
Introduction

• Thermodynamics: phenomenological description of
equilibrium bulk properties of matter in terms of only
a few “state variables” and thermodynamical laws.

• Statistical physics: microscopic foundation of
thermodynamics

• ∼ 1023 degrees of freedom → 2–3 state variables!

• “Everything should be made as simple as possible,
but no simpler” (A. Einstein)

Summary of contents:

• Review of thermodynamics

• Thermodynamical potentials

• Phase space and probability

• Quantum mechanical ensembles

• Equilibrium ensembles

• Ideal fluids

• Bosonic systems

• Fermionic systems

• Interacting systems

• Phase transitions and critical phenomena

1. Foundations of thermodynamics

1.1. Fundamental thermodynamical
concepts

System : macroscopic entity under consideration.

Environment : world outside of the system (infinite).

Open system : can exchange matter and heat with the
environment.

Closed system : can exchange heat with the
environment while keeping the number of particles
fixed.

Isolated system : can exchange neither matter nor heat
with the environment. Can (possibly) still do work
by e.g. expanding.

Thermodynamical equilibrium:

• No macroscopic changes.

• Uniquely described by (a few) external variables of
state.

• System forgets its past: no memory effects, no
hysteresis.

• Often the term global equilibrium is used, as opposed
to local equilibrium, which is not full equilibrium at
all (next page)!

Nonequilibrium:

• Generally much more complicated than equilibrium
state.

• Simplest case: isolated systems each in an
equilibrium state.

• In a local thermodynamical equilibrium small regions
are locally in equilibrium, but neighbour regions in
different equilibria ⇒ particles, heat etc. will flow.
Example: fluid (water) with non-homogeneous
temperature.

• Stronger nonequilibrium systems usually relax to a
local equilibrium.

Degrees of freedom (d.o.f.) is the number of quantities
needed for the exact description of the microscopic
state.

Example: classical ideal gas with N particles: 3N
coordinates (x, y, z), 3N momenta (px, py, pz).

State variables are parameters characterizing the
macroscopic thermodynamical state. These are all
extensive or intensive:

Extensive variable: change value when the size
(spatial volume and the number of degrees of
freedom) is changed: volume V , particle number
N , internal energy U , entropy S, total magnetic
moment

∫

d3r M.
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Intensive variable: independent of the size of the
system, and can be determined for every
semimicroscopical volume element: e.g.
temperature T , pressure p, chemical potential µ,
magnetic field H, ratios of extensive variables
like ρ = N/V , s = S/N, . . ..

Conjugated variables: A and B appear in pairs in
expressions for the differential of the energy (or
more generally, some state variable), i.e. in
forms ±AdB or ±B dA; one is always extensive
and the other intensive.

Example: pressure p and volume V ; change in
internal energy U when V is changed
(adiabatically, at constant S) is dU = −pdV .

Process is a change in the state.

Reversible process: advances via states
infinitesimally close to equilibrium,
quasistatically (“slow process”). The direction of
a reversible process can be reversed, obtaining
the initial state (for system + environment!)

Isothermal process : T constant.

Isobaric process : p constant.

Isochoric process : V constant.

Isentropic or adiabatic process: S constant.

Irreversible process is a sudden or spontaneous
change during which the system is far from
equilibrium. In the intermediate steps global
state variables (p, T , . . .) are usually not well
defined.

Cyclic process consists of cycles which take the
system every time to its initial state.

1.2. State variables and exact
differentials
Let us suppose that, for example, the state of the system
can be uniquely described by state variables T , V ja N .
Other state variables are then their unique functions:

p = p(T, V, N)

U = U(T, V, N)

S = S(T, V, N) . . .

By applying differential calculus, the differential of p, for
example, is

dp =

(

∂p

∂T

)

V,N

dT +

(

∂p

∂V

)

T,N

dV +

(

∂p

∂N

)

T,V

dN

...

The differentials of state variables,
dp, dT , dV , . . ., are exact differentials. These have the
following properties
(A) Their total change evaluated over a closed path
vanishes:

1 = 2

∮

1→2

dp =

∮

1→2

dU = · · · = 0.

(B) The total change of an exact differential is
independent on the path of integration:

1

2
a

b

∫

a

dU −

∫

b

dU = 0,

so that we can write

U(2) = U(1) +

∫ 2

1

dU

Exact differentials
Let us denote by d̄F a differential which is not necessarily
exact (i.e. integrals can depend on the path). Assuming
it depends on 2 variables x, y, the differential

d̄F = F1(x, y) dx + F2(x, y) dy

is exact differential if

∂F1

∂y
=

∂F2

∂x
.

Then ∃F (x, y) so that F1(x, y) = ∂F (x,y)
∂x and

F2(x, y) = ∂F (x,y)
∂y and

∫ 2

1

d̄F = F (2)− F (1)

is independent on the path, and integrable. In this case
(x, F1) and (y, F2) are pairs of conjugated variables with
respect to F .
Examples: are the following differentials exact?

d̄F = y dx + xdy

d̄F = xdx + xdy

All physical state variables are exact differentials! This
will enable us to derive various identities between state
variables.

Integrating factor
If d̄F = F1dx + F2dy is not exact, there exists an
integrating factor λ(x, y) so that in the neighbourhood of
the point (x, y)

λd̄F = λF1dx + λF2dy = df
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is an exact differential. λ and f are state variables.
Example: find λ for the differential

d̄F = xdx + xdy .

Legendre transformations
Legendre transformations can be used to make changes in
the set of the indepependent state variables. For example,
let us look at the function f(x, y) of two variables. We
denote

z = fy =
∂f(x, y)

∂y

and define the function

g = f − yfy = f − yz.

(Note: z, y is a congjugated pair with respect to f !) Now

dg = df − y dz − z dy = fxdx + fydy − y dz − z dy

= fxdx− y dz.

Thus we can take x and z as independent variables of the
function g, i.e. g = g(x, z). Obviously

y = −
∂g(x, z)

∂z
.

Corresponding to the Legendre transformation f → g
there is the inverse transformation g → f

f = g − zgz = g + yz.

Often needed identities

Let F = F (x, y), x = x(y, z), y = y(x, z) and z = z(x, y).
If we want to give F in terms of (x, z), we can write

F (x, y) = F (x, y(x, z)).

Applying differential rules we obtain identities

(

∂F

∂x

)

z

=

(

∂F

∂x

)

y

+

(

∂F

∂y

)

x

(

∂y

∂x

)

z

(

∂F

∂z

)

x

=

(

∂F

∂y

)

x

(

∂y

∂z

)

x

One can show that
(

∂x

∂y

)

z

=
1

(

∂y
∂x

)

z

(

∂x

∂y

)

z

(

∂y

∂z

)

x

(

∂z

∂x

)

y

= −1

and
(

∂x

∂y

)

z

=

(

∂F
∂y

)

z
(

∂F
∂x

)

z

.

