
Foundations of thermodynamics

Fundamental thermodynamical concepts

System is the macrophysical entity under consideration.

Surrounding is the world outside of the system.

Open system can exchange matter and heat with the
surrounding.

Closed system can exchange heat with the surrounding
while keeping the number of particles constant.

Isolated system can exchange neither matter nor heat
with the surrounding.

Thermodynamical equilibrium

• No macroscopical changes.

• Uniquely described by external variables of state.

• System forgets its past; no hysteresis.

• In global equilibrium all parts of the system are in the
same state.

Nonequilibrium

• For example, isolated systems each in an equilibrium
state.

• In a local thermodynamical equilibrium
semimicroscopical regions are in an equilibrium,
neighbour regions in different equilibria ⇒ particles,
heat . . . will flow.

• From stronger nonequilibria the system usually
relaxes to a local equilibrium.

Degree of freedom is the number of quantities needed
for the exact description of the microscopic state (∝
number of particles).

State variables are parameters characterizing the
macroscopic state.

Extensive variable is proportional to the quantity
of the substance; e.g. volume V , particle
number N , internal energy U , entropy S,
magnetization M =

∫
drm, where m is

magnetic moment/volume.

Intensive variable is independent on the quantity
of the substance and can be determined for
every semimicroscopical volume element ∆V ;
e.g. temperature T , pressure p, chemical
potential µ, magnetic field H, ratios of
extensive varialbles like ρ = N/V , s = S/N, . . ..

Conjugated variables A and B appear in pairs in
expressions for the differential of the energy, i.e.
in forms ±A dB or ±B dA; the one is always
extensive and the other intensive.

Process is a change in the state.

Reversibel process advances via states
infinitesimally close to equilibrium,
quasistatically. The direction of a reversible
process can be reversed by infinitesimal changes
of external variables.

Isothermic process : T constant.
Isobaric process : p constant.
Isochoric process : V constant.
Isentropic or adiabatic process: S constant.

Irreversibel process is a sudden or spontaneous
change during which the system is far from
equilibria. In the intermediate steps global state
variables (p, T , . . .) are not usually defined.

Cyclic process consists of cycles which take the
system every time to its initial state.

State variables and exact differentials
Let us suppose that, for example, T , V ja N tell uniquely
the state of the system. State variables are then their
unique functions:

p = p(T, V, N)
U = U(T, V,N)
S = S(T, V, N).

In an infinitesimal change state variables transform like

dp =
(

∂p

∂T

)

V,N

dT +
(

∂p

∂V

)

T,N

dV +
(

∂p

∂N

)

T,V

dN

...

The differentials of unique functions,
dp, dT , dV , . . ., are exact differentials: their total change
evaluated over a closed path vanishes:

1 = 2

∮

1→2

dp =
∮

1→2

dU = · · · = 0.

The total change of an exact differential is independent
on the path of integration.
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∫

a

dU −
∫

b

dU = 0,

so

U(2) = U(1) +
∫ 2

1

dU.

Let us denote by d̄F a differential which is not necessarily
exact. The differential

d̄F = F1(x, y) dx + F2(x, y) dy

is exact if
∂F1

∂y
=

∂F2

∂x
.

Then ∃F (x, y) so that F1(x, y) = ∂F (x,y)
∂x and

F2(x, y) = ∂F (x,y)
∂y and

∫ 2

1

d̄F = F (2)− F (1)

is independent on the path. We say that d̄F = dF is
integrable.
If d̄F = F1dx + F2dy is not exact, there exists an
integrating factor λ(x, y) so that in the neighbourhood of
the point (x, y)

λd̄F = λF1dx + λF2dy = df

is an exact differential.
Legendre transformations can be used to make changes in
the set of the indepependent state variables. For example,
let us look at the function f(x, y) of two variables. We
denote

z = fy =
∂f(x, y)

∂y

and define the function

g = f − yfy = f − yz.

Now

dg = df − y dz − z dy = fxdx + fydy − y dz − z dy
= fxdx− y dz.

