J = 2J_c \sin\left(\frac{\Delta\phi_1 - \Delta\phi_2}{2}\right) \cos\left(\frac{\pi\Phi}{\Phi_0} + \pi N\right). \tag{7}
$$

Since

$$
\cos(x + \pi N) = \cos(x)\cos(\pi N) - \sin(x)\sin(\pi N) = (-1)^N\cos(x),
$$
\n(8)

we finally have

$$
J = 2J_c \left(-1\right)^N \cos\left(\frac{\pi \Phi}{\Phi_0}\right) \sin\left(\frac{\Delta \phi_1 - \Delta \phi_2}{2}\right). \tag{9}
$$