
Introduction

• Thermodynamics: phenomenological

description of equilibrium bulk properties of

matter in terms of only a few “state variables”

and thermodynamical laws.

• Statistical physics: microscopic foundation of

thermodynamics

• ∼ 1023 degrees of freedom → 2–3 state

variables!

• “Everything should be made as simple as

possible, but no simpler” (A. Einstein)



Summary of contents:

• Review of thermodynamics

• Thermodynamical potentials

• Phase space and probability

• Quantum mechanical ensembles

• Equilibrium ensembles

• Ideal fluids

• Bosonic systems

• Fermionic systems

• Interacting systems

• Phase transitions and critical phenomena



1. Foundations of
thermodynamics

1.1. Fundamental
thermodynamical concepts

System : macroscopic entity under consideration.

Environment : world outside of the system

(infinite).

Open system : can exchange matter and heat

with the environment.

Closed system : can exchange heat with the

environment while keeping the number of

particles fixed.

Isolated system : can exchange neither matter

nor heat with the environment. Can (possibly)

still do work by e.g. expanding.



Thermodynamical equilibrium:

• No macroscopic changes.

• Uniquely described by (a few) external

variables of state.

• System forgets its past: no memory effects, no

hysteresis.

• Often the term global equilibrium is used, as

opposed to local equilibrium, which is not full

equilibrium at all (next page)!



Nonequilibrium:

• Generally much more complicated than

equilibrium state.

• Simplest case: isolated systems each in an

equilibrium state.

• In a local thermodynamical equilibrium small

regions are locally in equilibrium, but

neighbour regions in different equilibria ⇒

particles, heat etc. will flow. Example: fluid

(water) with non-homogeneous temperature.

• Stronger nonequilibrium systems usually relax

to a local equilibrium.



Degrees of freedom (d.o.f.) is the number of

quantities needed for the exact description of

the microscopic state.

Example: classical ideal gas with N particles:

3N coordinates (x, y, z), 3N momenta

(px, py, pz).

State variables are parameters characterizing the

macroscopic thermodynamical state. These

are all extensive or intensive:

Extensive variable: change value when the

size (spatial volume and the number of

degrees of freedom) is changed: volume V ,

particle number N , internal energy U ,

entropy S, total magnetic moment
∫

d3r M.

Intensive variable: independent of the size of

the system, and can be determined for

every semimicroscopical volume element:

e.g. temperature T , pressure p, chemical

potential µ, magnetic field H, ratios of

extensive variables like ρ = N/V ,

s = S/N, . . ..



Conjugated variables: A and B appear in

pairs in expressions for the differential of

the energy (or more generally, some state

variable), i.e. in forms ±A dB or ±B dA; one

is always extensive and the other intensive.

Example: pressure p and volume V ; change

in internal energy U when V is changed

(adiabatically, at constant S) is dU = −pdV .



Process is a change in the state.

Reversible process: advances via states

infinitesimally close to equilibrium,

quasistatically (“slow process”). The

direction of a reversible process can be

reversed, obtaining the initial state (for

system + environment!)

Isothermal process : T constant.

Isobaric process : p constant.

Isochoric process : V constant.

Isentropic or adiabatic process: S

constant.

Irreversible process is a sudden or

spontaneous change during which the

system is far from equilibrium. In the

intermediate steps global state variables (p,

T , . . .) are usually not well defined.

Cyclic process consists of cycles which take

the system every time to its initial state.



1.2. State variables and exact
differentials

Let us suppose that, for example, the state of the

system can be uniquely described by state

variables T , V ja N . Other state variables are then

their unique functions:

p = p(T, V, N)

U = U(T, V, N)

S = S(T, V, N) . . .

By applying differential calculus, the differential of

p, for example, is

dp =

(

∂p

∂T

)

V,N
dT +

(

∂p

∂V

)

T,N
dV +

(

∂p

∂N

)

T,V
dN

...



The differentials of state variables,

dp, dT , dV , . . ., are exact differentials. These

have the following properties

(A) Their total change evaluated over a closed

path vanishes:

1 = 2

∮

1→2
dp =

∮

1→2
dU = · · · = 0.

(B) The total change of an exact differential is

independent on the path of integration:
1

2
a

b

∫

a
dU −

∫

b
dU = 0,

so that we can write

U(2) = U(1) +

∫ 2

1
dU



Exact differentials

Let us denote by d̄F a differential which is not

necessarily exact (i.e. integrals can depend on the

path). Assuming it depends on 2 variables x, y, the

differential

d̄F = F1(x, y) dx + F2(x, y) dy

is exact differential if

∂F1

∂y
=

∂F2

∂x
.