Thus we can take x and z as independent variables of the
function g, i.e. g = g(x, z). Obviously

y = −∂g(x, z)
∂z

.

Corresponding to the Legendre transformation f → g
there is the inverse transformation g → f

f = g − zgz = g + yz.

Often needed identities

Let F = F (x, y), x = x(y, z), y = y(x, z) and z = z(x, y).
Then (

∂F

∂x

)

z

=
(

∂F

∂x

)

y

+
(

∂F

∂y

)

x

(
∂y

∂x

)

z

−1 =
(

∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

(
∂x

∂y

)

z

=

(
∂F
∂y

)
z(

∂F
∂x

)
z

.

Equations of state
State variables of an equilibrium system are related by a
state equation which, in most cases, is a relation between
thermal variables (T or S) and mechanical variables.
Examples:

Classical ideal gas

pV = NkBT

N = number of molecules
kB = 1.3807 · 10−23J/K = Boltzmann constant.

Chemists use often the form

pV = nRT

n = N/N0 = number of moles
R = kBN0 = 8.315J/K mol

= gas constant
N0 = 6.0221 · 1023 = Avogadro’s number.

If the gas is composed of m different species of molecules
the equation of state is still

pV = NkBT,

where now

N =
m∑

i=1

Ni

and
p =

∑

i

pi.

Here
pi = NikBT/V

is the partial pressure of the i:th gas.

Virial expansion of real gases

p = kBT
[
ρ + ρ2B2(T ) + ρ3B3(T ) + · · ·] ,

where
ρ = N/V = particle density

and Bn is the n:th virial coefficient.

Van der Waals equation
The molecules of real gases interact
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• repulsively at short distances; every particle needs at
least the volume b ⇒ V >∼Nb.

• attractively at large distances due to the induced
dipole momenta. The pressure decreases when two
particles are separated by the attraction distance.
The probability of this is ∝ (N/V )2.

We improve the ideal gas state equation

p′V ′ = NkBT

so that

V ′ = V −Nb

p = p′ − aρ2 = true pressure.

then
(p + aρ2)(V −Nb) = NkBT.

Solid substances
The thermal expansion coefficient

αp =
1
V

(
∂V

∂T

)

p,N

and the isothermal compressibility

κT = − 1
V

(
∂V

∂p

)

T,N

of solid materials are very small, so the Taylor series

V = V0(1 + αpT − κT p)

is a good approximation.
Typically

κT ≈ 10−10/Pa
αp ≈ 10−4/K.

Stretched wire
Tension [N/m2]

σ = E(t)(L− L0)/L0,

where L0 is the length of the wire when σ = 0 and E(t) is
the temperature dependent elasticity coefficient.

Surface tension

σ = σ0

(
1− t

t′

)n

t = temperature ◦C
t′ and n experimental constants,

1<∼n<∼2
σ0 = surface tension when t = 0◦C.

Electric polarization
When a piece of material is in an external electric field E,
we define

D = ε0E + P,

where

P = electric polarization
= atomic total dipole moment/volume

D = electric flux density
ε0 = 8.8542 · 10−12As/Vm

= vacuum permeability.

In homogenous dielectric material one has

P =
(

a +
b

T

)
E,

where a and b are almost constant and a, b ≥ 0.

Curie’s law
When a piece of paramagnetic material is in magnetic
field H we write

B = µ0(H + m),

where

m = magnetic polarization
= atomic total magnetic moment/volume

B = magnetic flux density
µ0 = 4π · 10−7Vs/Am = vacuum permeability.

Polarization obeys roughly Curie’s law

m =
ρC

T
H,

where ρ is the number density of paramagnetic atoms and
C an experimental constant related to the individual
atom.
Note Use as a thermometer: measure the quantity m/H.

0th law
If each of two bodies is separately in thermal equilibrium
with a third body then they are also in thermal
equilibrium with each other ⇒ there exists a property
called temperature and thermometer which can be used to
measure it.