1.3. Equations of state
Encodes (some of the) physical properties of the
equilibrium system. Usually these relate “mechanical”
readily observable variables, like p, T , N , V ; not
“internal” variables like S, internal energy U etc. A
typical example: pressure of some gas as a function of T
and density ρ.
Some examples:

Classical ideal gas

pV = NkBT

where N = number of molecules
T = absolute temperature
kB = 1.3807 · 10−23J/K = Boltzmann constant. Chemists
use often the form

pV = nRT

n = N/N0 = number of moles

R = kBN0 = 8.315J/K mol

= gas constant

N0 = 6.0221 · 1023 = Avogadro’s number.

If the gas is composed of m different species of molecules
the equation of state is still

pV = NkBT,

where now

N =

m
∑

i=1

Ni

and

p =
∑

i

pi, pi = NikBT/V,

where pi is the partial pressure of the i:th component

Virial expansion of real gases
When the interactions between gas molecules are taken
into account, the ideal gas law receives corrections which
are suppressed by powers of density ρ = N/V :

p = kBT
[

ρ + ρ2B2(T ) + ρ3B3(T ) + · · ·
]

Here Bn is the n:th virial coefficient.

Van der Waals equation
The molecules of real gases interact

• repulsively at short distances; every particle needs at
least the volume b ⇒ V >

∼Nb.

• attractively (potential ∼ (r/r0)
6) at large distances

due to the induced dipole momenta. The pressure
decreases when two particles are separated by the
attraction distance. The probability of this is
∝ (N/V )2.
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We improve the ideal gas state equation

p′V ′ = NkBT

so that

V ′ = V −Nb

p = p′ − aρ2 = true pressure.

then

(p + aρ2)(V −Nb) = NkBT.

Solid substances
The thermal expansion coefficient

αp =
1

V

(

∂V

∂T

)

p,N

and the isothermal compressibility

κT = −
1

V

(

∂V

∂p

)

T,N

of solid materials are very small, so the Taylor series

V = V0(1 + αpT − κT p)

is a good approximation.
Typically

κT ≈ 10−10/Pa

αp ≈ 10−4/K.

Stretched wire
Tension [N/m2]

σ = E(T )(L− L0)/L0,

where L0 is the length of the wire when σ = 0 and E(T )
is the temperature dependent elasticity coefficient.

Surface tension

σ = σ0

(

1−
t

t′

)n

t = temperature ◦C

t′ and n experimental constants,

1<
∼n<
∼2

σ0 = surface tension when t = 0◦C.

Electric polarization
When a piece of material is in an external electric field E,
we define

D = ǫ0E + P,

where

P = electric polarization

= atomic total dipole momentum/volume

D = electric flux density

ǫ0 = 8.8542 · 10−12As/Vm

= vacuum permeability.

In homogenous dielectric material one has

P =

(

a +
b

T

)

E,

where a and b are almost constant and a, b ≥ 0.

Curie’s law
When a piece of paramagnetic material is in magnetic
field H we write

B = µ0(H + M),

where

M = magnetic polarization

= atomic total magnetic moment/volume

B = magnetic flux density

µ0 = 4π · 10−7Vs/Am = vacuum permeability.

Polarization obeys roughly Curie’s law

M =
ρC

T
H,

where ρ is the number density of paramagnetic atoms and
C an experimental constant related to the individual
atom.
Note: Use as a thermometer: measure the quantity
M/H .
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Laws of thermodynamics
Thermodynamics is based upon 4 laws (these can be
derived from statistical physics, but in thermodynamics
these are considered “fundamental”).

1.4. 0th law of thermodynamics
If each of two bodies is separately in thermal equilibrium
with a third body then they are also in thermal
equilibrium with each other. ⇒ there exists a property
called temperature and thermometer which can be used to
measure it.

1.5. Work
Before we discuss the 1st law, let us introduce the
concept of Work. Work is exchange of such ”noble”
energy (as opposed to exchange of heat or matter) that
can be completely transformed to some other noble form
of energy; e.g. mechanical and electromagnetic energy.
Sign convention: work ∆W is the work done by the
system to its environment. Example: pV T system

∆W = p ∆V.

Note: d̄W is not an exact differential: the work done by
the system is not a function of the final state of the
system (need to know the history!). Instead

1

p
d̄W = dV

is exact, i.e, 1/p is the integrating factor for work.
Example:

d̄W = p dV − σAdL −E · dP−H · dM.

In general

d̄W =
∑

i

fidXi = f · dX,

where fi is a component of a generalized force and Xi a
component of a generalized displacement.

1.6. 1st law of thermodynamics
Total energy is conserved
In addition to work a system can exchange heat (thermal
energy) or chemical energy, associated with the exchange
of matter, with its environment. Thermal energy is
related to the energy of the thermal stochastic motion of
microscopic particles.
The total energy of a system is called internal energy
U .
Sign conventions:

'

&

$

%

�
�

�
�

�+

∆Q

-∆W

Q
Q

Q
Q

Qk

µ ∆N
chemical energy

System

Environment

If the system can exchange heat and particles and do
work, the energy conservation law gives the change of the
internal energy

dU = d̄Q−d̄W + µdN,

where µ is the chemical potential. More generally,

dU = d̄Q− f · dX +
∑

i

µidNi.

U is a state variable, i.e. dU is exact.

Cyclic process
In a cyclic process the system returns to the original state.
Now

∮

dU = 0, so ∆W = ∆Q (no change in thermal
energy). Now ∆Q+ is the heat absorbed by the system
during one cycle and −∆Q− (> 0) is the heat released.

6p

-
V

'
&

$
%

-

�

�
�
���

∆Q+

-∆W =Area =
∮

p dV = in pV T -system

Q
Q

Qs∆Q−

The total change of heat is

∆Q = ∆W = ∆Q+ + ∆Q−,

The efficiency of a heat engine (∆W > 0) is work/(heat
taken):

η =
∆W

∆Q+
=

∆Q+ + ∆Q−

∆Q+
= 1−

|∆Q−|

|∆Q+|
.

1.7. 2nd law of thermodynamics
2nd law can be stated in various (historical) ways:

(a) Heat flows spontaneously from high temperatures to
low temperatures.

(b) Heat cannot be transferred from a cooler heat
reservoir to a warmer one without other changes.

(c) In a cyclic process it is not possible to convert all
heat taken from the hotter heat reservoir into work.

(d) It is not possible to reverse the evolution of a system
towards thermodynamical equilibrium without
converting work to heat.

(e) The change of the total entropy of the system and its
environment is positive and can be zero only in
reversible processes.
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(f) Of all the engines working between the temperatures
T1 and T2 the Carnot engine has the highest
efficiency.