Then ∃F(x, y) so that F1(x, y) = ∂F (x,y)
∂x and

F2(x, y) = ∂F (x,y)
∂y and

∫ 2

1
d̄F = F(2) − F(1)

is independent on the path, and integrable. In this

case (x, F1) and (y, F2) are pairs of conjugated

variables with respect to F .

Examples: are the following differentials exact?

d̄F = y dx + x dy

d̄F = x dx + x dy



All physical state variables are exact differentials!

This will enable us to derive various identities

between state variables.

Integrating factor

If d̄F = F1dx + F2dy is not exact, there exists an

integrating factor λ(x, y) so that in the

neighbourhood of the point (x, y)

λd̄F = λF1dx + λF2dy = df

is an exact differential. λ and f are state variables.

Example: find λ for the differential

d̄F = x dx + x dy .



Legendre transformations

Legendre transformations can be used to make

changes in the set of the indepependent state

variables. For example, let us look at the function

f(x, y) of two variables. We denote

z = fy =
∂f(x, y)

∂y

and define the function

g = f − yfy = f − yz.

(Note: z, y is a congjugated pair with respect to

f !) Now

dg = df − y dz − z dy = fxdx + fydy − y dz − z dy

= fxdx − y dz.

Thus we can take x and z as independent variables

of the function g, i.e. g = g(x, z). Obviously

y = −
∂g(x, z)

∂z
.

Corresponding to the Legendre transformation

f → g there is the inverse transformation g → f

f = g − zgz = g + yz.



Often needed identities

Let F = F(x, y), x = x(y, z), y = y(x, z) and

z = z(x, y). If we want to give F in terms of (x, z),

we can write

F(x, y) = F(x, y(x, z)).

Applying differential rules we obtain identities

(

∂F

∂x

)

z
=

(

∂F

∂x

)

y
+

(

∂F

∂y

)

x

(

∂y

∂x

)

z

(

∂F

∂z

)

x
=

(

∂F

∂y

)

x

(

∂y

∂z

)

x

One can show that
(

∂x

∂y

)

z

=
1

(

∂y
∂x

)

z

(

∂x

∂y

)

z

(

∂y

∂z

)

x

(

∂z

∂x

)

y
= −1

and
(

∂x

∂y

)

z

=

(

∂F
∂y

)

z
(

∂F
∂x

)

z

.



1.3. Equations of state

Encodes (some of the) physical properties of the

equilibrium system. Usually these relate

“mechanical” readily observable variables, like p,

T , N , V ; not “internal” variables like S, internal

energy U etc. A typical example: pressure of some

gas as a function of T and density ρ.

Some examples:

Classical ideal gas

pV = NkBT

where N = number of molecules

T = absolute temperature

kB = 1.3807 · 10−23J/K = Boltzmann constant.

Chemists use often the form

pV = nRT

n = N/N0 = number of moles

R = kBN0 = 8.315J/K mol

= gas constant

N0 = 6.0221 · 1023 = Avogadro’s number.



If the gas is composed of m different species of

molecules the equation of state is still

pV = NkBT,

where now

N =
m
∑

i=1

Ni

and

p =
∑

i

pi, pi = NikBT/V,

where pi is the partial pressure of the i:th

component

Virial expansion of real gases

When the interactions between gas molecules are

taken into account, the ideal gas law receives

corrections which are suppressed by powers of

density ρ = N/V :

p = kBT
[

ρ + ρ2B2(T) + ρ3B3(T) + · · ·
]

Here Bn is the n:th virial coefficient.



Van der Waals equation

The molecules of real gases interact

• repulsively at short distances; every particle

needs at least the volume b ⇒ V >
∼Nb.

• attractively (potential ∼ (r/r0)
6) at large

distances due to the induced dipole momenta.

The pressure decreases when two particles are

separated by the attraction distance. The

probability of this is ∝ (N/V )2.

We improve the ideal gas state equation

p′V ′ = NkBT

so that

V ′ = V − Nb

p = p′ − aρ2 = true pressure.

then

(p + aρ2)(V − Nb) = NkBT.



Solid substances

The thermal expansion coefficient

αp =
1

V

(

∂V

∂T

)

p,N

and the isothermal compressibility

κT = −
1

V

(

∂V

∂p

)

T,N

of solid materials are very small, so the Taylor

series

V = V0(1 + αpT − κTp)

is a good approximation.

Typically

κT ≈ 10−10/Pa

αp ≈ 10−4/K.