Work
Work is exchange of such ”noble” energy that can be
completely transformed to some other noble form of
energy; e.g. mechanical and electromagnetic energy.
Sign convention: work ∆W is the work done by the
system to its surrounding.
Example pV T system

∆W = p ∆V.
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Note d̄W is not an exact differential. Instead

1
p
d̄W = dV

is exact, i.e, 1/p is the integrating factor for work.
Example

d̄W = p dV − σA dL−E · dP−H · dM.

In general
d̄W =

∑

i

fidXi = f · dX,

where fi is a component of a generalized force and Xi a
component of a generalized displacement.

1st law
In addition to work a system can exchange thermal
energy, i.e. heat with its surroundings. Thermal energy is
related to the energy of the thermal stochastic motion of
microscopic particles.
The total energy of a body is called internal energy.
Sign conventions:

'

&

$

%

´
´

´
´

+́

∆Q

-∆W

Q
Q

Q
Q

Qk

µ ∆N
chemical energy

Due to the energy conservation law the change of the
internal energy satisfies

dU =d̄Q− f · dX +
∑

i

µidNi.

U is a state variable, i.e. dU is exact.
In a cyclic process

∮
dU = 0, so ∆W = ∆Q (no change in

chemical energy). In a pV T -system

6p

-
V

'

&

$

%

-

¾

¤
¤
¤¤²

∆Q+

-∆W =
∮

p dV

Q
Q

Qs∆Q−

The total change of heat is

∆Q = ∆Q+ + ∆Q−,

where ∆Q+ is the heat taken by the system and ∆Q− the
heat released by the system.
The efficiency η is

η =
∆W

∆Q+
=

∆Q+ + ∆Q−

∆Q+
= 1− |∆Q−|

|∆Q+| .

2nd law

(a) Heat cannot be transferred from a cooler heat
reservoir to a warmer reservoir without any other
consequences.

(b) In a cyclic process it is not possible to convert all
heat taken from the hotter heat reservoir to work.

(c) It is not possible to reverse the evolution of a system
towards thermodynamical equilibrium without
converting work to heat.

(d) The change of the total entropy of the system and its
surroundings is positive and can be zero only in
reversible processes.

(e) Of all the engines working between the temperatures
T1 and T2 the Carnot engine has the highest
efficiency.

We consider the infinitesimal process

6y

-
x

'

1
U(1)t

2

U(2)t
C
CW
d̄Q

Now
d̄Q = dU +d̄W = dU + f · dX,

so there exists an integrating factor 1/T so that

1
T

d̄Q = dS

is exact. The state variable S is entropy and T turns out
to be the so called absolute temperature.
The second law (d) can now be written as

dStot

dt
≥ 0.
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For arbitrary processes we have

dS ≥ 1
T

d̄Q,

where the equality holds only for reversible processes.
For reversible processes the first law can be rewritten as

dU =d̄Q−d̄W + µ dN = T dS − p dV + µ dN.

Carnot’s cycle
The Carnot cycle C consists of reversible processes

a) isothermic T2 ∆Q2 > 0
b) adiabatic T2 → T1 ∆Q = 0
c) isothermic T1 ∆Q1 > 0
d) adiabatic T1 → T2 ∆Q = 0

Now ∆U = 0, so ∆W = ∆Q2 −∆Q1.
a

b
c

d
D Q 2

D Q 1

We define the efficiency as

η =
∆W

∆Q2
= 1− ∆Q1

∆Q2
.

Because the processes are reversible the cycle C can be
reversed and C works as a heat pump.
Let us consider two Carnot cycles A and B, for which

∆WA = ∆WB = ∆W.

A is an engine and B a heat pump. The efficiences are
correspondingly

ηA =
∆W

∆QA
and ηB =

∆W

∆QB
.

DQA

DQ -WA

A B
DW

DQB

DQ - WB D

T2

T >T2 1

T1

Let us suppose that

ηA > ηB,

so that ∆QB > ∆QA or ∆QB −∆QA > 0. The heat
would transfer from the cooler reservoir to the warmer
one without any other changes, which is in contradiction
with the second law (form a). So we must have

ηA ≤ ηB.