We consider the infinitesimal process

6y

-
x

'
1

U(1)t 2

U(2)t
C
CW
d̄Q

Now
d̄Q = dU +d̄W = dU + f · dX,

so there exists an integrating factor 1/T so that

1

T
d̄Q = dS

is exact. The state variable S is entropy and T turns out
to be temperature (on an absolute scale) The second law
(e) can now be written as

dStot

dt
≥ 0,

where Stot is the entropy of the system + environment.
For the entropy of the system only we have

dS ≥
1

T
d̄Q,

where the equality holds only for reversible processes.
The entropy of the system can decrease, but the total
entropy always increases (or stays constant).
For reversible processes the first law can be rewritten as

dU = d̄Q−d̄W + µ dN = T dS − p dV + µ dN.

1.8. Carnot cycle
Illustrates the concept of entropy. The Carnot engine C
consists of reversible processes

a) isothermal T2 ∆Q2 > 0
b) adiabatic T2 → T1 ∆Q = 0
c) isothermal T1 ∆Q1 > 0
d) adiabatic T1 → T2 ∆Q = 0

Now ∆U = 0, so ∆W = ∆Q2 −∆Q1 (wrong sign here,
for simplicity).

a

b
c

d
D Q 2

D Q 1

We define the efficiency as

η =
∆W

∆Q2
= 1−

∆Q1

∆Q2
.

Because the processes are reversible the cycle C can be
reversed and C works as a heat pump. Let us consider
two Carnot cycles A and B, for which

∆WA = ∆WB = ∆W.

A is an enegine and B a heat pump. The efficiences are
correspondingly

ηA =
∆W

∆QA
and ηB =

∆W

∆QB
.

D Q A

D Q A - W
A B

W D Q B

D Q B - W

T 2

T 2 > T 1

T 1

Let us suppose that

ηA > ηB ,

so that ∆QB > ∆QA or ∆QB −∆QA > 0. The heat
would transfer from the cooler reservoir to the warmer
one without any other changes, which is in contradiction
with the second law (form b). So we must have

ηA ≤ ηB .

By running the engines backwards one can show that

ηB ≤ ηA,

so that ηA = ηB, i.e. all Carnot engines have the same
efficiency.
Similarly, it follows that the Carnot engine has the
highest efficiency among all engines (also irreversible)
working between given temperatures: assume that engine
A in previous figure is some other engine than Carnot.
Then the argument above implies that ηA ≤ ηB . If A is
not reversible, efficiency is not necessarily the same while
running the system backwards and the inequality remains
in force; if it is reversible, reversing the process gives
ηA = ηB .
Note: The efficiency does not depend on the realization
of the cycle (e.g. the working substance). Only
reversibility is essential! ⇒ The efficiency depends only
on the temperatures of the heat reservoirs.
Defining temperature scale via Carnot engines: Let us
consider Carnot’s cycle between temperatures T3 and T1.
Now

η = 1− f(T3, T1),

where we have the identity

f(T3, T1) =
∆Q1

∆Q3
.
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T 3

T 2

T 1

D Q 3 D W 2 3D Q 2D Q 2

D Q 1
D W 1 2

D Q 3
D W 1 3

D Q 1

Here

f(T3, T2) =
∆Q2

∆Q3

f(T2, T1) =
∆Q1

∆Q2

f(T3, T1) =
∆Q1

∆Q3

so

f(T3, T1) = f(T3, T2)f(T2, T1).

The simplest solution is

f(T2, T1) =
T1

T2
.

We define the absolute temperature so that

η = 1−
T1

T2
.

This (theoretical) definition was first used by Kelvin, and
it gives us our familiar absolute temperature scale, up to
a scale factor.
(This is by no means unique; one could also use
f(t2, t1) = [t2/t1]

a, with any a 6= 0, this would just give us
a different temperature scale t = const.× T 1/a.)
The Carnot cycle satisfies

∮

d̄Q

T
= 0,

since, during the isothermal part a,

∫

a

d̄Q

T
=

∆Q2

T2

and part c
∫

c

d̄Q

T
= −

∆Q1

T1
= −

∆Q2

T2
.

This is valid also for an arbitrary reversible cycle

C

C i

because
∮

C

d̄Q

T
=

∑

i

∮

Ci

d̄Q

T
= 0.

So

dS =
d̄Q

T

is exact and the entropy S and the temperature T are
state variables. Because the Carnot cycle has the highest
efficiency, a cycle containing irreversible processes satisfies

η
irr

= 1−
∆Q1

∆Q2
< η

Carnot
= 1−

T1

T2

or
∆Q2

T2
−

∆Q1

T1
< 0.

Thus for an arbitrary cycle we have
∮

d̄Q

T
≤ 0, (∗)

where the equality holds only for reversible processes.
Because entropy S is a state variable, it cannot depend
on the integration path. Thus, for an arbitrary process
1→ 2 the change of the entropy can be obtained from the
formula

∆S =

∫

rev

dS =

∫

rev

d̄Q

T
.

1

2i r r

r e v
According to the formula (∗) we have

∫

irr

d̄Q

T
−

∫

rev

d̄Q

T
< 0,

or

∆S >

∫

irr

d̄Q

T
.

This is usually written as

dS ≥
d̄Q

T
,

and the equality is valid only for reversible processes. For
an isolated system (∆Q = 0, e.g. system + environment!)
we have

∆S ≥ 0.

Thus, for an irreversible process,

∆Qirr ≤ ∆Qrev = T∆S,

∆Wirr = ∆Qirr −∆U ≤ ∆Wrev = f · dX

where “rev” is a hypothetical reversible process
connecting the initial and final states of “irr”-trajectory.
Note the sign conventions: ∆W work done by the system;
∆Q heat absorbed by the system. ∆Wirr ≤ ∆Wrev means
less work done by “irr” (∆W > 0) or more work done to
it (∆W < 0).

1.9. 3rd law of thermodynamics
Nernst’s law (1906):

lim
T→0

S = 0.
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A less strong form can be stated as:
When the maximum temperature occuring in the process
from a state a to a state b approaches zero, also the
entropy change ∆Sa→b → 0.
Note: There are systems whose entropy at low
temperatures is larger than true equilibria would allow.
This is due to very slow relaxation time

2. Thermodynamic potentials

2.1. Fundamental equation
According to the first law (in a TV N -system, generalizes
easily), for reversible processes

dU = T dS − p dV + µ dN . (∗)

S, V and N can be considered to be natural variables of
the internal energy U , i.e. U = U(S, V, N). Furthermore,
from the law (∗) one can read the relations

(

∂U

∂S

)

V,N

= T

(

∂U

∂V

)

S,N

= −p (∗∗)

(

∂U

∂N

)

S,V

= µ.

Scaling law of extensive variables: all extensive variables
must be linear functions of system size V (and each
other). Now U , S, V and N are extensive so we have

U(λS, λV, λN) = λU(S, V, N) ∀λ. (∗ ∗ ∗)

Taking a derivative of (∗ ∗ ∗) wrt. λ, we obtain the Euler
equation for homogenous functions

U = S

(

∂U

∂S

)

V,N

+ V

(

∂U

∂V

)

S,N

+ N

(

∂U

∂N

)

S,V

.

