763645S SUPERCONDUCTIVITY Solutions 12 Fall 2015

1. Verify that the dimension of length is in accordance with the given field of 1 Tesla in the
experimental vortex lattice picture given in the lecture notes.

Solution:

This concerns the figure on p. 28 of the 2015 lecture notes. The number of vortex lines
is 42. So the total flux is ® = 42®, = 42(h/2e) = 8.7- 10~ Wh. The area is roughly
A =300 x 300 nm? = 9-10~* m?, so the expected luxat B=1Tis® =BA=9-10""
Whb. Seems to be right.

2. Show that the density of the single-particle energies Ej, = /&2 + A? (i.e. density of states)
in a superconductor is 0 for 0 < £ < A and

N,(0)E
VE2 — A2

for E > A, where N, (0) is the corresponding normal-state (A = 0) density of states.

N,(B) =

Solution:
In the following we adopt a “particle picture” rather than “excitation picture”, so that the
energy dispersion is

B, — \/€£+A2, fk>0
b _\/fg‘i‘AQ, £k<0

where &, = €, — . Thus the “hole” states, defined here by & < 0, now appear at negative
energies. (This is done just to make & uniquely defined for given Ej, which makes the
discussion a bit cleaner — see below. If it bothers you, consider only the case &, > 0.)
In the normal state (A = 0) this dispersion reduces to Ej = &. Since the density of the
states on the “¢ axis” is therefore the same for both normal and superconducting cases,
no states are “lost” in the superconducting transition. They just get redistributed on the
“F axis”.

Therefore the normal-state DOS N,,(£) and the superconducting-state DOS N,(E') should
satisfy (for E > A, say) “Ns(E;)dEs = N,(E,)dE,”, that is

Ny(E)dE = Ny(§)dg

where £ = /&2 + A? or £ = v/ E? — A2 Thus by differentiation we find d§¢ = EdE /v E? — A2

and so
FE
Ny(E) = Nn<0>\/ﬁv E>A



where we additionally assumed that N, (§) ~ N,(0). For 0 < E < A we obviously have
Ny(E) = 0. For E < 0 similar arguments can be given, so that in general

|E]
VE2 — A2’
and Ny(FE) = 0 for |E| < A. In the “excitation picture” also the “hole” states would be
counted at positive energies, and then you have to think of including a factor 2 in N, (0)

in the above result and only consider £ > 0. So then N,,(0) = 2N(0), where N(0) is our
usual notation for the single-spin DOS around Fermi energy.

N,(E) = N,(0) E| > A

A more technical way is roughly as follows. The energy density of states per unit volume
is defined as

N(E) = 75 S 0(E ~ )

where Ej, = sign(&)/&F + A2 Since |E)| can only have values > A, it is clear that
Ns(E) = 0 if |E| < A. So below we assume |E| > A. Here we need a delta function
formula. In general, for a function g(z) with zeros at = = z; (that is g(z;) = 0) we have

o) = 3 bl =)

Applying this to our case, we define

9(&) = E — sign(&)y/ & + A?

This has zeros at §, = fl(go) with f,io) = sign(E)v E? — A% Now
k]

/
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and
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Thus

1 E
Ny (E) = 5?\/%5(& -&”)

Then we use the usual substitution of the sum by an integral, assuming the normal-state
density of states to be constant
|E]

N.(E) = N,(0) [ (6 = sien(B)VE = )



The integral over the delta function gives the result 1 and so

E|

For any energy F we may write
Ny(E) = N,(0 £ O(|E|l — A
s(E) = Nu(0) (1E] - A4)

VE? - A?

where () is the Heaviside step function.

3. Show, as instructed in the lecture notes, that if the Jospehson coupling energy is F;(A¢) =
—FE; cos Ag, then the Josephson current is J = %E 7sin A¢. Thus consider for simplicity
a quasi-one-dimensional model, with a first superconductor at —L < x < 0 connected
to a second one at 0 < x < L via a tunnel barrier at = 0. The energy is of the form
F = SfBL def(xz)+ S fOL dxf(x) + Fy, where S is a cross-sectional area, f(z) is the GL
energy density at zero magnetic field, with ¢ (x) = 10e™*®, where 1) is a real constant, and
A¢p = ¢(07) — ¢(0"). By considering variations ¢(z) — ¢(z) + dé(x) where dp(+L) = 0,
show that the equilibrium conditions arising from the surface terms of §F = 0 at x = 0%
imply that the current J = Sj(07) = Sj(07) satisfies J = %8FJ(A¢)/8A¢.

Solution:
Denote the phase fields at z < 0 and x > 0 by ¢; and ¢,, respectively. Since the amplitudes
|| = 1bp of the order parameters are just constants, GL free energy is then of the form

0

Flé1, do] = S / dalf + U]+ 5 / dxlf + By 0P8 + Fylon(07) — go(0%)

where [ = a|y]* + §|w|4 is an unimportant constant energy density and S is the cross-
sectional area. By differentiation

0 L
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+ Fj[¢1(07) = ¢2(07)][061(07) — 02 (07)]



and by integration by parts
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+061(07) {S2R* Y[y [¢1(07) + Fjl¢1(07) — 62(07)]}
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+0¢2(L) { S2R*y[¥|* 65 (L) } -

In equilibrium 6 F' = 0. As usual, we fix d¢1(—L) = 0 and d¢o(L) = 0. Since the variation
is arbitrary, the integrands must vanish. Thus ¢] = 0 = ¢}. The variations at the origin
are also arbitrary, and thus

S22 |2, (07) + Fi[p1(07) — ¢ (01)] =

0
SRy @h(07) + Fjl¢1(07) — ¢2(07)] = 0

Using the definition of the current density j = 2qhy[|?¢’, these can be written as
S5(07) = Sj(07) = =3 F1[¢1(07) = 62(07)]
Using F;(A¢) = —E; cos Ag, this becomes
S3(07) = S5(0%) = = By sinf¢1(07) = 62(0%)]

Defining J = Sj(07) = S5(07), I. = |q|E;/h, and A¢ = ¢1(07) — ¢2(07), this is the
desired result:

J= %F}(Agf)) = Isin(A¢)

. DC SQUID
Starting from the equations in the lectures

2
A¢1+A¢2:%+2WN
0

J = Jcl SiH(A¢1) — JCQ SiH(Ad)Q), (1)



show that for J,; = J.o = J, the current can be written

® . Ap —A
J =2J.(—1)" cos ™= sin M
D 2

Solution:
Since J. = Jo = J., we have

J = J.[sin (A¢y) — sin (Ags)] .

Using the trigonometric identity

= 2 (5 s (55
sinx —siny = 2sin 5 coS 5

we have A A A A
J = 2], sin (u) oS (M)
2 2
Because 0r
Ay + Ady = 22 4 97N,
D
we obtain
AP — A P
J =2J,sin u CoS 7T—+7rN )
2 Dy
Since

cos (x 4+ mN) = cos (z) cos (mN) — sin (z) sin (7N) = (—=1)" cos(z),

we finally have

J =2J,(=1)" cos <@) sin (M) :
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