
763645S SUPERCONDUCTIVITY Solutions 12 Fall 2015

1. Verify that the dimension of length is in accordance with the given field of 1 Tesla in the
experimental vortex lattice picture given in the lecture notes.

Solution:
This concerns the figure on p. 28 of the 2015 lecture notes. The number of vortex lines
is 42. So the total flux is Φ = 42Φ0 = 42(h/2e) = 8.7 · 10−14 Wb. The area is roughly
A = 300× 300 nm2 = 9 · 10−14 m2, so the expected flux at B = 1 T is Φ = BA = 9 · 10−14

Wb. Seems to be right.

2. Show that the density of the single-particle energies Ek =
√
ξ2k + ∆2 (i.e. density of states)

in a superconductor is 0 for 0 < E < ∆ and

Ns(E) =
Nn(0)E√
E2 −∆2

for E > ∆, where Nn(0) is the corresponding normal-state (∆ = 0) density of states.

Solution:
In the following we adopt a “particle picture” rather than “excitation picture”, so that the
energy dispersion is

Ek =

{√
ξ2k + ∆2, ξk > 0

−
√
ξ2k + ∆2, ξk < 0

where ξk = εk−µ. Thus the “hole” states, defined here by ξk < 0, now appear at negative
energies. (This is done just to make ξk uniquely defined for given Ek, which makes the
discussion a bit cleaner — see below. If it bothers you, consider only the case ξk > 0.)
In the normal state (∆ = 0) this dispersion reduces to Ek = ξk. Since the density of the
states on the “ξ axis” is therefore the same for both normal and superconducting cases,
no states are “lost” in the superconducting transition. They just get redistributed on the
“E axis”.

Therefore the normal-state DOS Nn(ξ) and the superconducting-state DOS Ns(E) should
satisfy (for E > ∆, say) “Ns(Es)dEs = Nn(En)dEn”, that is

Ns(E)dE = Nn(ξ)dξ

where E =
√
ξ2 + ∆2 or ξ =

√
E2 −∆2. Thus by differentiation we find dξ = EdE/

√
E2 −∆2

and so

Ns(E) = Nn(0)
E√

E2 −∆2
, E > ∆



where we additionally assumed that Nn(ξ) ≈ Nn(0). For 0 < E < ∆ we obviously have
Ns(E) = 0. For E < 0 similar arguments can be given, so that in general

Ns(E) = Nn(0)
|E|√

E2 −∆2
, |E| > ∆

and Ns(E) = 0 for |E| < ∆. In the “excitation picture” also the “hole” states would be
counted at positive energies, and then you have to think of including a factor 2 in Nn(0)
in the above result and only consider E > 0. So then Nn(0) = 2N(0), where N(0) is our
usual notation for the single-spin DOS around Fermi energy.

A more technical way is roughly as follows. The energy density of states per unit volume
is defined as

Ns(E) =
1

L3

∑
k

δ(E − Ek)

where Ek = sign(ξk)
√
ξ2k + ∆2. Since |Ek| can only have values > ∆, it is clear that

Ns(E) = 0 if |E| < ∆. So below we assume |E| > ∆. Here we need a delta function
formula. In general, for a function g(x) with zeros at x = xi (that is g(xi) = 0) we have

δ[g(x)] =
∑
i

1

|g′(xi)|
δ(x− xi)

Applying this to our case, we define

g(ξk) = E − sign(ξk)
√
ξ2k + ∆2

This has zeros at ξk = ξ
(0)
k with ξ(0)k = sign(E)

√
E2 −∆2. Now

g′(ξk) =
|ξk|√
ξ2k + ∆2

and

g′(ξ
(0)
k ) =

√
E2 −∆2

|E|

Thus

Ns(E) =
1

L3

∑
k

|E|√
E2 −∆2

δ(ξk − ξ(0)k )

Then we use the usual substitution of the sum by an integral, assuming the normal-state
density of states to be constant

Ns(E) = Nn(0)

∫
dξk

|E|√
E2 −∆2

δ(ξk − sign(E)
√
E2 −∆2)



The integral over the delta function gives the result 1 and so

Ns(E) = Nn(0)
|E|√

E2 −∆2
, |E| > ∆

For any energy E we may write

Ns(E) = Nn(0)
|E|√

E2 −∆2
θ(|E| −∆)

where θ(x) is the Heaviside step function.

3. Show, as instructed in the lecture notes, that if the Jospehson coupling energy is FJ(∆φ) =

−EJ cos ∆φ, then the Josephson current is J = |q|
~ EJ sin ∆φ. Thus consider for simplicity

a quasi-one-dimensional model, with a first superconductor at −L < x < 0 connected
to a second one at 0 < x < L via a tunnel barrier at x = 0. The energy is of the form
F = S

∫ 0

−L dxf(x) + S
∫ L
0
dxf(x) + FJ , where S is a cross-sectional area, f(x) is the GL

energy density at zero magnetic field, with ψ(x) = ψ0e
iφ(x), where ψ0 is a real constant, and

∆φ = φ(0−)− φ(0+). By considering variations φ(x)→ φ(x) + δφ(x) where δφ(±L) = 0,
show that the equilibrium conditions arising from the surface terms of δF = 0 at x = 0±

imply that the current J = Sj(0−) = Sj(0+) satisfies J = |q|
~ ∂FJ(∆φ)/∂∆φ.