Substituting the partial derivatives in (∗∗) this takes the
form

U = TS − pV + µN

or

S =
1

T
(U + pV − µN).

This is called the fundamental equation.

2.2. Internal energy and Maxwell
relations
Because

T =

(

∂U

∂S

)

V,N

and

p = −

(

∂U

∂V

)

S,N

,

so
∂T

∂V
=

∂

∂V

∂U

∂S
=

∂

∂S

∂U

∂V
= −

∂p

∂S
.

Similar relations can be derived also for other partial
derivatives of U and we get so called Maxwell’s relations

(

∂T

∂V

)

S,N

= −

(

∂p

∂S

)

V,N
(

∂T

∂N

)

S,V

=

(

∂µ

∂S

)

V,N
(

∂p

∂N

)

S,V

= −

(

∂µ

∂V

)

S,N

.
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In an irreversible process

T ∆S > ∆Q = ∆U + ∆W,

so
∆U < T ∆S − p ∆V + µ ∆N.

If S, V and N stay constant in the process then the
internal energy decreases. Thus we can deduce that
In an equilibrium with given S, V and N the internal
energy is at the minimum.
We consider a reversible process in an isolated system
(∆Q = 0)

F
p 1

V 1

p 2

V 2

e q u i l i b r i u m  p o s i t i o n

D L

We partition ∆W into the components

∫

p dV =





work due to the
change of the total
volume ( = 0)





∆Wfree =

[

work done by the
gas against the
force F

]

.

Now

∆Wfree = ∆W1 + ∆W2 = p1∆V1 + p2∆V2

= (p1 − p2)∆V1 = (p1 − p2)A∆L

= −F ∆L.

According to the first law we have

∆U = ∆Q−∆W = ∆Q−

∫

p dV −∆Wfree

= ∆Q−∆Wfree.

Because now ∆Q = 0, we have

∆U = −∆Wfree = F ∆L,

i.e. when the variables S, V and N are kept constant the
change of the internal energy is completely exhangeable
with the work. ∆U is then called free energy and U
thermodynamic potential. Note: If there are
irreversible processes in an isolated system (V and N
constants) then

∆Wfree ≤ −∆U.

If the system does no work, ∆U ≤ 0, i.e. the system
tends to minimize its internal energy.

2.3. Enthalpy
Using the Legendre transform

U → H = U − V

(

∂U

∂V

)

S,N

= U + pV

We move from the variables (S, V, N) to the variables
(S, p, N). The quantity

H = U + pV

is called enthalpy.
Now

dH = dU + p dV + V dp

= T dS − p dV + µ dN + p dV + V dp

or
dH = T dS + V dp + µ dN.

From this we can read the partial derivatives

T =

(

∂H

∂S

)

p,N

V =

(

∂H

∂p

)

S,N

µ =

(

∂H

∂N

)

S,V

.

Corresponding Maxwell relations are
(

∂T

∂p

)

S,N

=

(

∂V

∂S

)

p,N
(

∂T

∂N

)

S,p

=

(

∂µ

∂S

)

p,N
(

∂V

∂N

)

S,p

=

(

∂µ

∂p

)

S,N

.

In an irreversible process one has

∆Q = ∆U + ∆W − µ ∆N < T ∆S.

Now ∆U = ∆(H − pV ), so that

∆H < T ∆S + V ∆p + µ ∆N.

We see that
In a process where S, p and N are constant spontaneous
changes lead to the minimum of H, i.e. in an equilibrium
of a (S, p, N)-system the enthalpy is at the minimum.
The enthalpy is a suitable potential for an isolated system
in a pressure bath (p is constant). Let us look at an
isolated system in a pressure bath. Now

dH = dU + d(pV )

and
dU = d̄Q−d̄W + µ dN.

Again we partition the work into two components:

d̄W = p dV +d̄Wfree.

Now
dH = d̄Q + V dp−d̄Wfree + µ dN

and for a finite process

∆H ≤

∫

T dS +

∫

V dp−∆Wfree +

∫

µ dN.

When (S, p, N) is constant one has

∆H ≤ −∆Wfree

9



i.e. ∆Wfree is the minimum work required for the change
∆H .
Note: Another name of enthalpy is heat function (in
constant pressure).

Joule-Thomson phenomenon
Flow of gas through a porous wall (“choke”):

c h o k e

p 1V 1

D Q = 0

p1 and p2 are constant (in time), p1 > p2 and the process
irreversible. When a differential amount of matter passes
through the choke the work done by the system is

d̄W = p2dV2 + p1dV1.

V1 V2

Initial state Vinit 0
Final state 0 Vfinal

The work done by the system is

∆W =

∫

d̄W = p2Vfinal − p1Vinit.

According to the first law we have

∆U = Ufinal − Uinit = ∆Q−∆W = −∆W,

so that
Uinit + p1Vinit = Ufinal + p2Vfinal.

Thus in this process the enthalpy H = U + pV is
constant, i.e. the process is isenthalpic,

∆H = Hfinal −Hinitial = 0.

We consider now a reversible isenthalpic (and dN = 0)
process init→final. Here

dH = T dS + V dp = 0,

so

dS = −
V

T
dp. (∗)

Now T = T (S, p), so that

dT =

(

∂T

∂S

)

p

dS +

(

∂T

∂p

)

S

dp.

On the other hand
(

∂T

∂S

)

p

=
T

Cp
,

where Cp is the isobaric heat capacity (see
thermodynamical responses). Using the Maxwell relation

(

∂T

∂p

)

S

=

(

∂V

∂S

)

p

and the partial derivative relation

(

∂V

∂S

)

p

=

(

∂T
∂S

)

p
(

∂T
∂V

)

p

we can write

dT =
T

Cp
dS +

T

Cp

(

∂V

∂T

)

p

dp.

Substituting into this the differential dS in constant
enthalpy (∗) we get so called Joule-Thomson coefficients

(

∂T

∂p

)

H

=
T

Cp

[

(

∂V

∂T

)

p

−
V

T

]

.

Defining the heat expansion coefficient αp so that

αp =
1

V

(

∂V

∂T

)

p

,

we can rewrite the Joule-Thomson coefficient as
(

∂T

∂p

)

H

=
V

Cp
(Tαp − 1).

We see that when the pressure decreases the gas

• cools down, if Tαp > 1.

• warms up, if Tαp < 1.

For ideal gases
(

∂T
∂p

)

H
= 0 holds. For real gases

(

∂T
∂p

)

H
is below the inversion temperature positive, so the gas
cools down.