Similarly one can show that

ηB ≤ ηA,

so that ηA = ηB, i.e. all Carnot engines have the same
efficiency.
Note The efficiency does not depend on the realization of
the cycle (e.g. the working substance) ⇒ The efficiency
depends only on the temperatures of the heat reservoirs.
Similarly, one can show that the Carnot engine has the
highest efficiency among all engines (also irreversible)
working between given temperatures.
Let us consider Carnot’s cycle between temperatures T3

and T1. Now
η = 1− f(T3, T1),

where

f(T3, T1) =
∆Q1

∆Q3
.

T 3

T 2

T 1

D Q 3 D W 2 3D Q 2
D Q 2

D Q 1
D W 1 2

D Q 3
D W 1 3

D Q 1

Here

f(T3, T2) =
∆Q2

∆Q3

f(T2, T1) =
∆Q1

∆Q2

f(T3, T1) =
∆Q1

∆Q3

so
f(T3, T1) = f(T3, T2)f(T2, T1).

The simplest solution is

f(T2, T1) =
T1

T2
.

We define the absolute temperature so that

η = 1− T1

T2
.

The Carnot cycle satisfies
∮

d̄Q
T

= 0,

since ∫

a

d̄Q
T

=
∆Q2

T2

and ∫

c

d̄Q
T

= −∆Q1

T1
= −∆Q2

T2
.

This is valid also for an arbitrary reversible cycle
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C

C i

because ∮

C

d̄Q
T

=
∑

i

∮

Ci

d̄Q
T

= 0.

So
dS =

d̄Q
T

is exact and the entropy S is a state variable.
Because the Carnot cycle has the highest efficiency a
cycle containing irreversible processes satisfies

η
irr

= 1− ∆Q1

∆Q2
< η

Carnot
= 1− T1

T2

or
∆Q2

T2
− ∆Q1

T1
< 0.

Thus for an arbitrary cycle we have
∮

d̄Q
T
≤ 0, (∗)

where the equality holds only for reversible processes.
For an arbitrary process 1 → 2 the change of the entropy
can be obtained from the formula

∆S =
∫

rev

dS =
∫

rev

d̄Q
T

.

1

2i r r

r e v
According to the formula (∗) we have

∫

irr

d̄Q
T
−

∫

rev

d̄Q
T

< 0,

or
∆S >

∫

irr

d̄Q
T

.

This is usually written as

dS ≥ d̄Q
T

and the equality is valid only for reversible processes.
In an isolated system we have

∆S ≥ 0.

3rd law
Nernst’s law:

lim
T→0

S = 0.

A less strong form can be stated as:
When the maximum heat occuring in the process from a
state a to a state b approaches zero then also the entropy
change ∆Sa→b → 0.
Note There are systems whose entropy at low
temperatures is larger than true equilibria would allow.
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Thermodynamic potentials

Fundamental equation
According to the first law

dU = T dS − p dV + µ dN (∗)

S, V and N are the natural variables of the internal
energy U , i.e.

U = U(S, V,N).

Furthermore, from the law (∗) one can read the relations

(
∂U

∂S

)

V,N

= T

(
∂U

∂V

)

S,N

= −p

(
∂U

∂N

)

S,V

= µ.

(∗∗)
Now U , S, V and N are extensive so we have

U(λS, λV, λN) = λU(S, V, N) ∀λ. (∗ ∗ ∗)

Let S → S + εS, V → V + εV and N → N + εN , when ε
is infinitesimal. Then

U(S + εS, V + εV, n + εN) = U(S, V,N)+(
∂U

∂S

)

V,N

εS +
(

∂U

∂V

)

S,N

εV +
(

∂U

∂N

)

S,V

εN.

On the other hand, according to the equation (∗ ∗ ∗) we
have

U(S + εS, V + εV, N + εN) = U(S, V,N) + εU(S, V,N).

We end up with the Euler equation for homogenous
functions

U = S

(
∂U

∂S

)

V,N

+ V

(
∂U

∂V

)

S,N

+ N

(
∂U

∂N

)

S,V

.

Substituting the partial derivatives (∗∗) this takes the
form

U = TS − pV + µN

or
S =

1
T

(U + pV − µN).