Stretched wire

Tension [N/m2]

σ = E(T)(L − L0)/L0,

where L0 is the length of the wire when σ = 0 and

E(T) is the temperature dependent elasticity

coefficient.

Surface tension

σ = σ0

(

1 −
t

t′

)n

t = temperature ◦C

t′ and n experimental constants,

1<
∼n<

∼2

σ0 = surface tension when t = 0◦C.



Electric polarization

When a piece of material is in an external electric

field E, we define

D = ǫ0E + P,

where

P = electric polarization

= atomic total dipole momentum/volume

D = electric flux density

ǫ0 = 8.8542 · 10−12As/Vm

= vacuum permeability.

In homogenous dielectric material one has

P =

(

a +
b

T

)

E,

where a and b are almost constant and a, b ≥ 0.



Curie’s law

When a piece of paramagnetic material is in

magnetic field H we write

B = µ0(H + M),

where

M = magnetic polarization

= atomic total magnetic moment/volume

B = magnetic flux density

µ0 = 4π · 10−7Vs/Am = vacuum permeability.

Polarization obeys roughly Curie’s law

M =
ρC

T
H,

where ρ is the number density of paramagnetic

atoms and C an experimental constant related to

the individual atom.

Note Use as a thermometer: measure the quantity

M/H.



1.4. 0th law of thermodynamics

If each of two bodies is separately in thermal

equilibrium with a third body then they are also in

thermal equilibrium with each other ⇒ there exists

a property called temperature and thermometer

which can be used to measure it.

1.5. Work

Work is exchange of such ”noble” energy (as

opposed to exchange of heat or matter) that can

be completely transformed to some other noble

form of energy; e.g. mechanical and

electromagnetic energy.

Sign convention: work ∆W is the work done by

the system to its environment.



Example pV T system

∆W = p∆V.

Note d̄W is not an exact differential: the work

done by the system is not a function of the final

state of the system (need to know the history!).

Instead
1

p
d̄W = dV

is exact, i.e, 1/p is the integrating factor for work.

Example

d̄W = p dV − σA dL − E · dP − H · dM.

In general

d̄W =
∑

i

fidXi = f · dX,

where fi is a component of a generalized force and

Xi a component of a generalized displacement.



1.6. 1st law of thermodynamics

Total energy is conserved

In addition to work a system can exchange heat

(thermal energy) or chemical energy, associated

with the exchange of matter, with its environment.

Thermal energy is related to the energy of the

thermal stochastic motion of microscopic particles.

The total energy of a system is called internal

energy.

Sign conventions:

'

&

$

%

�
�

�
�

�+

∆Q

-∆W

Q
Q

Q
Q

Qk

µ∆N
chemical energy

System

Environment

If the system can exchange heat and particles and

do work, the energy conservation law gives the

change of the internal energy

dU = d̄Q − d̄W + µdN,

where µ is the chemical potential. More generally,

dU = d̄Q − f · dX +
∑

i

µidNi.

U is a state variable, i.e. dU is exact.



Cyclic process

In a cyclic process the system returns to the

original state. Now
∮

dU = 0, so ∆W = ∆Q (no

change in thermal energy). In a pV T -system

6p

-

V

'
&

$
%

-

�

�
�
���

∆Q+

-∆W =
∮

p dV = Area!
Q

Q
Qs∆Q−

The total change of heat is

∆Q = ∆Q+ + ∆Q−,

where ∆Q+ is the heat taken by the system and

−∆Q− (> 0) the heat released by the system.

The efficiency η is

η =
∆W

∆Q+
=

∆Q+ + ∆Q−

∆Q+
= 1 −

|∆Q−|

|∆Q+|
.



1.7. 2nd law of thermodynamics

Heat flows from high temperatures to low

temperatures.

(a) Heat cannot be transferred from a cooler heat

reservoir to a warmer one without other

changes.

(b) In a cyclic process it is not possible to convert

all heat taken from the hotter heat reservoir

into work.

(c) It is not possible to reverse the evolution of a

system towards thermodynamical equilibrium

without converting work to heat.

(d) The change of the total entropy of the system

and its environment is positive and can be zero

only in reversible processes.

(e) Of all the engines working between the

temperatures T1 and T2 the Carnot engine has

the highest efficiency.



We consider the infinitesimal process

6y

-
x

'
1

U(1)t 2

U(2)t
C
CW
d̄Q

Now

d̄Q = dU + d̄W = dU + f · dX,

so there exists an integrating factor 1/T so that

1

T
d̄Q = dS

is exact. The state variable S is entropy and T

turns out to be temperature (on an absolute scale)



The second law (d) can now be written as

dStot
dt ≥ 0,

where Stot is the entropy of the system +

environment.