2.4. Free energy
The Legendre transform

U → F = U − S

(

∂U

∂S

)

V,N

or
F = U − TS

defines the (Helmholtz) free energy.
Now

dF = −S dT − p dV + µ dN,

so the natural variables of F are T , V and N . We can
read the partial derivateves

S = −

(

∂F

∂T

)

V,N

p = −

(

∂F

∂V

)

T,N

µ =

(

∂F

∂N

)

T,V

.

From these we obtain the Maxwell relations
(

∂S

∂V

)

T,N

=

(

∂p

∂T

)

V,N
(

∂S

∂N

)

T,V

= −

(

∂µ

∂T

)

V,N
(

∂p

∂N

)

T,V

= −

(

∂µ

∂V

)

T,N

.
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In an irreversible change we have

∆F < −S ∆T − p ∆V + µ ∆N,

i.e. when the variables T , V and N are constant the
system drifts to the minimum of the free energy.
Correspondingly

∆Wfree ≤ −∆F,

when (T, V, N) is constant.
Free energy is suitable for systems where the exchange of
heat is allowed; i.e. the control variables are T and V
(typically at constant N). Very useful quantity in physics!

2.5. Gibbs free energy
The Legendre transformation

U → G = U − S

(

∂U

∂S

)

V,N

− V

(

∂U

∂V

)

S,N

defines the Gibbs function or the Gibbs free energy

G = U − TS + pV.

Its differential is

dG = −S dT + V dp + µ dN,

so the natural variables are T , p and N . For the partial
derivatives we can read the expressions

S = −

(

∂G

∂T

)

p,N

V =

(

∂G

∂p

)

T,N

µ =

(

∂G

∂N

)

T,p

.

From these we obtain the Maxwell relations
(

∂S

∂p

)

T,N

= −

(

∂V

∂T

)

p,N
(

∂S

∂N

)

T,p

= −

(

∂µ

∂T

)

p,N
(

∂V

∂N

)

T,p

=

(

∂µ

∂p

)

T,N

.

In an irreversible process

∆G < −S ∆T + V ∆p + µ ∆N,

holds, i.e. when the variables T , p and N stay constant
the system drifts to the minimum of G.
Correspondingly

∆Wfree ≤ −∆G,

when (T, p, N) is constant.
The Gibbs function is suitable for systems which are
allowed to exchange mechanical energy and heat in heat-
and pressure baths.

2.6. Grand potential
The Legendre transform

U → Ω = U − S

(

∂U

∂S

)

V,N

−N

(

∂U

∂N

)

S,V

defines the grand potential

Ω = U − TS − µN.

Its differential is

dΩ = −S dT − p dV −N dµ,

so the natural variables are T , p andµ.
The partial derivatives are now

S = −

(

∂Ω

∂T

)

p,µ

p = −

(

∂Ω

∂V

)

T,µ

N = −

(

∂Ω

∂µ

)

T,V

.

We get the Maxwell relations

(

∂S

∂V

)

T,µ

=

(

∂p

∂T

)

V,µ
(

∂S

∂µ

)

T,V

=

(

∂N

∂T

)

V,µ
(

∂p

∂µ

)

T,V

=

(

∂N

∂V

)

T,µ

.

In an irreversible process

∆Ω < −S ∆T − p ∆V −N ∆µ,

holds, i.e. when the variables T , V andµ are kept
constant the system moves to the minimum of Ω.
Correspondingly

∆Wfree ≤ −∆Ω,

when (T, V, µ) is constant.
The grand potential is suitable for systems that are
allowed to exchange heat and particles.

Bath
A bath is an equilibrium system, much larger than the
system under consideration, which can exchange given
extensive property with our system.
Pressure bath

F
D V

The exchanged property is the volume or a corresponding
generalized displacement; for example magnetization in a
magnetic field.
Heat bath

11



T
T
D Q
D S

Particle bath

m

m

D N

D S

Baths can also be combined; for example a suitable
potential for a pressure and heat bath is the Gibbs
function G.

2.7. Thermodynamic response functions
Response functions are thermodynamic quantities most
accessible to experiment. They give us information about
how a specific state variable changes as other independent
state variables are changed. They can be classfied as
mechanical (compressbility, susceptibility) and thermal
(heat capacity) responses.

1) Heat expansion coefficient

αp =
1

V

(

∂V

∂T

)

p,N

or

αp = −
1

ρ

(

∂ρ

∂T

)

p,N

,

where ρ = N/V .

2) Isothermal compressibility

κT = −
1

V

(

∂V

∂p

)

T,N

=
1

ρ

(

∂ρ

∂p

)

T,N

3) Adiabatic compressibility

κS = −
1

V

(

∂V

∂p

)

S,N

=
1

ρ

(

∂ρ

∂p

)

S,N

.

The velocity of sound depends on the adiabatic
compressibility like

cS =

√

1

mρκS
,

where m the particle mass.
One can show that

κT = κS + V T
α2

p

Cp
.

4) Isochoric heat capacity
Heat capacity C is a measure of the amount of heat
needed to raise the temperature of a system by a given
amount.
In a reversible process we have

∆Q = T ∆S.

The heat capacity C is defined so that

C =
∆Q

∆T
= T

∆S

∆T
.

Keeping volume and N constant, we define

CV = T

(

∂S

∂T

)

V,N

.

Now, according to the first law at constant N ,V

dU = T dS − p dV + µ dN = T dS.

Using S = −(∂F/∂T )V,N , we can write

CV =

(

∂U

∂T

)

V,N

= −T

(

∂2F

∂T 2

)

V,N

5) Isobaric heat capacity

Cp = T

(

∂S

∂T

)

p,N

Because
dH = T dS + V dp + µ dN,

and using S = −(∂G/∂T )p,N , one can write

Cp =

(

∂H

∂T

)

p,N

= −T

(

∂2G

∂T 2

)

p,N

.

Relating response functions
Now

(

∂S

∂T

)

p

=

(

∂S (V (p, T ), T )

∂T

)

p

=

(

∂S

∂T

)

V

+

(

∂S

∂V

)

T

(

∂V

∂T

)

p

and (a Maxwell relation)

(

∂S

∂V

)

T

=

(

∂p

∂T

)

V

,

so

Cp = CV + T

(

∂p

∂T

)

V

(

∂V

∂T

)

p

.

Since
(

∂p

∂T

)

V

(

∂T

∂V

)

p

(

∂V

∂p

)

T

= −1

or
(

∂p

∂T

)

V

= −

(

∂V
∂T

)

p
(

∂V
∂p

)

T

=
αp

κT
,

so

Cp = CV + V T
α2

p

κT
.
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Thus, Cp > CV .

2.8. Thermodynamical equilibrium state
According to the 2nd law, the entropy of an isolated
equilibrium system must be at maximum. Thus, any local
fluctuation must cause the entropy to decrease; if it were
not so, the system could move to a new higher entropy
state, which cannot happen in an equilibrium system by
definition.
We divide the system into fictitious parts:

a p a ,  T a ,
V a ,  . . .