Solution:
Denote the phase fields at x < 0 and x > 0 by φ1 and φ2, respectively. Since the amplitudes
|ψ| = ψ0 of the order parameters are just constants, GL free energy is then of the form

F [φ1, φ2] = S

∫ 0

−L
dx[f + ~2γ|ψ|2(φ′1)2] + S

∫ L

0

dx[f + ~2γ|ψ|2(φ′2)2] + FJ [φ1(0
−)− φ2(0

+)]

where f = α|ψ|2 + β
2
|ψ|4 is an unimportant constant energy density and S is the cross-

sectional area. By differentiation

δF = S

∫ 0

−L
dx[2~2γ|ψ|2φ′1(δφ1)

′] + S

∫ L

0

dx[2~2γ|ψ|2φ′2(δφ2)
′]

+ F ′J [φ1(0
−)− φ2(0

+)][δφ1(0
−)− δφ2(0

+)]



and by integration by parts

δF = S
∣∣∣0
−L

(2~2γ|ψ|2φ′1)δφ1 − S
∫ 0

−L
dx(2~2γ|ψ|2φ′′1)δφ1

+ S
∣∣∣L
0
(2~2γ|ψ|2φ′2)δφ2 − S

∫ L

0

dx(2~2γ|ψ|2φ′′2)δφ2

+ F ′J [φ1(0
−)− φ2(0

+)][δφ1(0
−)− δφ2(0

+)]

= −S2~2γ|ψ|2
{∫ 0

−L
dxφ′′1δφ1 +

∫ L

0

dxφ′′2δφ2

}
+ δφ1(0

−)
{
S2~2γ|ψ|2φ′1(0−) + F ′J [φ1(0

−)− φ2(0
+)]
}

− δφ1(−L)
{
S2~2γ|ψ|2φ′1(−L)

}
− δφ2(0

+)
{
S2~2γ|ψ|2φ′2(0+) + F ′J [φ1(0

−)− φ2(0
+)]
}

+ δφ2(L)
{
S2~2γ|ψ|2φ′2(L)

}
.

In equilibrium δF = 0. As usual, we fix δφ1(−L) = 0 and δφ2(L) = 0. Since the variation
is arbitrary, the integrands must vanish. Thus φ′′1 = 0 = φ′′2. The variations at the origin
are also arbitrary, and thus

S2~2γ|ψ|2φ′1(0−) + F ′J [φ1(0
−)− φ2(0

+)] = 0

S2~2γ|ψ|2φ′2(0+) + F ′J [φ1(0
−)− φ2(0

+)] = 0

Using the definition of the current density j = 2q~γ|ψ|2φ′, these can be written as

Sj(0−) = Sj(0+) = − q
~
F ′J [φ1(0

−)− φ2(0
+)]

Using FJ(∆φ) = −EJ cos ∆φ, this becomes

Sj(0−) = Sj(0+) = − q
~
EJ sin[φ1(0

−)− φ2(0
+)]

Defining J = Sj(0−) = Sj(0+), Ic = |q|EJ/~, and ∆φ = φ1(0
−) − φ2(0

+), this is the
desired result:

J =
|q|
~
F ′J(∆φ) = Ic sin(∆φ)

4. DC SQUID
Starting from the equations in the lectures

∆φ1 + ∆φ2 =
2πΦ

Φ0

+ 2πN

J = Jc1 sin(∆φ1)− Jc2 sin(∆φ2), (1)



show that for Jc1 = Jc2 = Jc the current can be written

J = 2Jc(−1)N cos
πΦ

Φ0

sin
∆φ1 −∆φ2

2
. (2)

Solution:
Since Jc1 = Jc2 = Jc, we have

J = Jc [sin (∆φ1)− sin (∆φ2)] . (3)

Using the trigonometric identity

sinx− sin y = 2 sin

(
x− y

2

)
cos

(
x+ y

2

)
(4)

we have
J = 2Jc sin

(
∆φ1 −∆φ2

2

)
cos

(
∆φ1 + ∆φ2

2

)
(5)

Because
∆φ1 + ∆φ2 =

2πΦ

Φ0

+ 2πN, (6)

we obtain

J = 2Jc sin

(
∆φ1 −∆φ2

2

)
cos

(
πΦ

Φ0

+ πN

)
. (7)

Since

cos (x+ πN) = cos (x) cos (πN)− sin (x) sin (πN) = (−1)N cos(x), (8)

we finally have

J = 2Jc (−1)N cos

(
πΦ

Φ0

)
sin

(
∆φ1 −∆φ2

2

)
. (9)