For the entropy of the system only we have

dS ≥
1

T
d̄Q,

where the equality holds only for reversible

processes. The entropy of the system can

decrease, but the total entropy always increases

(or stays constant).

For reversible processes the first law can be

rewritten as

dU = d̄Q − d̄W + µ dN = T dS − p dV + µ dN.



1.8. Carnot cycle

Illustrates the concept of entropy. The Carnot

engine C consists of reversible processes

a) isothermal T2 ∆Q2 > 0
b) adiabatic T2 → T1 ∆Q = 0
c) isothermal T1 ∆Q1 > 0
d) adiabatic T1 → T2 ∆Q = 0

Now ∆U = 0, so ∆W = ∆Q2 − ∆Q1 (wrong sign

here, for simplicity).

a

b
c

d
D Q 2

D Q 1

We define the efficiency as

η =
∆W

∆Q2
= 1 −

∆Q1

∆Q2
.

Because the processes are reversible the cycle C

can be reversed and C works as a heat pump.



Let us consider two Carnot cycles A and B, for

which

∆WA = ∆WB = ∆W.

A is an enegine and B a heat pump. The

efficiences are correspondingly

ηA =
∆W

∆QA
and ηB =

∆W

∆QB
.

D Q A

D Q A - W
A B

W D Q B

D Q B - W

T 2

T 2 > T 1

T 1

Let us suppose that

ηA > ηB,

so that ∆QB > ∆QA or ∆QB − ∆QA > 0. The

heat would transfer from the cooler reservoir to

the warmer one without any other changes, which

is in contradiction with the second law (form a).

So we must have

ηA ≤ ηB.

By running the engines backwards one can show

that

ηB ≤ ηA,



so that ηA = ηB, i.e. all Carnot engines have the

same efficiency.

Note The efficiency does not depend on the

realization of the cycle (e.g. the working

substance) ⇒ The efficiency depends only on the

temperatures of the heat reservoirs.

Similarly, one can show that the Carnot engine has

the highest efficiency among all engines (also

irreversible) working between given temperatures.

Let us consider Carnot’s cycle between

temperatures T3 and T1. Now

η = 1 − f(T3, T1),

where

f(T3, T1) =
∆Q1

∆Q3
.

T 3

T 2

T 1

D Q 3 D W 2 3D Q 2
D Q 2

D Q 1
D W 1 2

D Q 3
D W 1 3

D Q 1



Here

f(T3, T2) =
∆Q2

∆Q3

f(T2, T1) =
∆Q1

∆Q2

f(T3, T1) =
∆Q1

∆Q3

so

f(T3, T1) = f(T3, T2)f(T2, T1).

The simplest solution is

f(T2, T1) =
T1

T2
.

We define the absolute temperature so that

η = 1 −
T1

T2
.



The Carnot cycle satisfies
∮

d̄Q

T
= 0,

since
∫

a

d̄Q

T
=

∆Q2

T2

and
∫

c

d̄Q

T
= −

∆Q1

T1
= −

∆Q2

T2
.

This is valid also for an arbitrary reversible cycle

C

C i

because
∮

C

d̄Q

T
=
∑

i

∮

Ci

d̄Q

T
= 0.

So

dS =
d̄Q

T

is exact and the entropy S is a state variable.



Because the Carnot cycle has the highest efficiency

a cycle containing irreversible processes satisfies

η
irr

= 1 −
∆Q1

∆Q2
< η

Carnot
= 1 −

T1

T2

or
∆Q2

T2
−

∆Q1

T1
< 0.

Thus for an arbitrary cycle we have
∮

d̄Q

T
≤ 0, (∗)

where the equality holds only for reversible

processes.

For an arbitrary process 1 → 2 the change of the

entropy can be obtained from the formula

∆S =

∫

rev
dS =

∫

rev

d̄Q

T
.

1

2i r r

r e v



According to the formula (∗) we have

∫

irr

d̄Q

T
−
∫

rev

d̄Q

T
< 0,

or

∆S >
∫

irr

d̄Q

T
.

This is usually written as

dS ≥
d̄Q

T

and the equality is valid only for reversible

processes.

In an isolated system we have

∆S ≥ 0.



1.9. 3rd law of thermodynamics

Nernst’s law:

lim
T→0

S = 0.

A less strong form can be stated as:

When the maximum heat occuring in the process

from a state a to a state b approaches zero the

also the entropy change ∆Sa→b → 0.

Note There are systems whose entropy at low

temperatures is larger than true equilibria would

allow.