D U = D V = D N i = 0
Extensive variables satisfy

S =
∑

α

Sα

V =
∑

α

Vα

U =
∑

α

Uα

Nj =
∑

α

Njα.

Since each element is in equlibrium the state variables are
defined in each element, e.g.

Sα = Sα(Uα, Vα, {Njα})

and

∆Sα =
1

Tα
∆Uα +

pα

Tα
∆Vα −

µjα

Tα
∆Njα.

Let us assume that the system is composed of two parts:
α ∈ {A, B}. Then

∆UB = −∆UA, ∆VB = −∆VA and ∆NjB = −∆NjA

so

∆S =
∑

α

∆Sα

=

(

1

TA
−

1

TB

)

∆UA +

(

pA

TA
−

pB

TB

)

∆VA

−
∑

j

(

µjA

TA
−

µjB

TB

)

∆NjA.

In an equilibrium S is at its maximum, so ∆S = 0 and

TA = TB

pA = pB

µjA = µjB .

This is valid also when the system consists of several
phases.

2.9. Stability conditions of matter
In a steady equilibrium the entropy has the true
maximum so that small variations can only reduce the
entropy.
We again consider an isolated system divided into parts,
and denote the equilibrium values common for all
fictitious parts by the symbols T , p and {µj} and the
equilibrium values of other variables by the superscript 0.
In order to study the maximality of the entropy, the
entropy of the partial system α, Sα, needs to be expanded
into second order in {∆Uα, ∆Vα, ∆Njα}. We write Sα

close to an equilibrium as the Taylor series

Sα(Uα, Vα, {Njα}) = S0
α(U0

α, V 0
α , {N0

jα})

+

(

∂S

∂U

)0

V,N

∆Uα +

(

∂S

∂V

)0

U,N

∆Vα

+
∑

j

(

∂S

∂Nj

)0

U,V

∆Njα

+
1

2

{

∆

(

∂Sα

∂Uα

)0

V,N

∆Uα + ∆

(

∂Sα

∂Vα

)0

U,N

∆Vα

+
∑

j

∆

(

∂Sα

∂Njα

)0

U,V

∆Njα

}

+ · · · .

Here ∆Uα = Uα − U0
α and correspondingly for other

quantities. The variations of partial derivatives stand for

∆

(

∂Sα

∂Uα

)0

V,N

=

(

∂2S

∂U2

)0

V,N

∆Uα +

[

∂

∂V

(

∂S

∂U

)

V,N

]0

U,N

∆Vα

+
∑

j

[

∂

∂Nj

(

∂S

∂U

)

V,N

]0

U,V

∆Njα

and similarly for other partial derivatives.
The 1st order differentials drop out, because
∑

α ∆Uα = 0. Thus,

∆Sα =

1

2

{

∆

(

∂Sα

∂Uα

)0

V,N

∆Uα + ∆

(

∂Sα

∂Vα

)0

U,N

∆Vα

+
∑

j

∆

(

∂Sα

∂Njα

)0

U,V

∆Njα

}

.

This can be rewritten as

∆Sα =

1

2

{

∆

(

1

Tα

)

∆Uα + ∆

(

pα

Tα

)

∆Vα

−
∑

j

∆

(

µjα

Tα

)

∆Njα

}

.
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Using the first law we get

∆S =
1

2T

∑

α

{

−∆Tα∆Sα + ∆pα∆Vα

−
∑

j

∆µjα∆Njα

}

.

This can be further written as

∆S = −
1

2T

∑

α

{

CV

T
(∆Tα)2 +

1

κT V
[(∆Vα)2Nα

]

+

(

∂µ

∂N

)0

p,T

(∆Nα)2

}

,

where

(∆Vα)Nα
=

(

∂V

∂T

)0

N,p

∆Tα +

(

∂V

∂p

)0

N,T

∆pα.

Since ∆S ≤ 0, we must have

CV ≥ 0, κT ≥ 0,
∂µ

∂N
≥ 0.

The condition CV ≥ 0 is a condition for thermal stability:
if a small excess of heat energy is added to a volume
element of fluid, the temperature of the volume element
must increase.
The condition κT ≥ 0 is a condition for mechanical
stability: if a volume of a small fluid element (fixed N)
increases, the pressure must go down, so that the larger
pressure from the environment halts and reverses the
growth.
Likewise ∂µ

∂N ≥ 0 is a condition for chemical stability.
Recall that

CV = T

(

∂S

∂T

)

V,N

= −T

(

∂2F

∂T 2

)

V,N

> 0

Thus, F is a concave function of T .
Similarly,

1

κT
= −V

(

∂p

∂V

)

T,N

= V

(

∂2F

∂V 2

)

T,N

and F is a convex function of V .

3. Applications of thermodynamics

3.1. Classical ideal gas
For a full description of the thermodynamics of a system
we need to know both the equation of state and some
thermodynamic potential. EOS gives us mechanical
response functions, but for thermal response functions we
need also some potential.
From the ideal gas equation of state

pV = NkBT

we obtain directly the mechanical response functions

αp =
1

V

(

∂V

∂T

)

p,N

=
NkB

V p
=

1

T

κT = −
1

V

(

∂V

∂p

)

T,N

=
NkBT

V p2
=

1

p
.

Thermal response functions cannot be derived from the
equation of state. Empirically it has been observed

CV =
1

2
fkBN.

Here 1
2fkB is the specific heat capacity/molecule and f is

the number of degrees of freedom of the molecule.
Atoms/molecule f translations rotations

1 3 3 0
2 5 3 2

polyatomic 6 3 3
For real gases f = f(T, p), which is different from ideal
gas because of internal degrees of freedom (vibrations),
interactions between the molecules and quantum
mechanical effects.

Entropy
Entropy can be obtained from thermal and mechanical
response functions by integrating along the trajectory

V

TTT 0

S 0

SV

V 0

The differential is

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV

=
1

T
CV dT +

(

∂p

∂T

)

V

dV,

since according to Maxwell relations
(

∂S

∂V

)

T

=

(

∂p

∂T

)

V

.

Integrating we get

S = S0 +

∫ T

T0

dT
CV

T
+

∫ V

V0

dV
NkB

V

= S0 + CV ln
T

T0
+ NkB ln

V

V0
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or

S = S0 + NkB ln

[

(

T

T0

)f/2
V

V0

]

.

Note: A contradiction with the 3rd law: S → −∞, when
T → 0. 3rd law relies on the quantum nature of real
matter!

Internal energy
We substitute into the first law (N const.)

dU = T dS − p dV

the differential

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV,

and get

dU = CV dT +

[

T

(

∂S

∂V

)

T

− p

]

dV.

According to Maxwell relations and to the equation of
state we have

(

∂S

∂V

)

T

=

(

∂p

∂T

)

V

=
NkB

V
=

p

T
,

so
dU = CV dT

and

U = U0 + CV (T − T0) = U0 +
1

2
fkBN(T − T0).

If we choose U0 = CV T0, we get for the internal energy

U =
1

2
fNkBT.

Now

Cp = CV + V T
α2

p

κT

or

Cp = NkB

(

1

2
f + 1

)

or
Cp = γCV ,

where γ is the adiabatic constant

γ = Cp/CV = (f + 2)/f.

3.2. Free expansion of gas

V 1 D Q = D W = 0

In the process V1 → V2 and ∆Q = ∆W = 0, so ∆U = 0.
Process is irreversible.

a) Ideal gas

Now

U =
1

2
fkBTN,

so T1 = T2, because U1 = U2. The cange in the entropy is
thus

∆S = NkB ln
V2

V1
.

b) Real gas equation of state

The internal energy and the number of particles are
constant:

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV = 0 .

The Joule coefficient
(

∂T
∂V

)

U,N
characterizes the behaviour

of the gas during free expansion (cf. Joule-Thompson
coefficient):

(

∂T

∂V

)

U,N

= −

(

∂U
∂V

)

T
(

∂U
∂T

)

V

=
1

CV

(

p− T
αp

κT

)

.

Note that this is differential form (∂V ); with a finite
process one must integrate over differential changes.

3.3. Mixing entropy
Conside different gases A and B, separated by a partition:

A
T Ap A

B
T Bp B

We assume that initially pA = pB = p and TA = TB = T .
The partition is removed and the gases mix. The process
is irreversible is adiabatic so ∆Q = 0.
In a mixture of ideal gases every component satisfies the
state equation

pjV = NjkBT.

The concentration of the component j is

xj =
Nj

N
=

pj

p
,

where the total pressure p is

p =
∑

j

pj .

Method 1:
Each constituent gas expands to volume V . Since
pA = pB and TA = TB, we have Vj = V xj . The change in
the entropy is (see the free expansion of a gas)

∆S =
∑

j

NjkB ln
V

Vj

15



or
∆Smix = −NkB

∑

j

xj lnxj .

Now ∆Smix ≥ 0, since 0 ≤ xj ≤ 1.
Method 2:
For a process taking place in constant pressure and
temperature the Gibbs function is the suitable potential:

G = U − TS + pV

=
1

2
fkBTN − TS + pV = · · ·

= NkBT [φ(T ) + ln p] = Nµ(p, T ),

where

φ(T ) =
µ0

kBT
− ξ − (

f

2
+ 1) lnT.

Before mixing

G(b) =
∑

j

NjkBT [φj(T ) + ln p]

and after mixing

G(a) =
∑

j

NjkBT [φj(T ) + ln pj ],

so the change in the Gibbs function is

∆G(mix) = G(a) −G(b) =
∑

j

NjkBT ln
pj

p

=
∑

j

NjkBT lnxj .

Because

S = −

(

∂G

∂T

)

P,{Nj}

,

we get for the mixing entropy

∆Smix = S(a) − S(b) = −
∑

j

NjkB lnxj .

Gibbs’ paradox: If A ≡ B, i.e. the gases are identical no
changes take place in the process. However, according to
the former discussion, ∆S > 0. The reason is that in
classical ensemble the particles are distinguishable, and
mixing of A and B really happens. In quantum mechanics
this apparent contradiction is removed by employing
quantum statitics of identical particles.

3.4. Chemical reactions
Consider for example the chemical reaction

2 H2S + 3 O2
→
←2 H2O + 2 SO2.

In general the chemical reaction formula is written as

0 =
∑

j

νjMj .

Here νj ∈ I are the stochiometric coefficients and Mj

stand for the molecular species.

Example:

j A B C D
Mj H2S O2 H2O SO2

νj −2 −3 2 2

We define the degree of reaction ξ so that

dNj = νjdξ.

When ξ increments by one, one reaction of the reaction
formula from left to right takes place.
Convention: When ξ = 0 the reaction is as far left as it
can be. Then

ξ ≥ 0.

Let us assume that p and T remain constant during the
reaction. Then a suitable potential is the Gibbs function

G =
∑

j

µjNj .

Its differential is

dG =
∑

j

µjdNj = dξ
∑

j

νjµj .

We define

∆rG ≡

(

∂G

∂ξ

)

p,T

=
∑

j

νjµj .

∆rG is thus the change in the Gibbs function per one
reaction (often called the affinity).
Since (p, T ) is constant G has a minimum at equilibrium.
The equilibrium condition is thus

∆rG
eq =

∑

j

νjµ
eq
j = 0.

In a nonequilibrium dG/dt < 0, so if ∆rG > 0 we must
have dξ/dt < 0, i.e. the reaction proceeds to left and vice
versa. Let us assume that the components obey the ideal
gas equation of state. Then

µj = kBT [φj(T ) + ln p + lnxj ],

where pj = xjp is the partial pressure of component j and

φj(T ) =
µ0

j

kBT
− ηj − (1 +

1

2
fj) lnT.

So

∆rG = kBT
∑

j

νjφj(T ) + kBT ln
(

p
∑

νj

∏

x
νj

j

)

.

The equilibrium condition can now be written as

∏

j

x
νj

j = p
−

∑

j
νj K(T ),

where

K(T ) = e
−

∑

j
νjφj(T )
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is the equilibrium constant of the reaction, which depends
only on T . The equilibrium condition is historically called
the law of mass action.
For the reaction above

x2
Cx2

D

x2
Ax3

C

= pK(T ).

The heat of reaction is the change of heat energy ∆rQ per
one reaction to right. A reaction is

• Endothermic, if ∆rQ > 0 i.e. the reaction takes heat.

• Exothermic, if ∆rQ < 0 i.e. the reaction releases
heat.

We write ∆rG as

∆rG = −kBT lnK(T ) + kBT
∑

j

νj ln pxj .

Now

∆Q = ∆U + ∆W = ∆U + p ∆V = ∆(U + pV )

= ∆H,

since ∆p = 0. When the total amount matter is constant

dG = −S dT + V dp

holds in a reversible process and

d

(

G

T

)

=
1

T
dG−

G

T 2
dT = −

(

G

T 2
+

S

T

)

dT +
V

T
dp

= −
H

T 2
dT +

V

T
dp,

because G = H − TS. We see that

H = −T 2

[

∂

∂T

(

G

T

)]

p,N

.

Now
∂

∂T

(

∆rG

T

)

= −kB
d

dT
lnK(T ),

so that

∆rH = kBT 2 d

dT
lnK(T ).

This expression is known as the heat of reaction.

3.5. Phase equilibrium
In a system consisting of several phases the equilibrium
conditions for each pair (A and B) of phases are

TA = TB = T

pA = pB = p

µjA = µjB , j = 1, . . . , H, (∗)

where H is the number of particle species in the system.
Let us assume that the number of phases is F , so for each
species there are F − 1 independent conditions (∗). Now
µiα = µiα(p, T, {Njα}). Because the chemical potential is

an intensive quantity it depends only on relative
fractions, so

µjα = µjα(p, T, x1α, . . . , xH−1,α),

and the conditions (∗) take the form

µ1A(p, T, x1A, . . . , xH−1,A) =

µ1B(p, T, x1B, . . . , xH−1,B)

...

µHA(p, T, x1A, . . . , xH−1,A) =

µHB(p, T, x1B, . . . , xH−1,B).

There are

• M = (H − 1)F + 2 variables,

• Y = H(F − 1) equations.

The simultaneous equations can have a solution only if
M ≥ Y or

F ≤ H + 2.

This condition is know as the Gibbs phase rule.
For pure matter the equilibrium condition

µA(p, T ) = µB(p, T )

defines in the (p, T )-plane a coexistence curve. If the
phase B is in equilibrium with the phase C we get
another curve

µB(p, T ) = µC(p, T ).

The phases A, B can C can be simultaneously in
equilibrium in a crossing point, so called triple point, of
these curves.

3.6. Phase transitions
In a phase transition the chemical potential

µ =

(

∂G

∂N

)

p,T

is continuous. Instead

S = −

(

∂G

∂T

)

p

and

V =

(

∂G

∂p

)

T

are not necessarily continuous.
A transition is of first order, if the first order derivatives
(S, V ) of G are discontinuous, and of second order, if the
1st order derivatives are continuous but 2nd order
discontinuous. Otherwise the transition is continuous.

T

p

m 1 = m 2
1 2
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In a first order transition from a phase 1 to a phase 2

∆S = −

(

∂G

∂T

)(2)

p

+

(

∂G

∂T

)(1)

p

∆V =

(

∂G

∂p

)(2)

T

−

(

∂G

∂p

)(1)

T

.

When we cross a coexistence curve p and T stay constant,
so

∆Q = T ∆S = ∆U + p ∆V = ∆(U + pV )

= ∆H.

∆Q is called the phase transition heat or the latent heat.
Note: First order transitions have non-zero latent heat
but not the higher order ones.
Typical phase diagram of solid-liquid-gas -system: lines
are 1st order transitions, critical point is 2nd order.
(triple point is 1st order).
Water: pT = 610Pa, TT = 0.01◦C;
pc = 22 MPa, Tc = 374.15◦C.

T

p

gas

liquid

solid
critical
point

triple
point

p

V

liquid

gas

critical
point

triple
point

solid

coexistence

const T isotherm

Because of phase coexistence, phase diagrams are simplest
in “force”-type coordinates (T, p, µ, ~H, . . .).

3.7. Phase coexistence
T

p

1 2

c o e x i s t e n c e
c u r v e

On the coexistence curve

G1(p, T, N) = G2(p, T, N)

and
dG = −S dT + V dp

when the number of particles N is constant. Along the
curve

G1(p + dp, T + dT, N) = G2(p + dp, T + dT, N),

so that
−S1dT + V1dp = −S2dT + V2dp

or on the curve

dp

dT
=

S2 − S1

V2 − V1
=

∆S

∆V
=

T−1∆H

∆V

and we end up with the Clausius-Clapeyron equation

(

dp

dT

)

coex

=
1

T

∆H

∆V
.

Here ∆H = H2 −H1 and ∆V = V2 − V1.

Examples

a) Vapour pressure curve

s o l i d f l u i d

p

T

v a p o rT
t r i p l e  p o i n t

C
c r i t i c a l
p o i n t

f u s i o n  c u r v e

s u b l i m a t i o n
c u r v e v a p o r  p r e s s u r e

c u r v e

We consider the transition

liquid→ vapour.

Assuming ideal gas we have

∆V = Vv =
NkBT

p
,

because Vl(iquid) ≪ Vv(apor), and

(

dp

dT

)

coex

=
∆Hlvp

NkBT 2
.

If the vapourization heat (the latent heat) ∆Hlv is
roughly constant on the vapour pressure curve we can
integrate

p = p0e
−∆Hlv/NkBT .

(this assumption is not true near crit. point!)

b) Fusion curve

Now
∆Vls = Vl(iquid) − Vs(olid)

can be positive or negative (for example H2O).
According to the Clausius-Clapeyron equation

dp

dT
=

∆Hls

T ∆Vls

we have

dp
dT > 0, if ∆Vls > 0 1)

dp
dT < 0, if ∆Vls < 0 2) .

p

T

s o l i d f l u i d
d p
d T > 01 )

p

T

s o l i d
f l u i d
d p
d T < 02 )
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We see that when the pressure is increased in constant
temperature the system

1) drifts ”deeper” into the solid phase,

2) can go from the solid phase to the liquid phase.

c) Sublimation curve

Now

dH = T dS + V dp = CpdT + V (1− Tαp) dp,

because S = S(p, T ) and using Maxwell relations and
definitions of thermodynamic response functions

dS =

(

∂S

∂p

)

T

dp +

(

∂S

∂T

)

p

dT = −

(

∂V

∂T

)

p

dp +
Cp

T
dT.

The vapour pressure is small so dp ≈ 0, and

Hs = H0
s +

∫ T

0

Cs
pdT solid phase

Hv = H0
v +

∫ T

0

Cv
p dT vapour (gas).

Let us suppose that the vapour satisfies the ideal gas
state equation. Then

∆Vvs =
NkBT

p
− Vs ≈

NkBT

p
,

so
dp

dT
=

∆Hvs

T ∆Vvs
≈

p ∆Hvs

NkBT 2
,

where ∆Hvs = Hs −Hv. For a monatomic ideal gas
Cp = 5

2kBN , and

ln
p

p0
= −

∆H0
vs

NkBT
+

5

2
lnT−

1

kBN

∫

∫ T

0 Cs
pdT ′

T 2
dT+constant.

Here ∆H0
vs is the sublimation heat at vanishing

temperature and pressure.

Coexistence range

C
p

V

i s o t h e r m s
u n d e r c o o l e d

o v e r h e a t e d

B A

Matter is mechanically stable only if dV
dp < 0. Thus the

range of stability lies outside of the points A and B.
Overheated liquid and undercooled vapour are metastable
(supercooling, -heating).
According to the Gibbs-Duheim relation (consider dG!)

dµ = −
S

N
dT +

V

N
dp

we have along isotherms

dµ =
V

N
dp.

Thus, when the phases A and B are in equilibrium,

µA − µB =

∫ B

A

V

N
dp = 0.

I I
IB A

p

V

i s o t h e r m

In many equations of state the phase transition happens
when there is apparent instability dp/dV > 0 (for
example, van der Waals). In this case, we can use
Maxwell’s construction: The points A and B have to be
chosen so that the area I = area II.
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