This is called the fundamental equation.

Internal energy and Maxwell relations
Because

T =
(

∂U

∂S

)

V,N

and

p = −
(

∂U

∂V

)

S,N

,

so
∂T

∂V
=

∂

∂V

∂U

∂S
=

∂

∂S

∂U

∂V
= − ∂p

∂S
.

Similar relations can be derived also for other partial
derivatives of U and we get so called Maxwell’s relations

(
∂T

∂V

)

S,N

= −
(

∂p

∂S

)

V,N(
∂T

∂N

)

S,V

=
(

∂µ

∂S

)

V,N(
∂p

∂N

)

S,V

= −
(

∂µ

∂V

)

S,N

.

In an irreversible process

T ∆S > ∆Q = ∆U + ∆W,

so
∆U < T ∆S − p ∆V + µ ∆N.

If S, V and N stay constant in the process then the
internal energy decreases. Thus we can deduce that
In an equilibrium with given S, V and N the internal
energy is at the minimum.
We consider a reversible process in an isolated system

F
p 1

V 1

p 2

V 2

e q u i l i b r i u m  p o s i t i o n

D L

We partition ∆W into the components

∫
p dV =

[work due to the
change of the
volume

]

∆Wfree =

[work done by the
gas against the
force F

]
.

Now

∆Wfree = ∆W1 + ∆W2 = p1∆V1 + p2∆V2

= (p1 − p2)∆V1 = (p1 − p2)A ∆L

= −F ∆L.

According to the first law we have

∆U = ∆Q−∆W = ∆Q−
∫

p dV −∆Wfree

= ∆Q−∆Wfree.

Because now ∆Q = 0, we have

∆U = −∆Wfree = F ∆L,
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i.e. when the variables S, V and N are kept constant the
change of the internal energy is completely exhangeable
with the work. ∆U is then called free energy and U
thermodynamic potential.
Note If there are irreversible processes in an isolated
system (V and N constants) then

∆Wfree ≤ −∆U.

Enthalpy
Using the Legendre transform

U → H = U − V

(
∂U

∂V

)

S,N

= U + pV

We move from the variables (S, V, N) to the variables
(S, p,N). The quantity

H = U + pV

is called enthalpy.
Now

dH = dU + p dV + V dp
= T dS − p dV + µ dN + p dV + V dp

or
dH = T dS + V dp + µ dN.

From this we can read the partial derivatives

T =
(

∂H

∂S

)

p,N

V =
(

∂H

∂p

)

S,N

µ =
(

∂H

∂N

)

S,V

.

Corresponding Maxwell relations are
(

∂T

∂p

)

S,N

=
(

∂V

∂S

)

p,N(
∂T

∂N

)

S,p

=
(

∂µ

∂S

)

p,N(
∂V

∂N

)

S,p

=
(

∂µ

∂p

)

S,N

.

In an irreversible process one has

∆Q = ∆U + ∆W − µ ∆N < T ∆S.

Now ∆U = ∆(H − pV ), so that

∆H < T ∆S + V ∆p + µ ∆N.

We see that

In a process where S, p and N are constant spontaneous
changes lead to the minimum of H, i.e. in an equilibrium
of a (S, p, N)-system the enthalpy is at the minimum.
The enthalpy is a suitable potential for an isolated system
in a pressure bath (p is constant).
Let us look at an isolated system in a pressure bath. Now

dH = dU + d(pV )

and
dU =d̄Q−d̄W + µ dN.

Again we partition the work into two components:

d̄W = p dV +d̄Wfree.

Now
dH =d̄Q + V dp−d̄Wfree + µ dN

and for a finete process

∆H ≤
∫

T dS +
∫

V dp−∆Wfree +
∫

µ dN.

When (S, p, N) is constant one has

∆H ≤ −∆Wfree

i.e. ∆Wfree is the minimum work required for the change
∆H.
Note An other name of enthalpy is heat function (in
constant pressure).

Joule-Thomson phenomenon

choke

P

V
1

1

DQ=0

P

V
2

2

p1 and p2 are temporal constants, p1 > p2 and the process
irreversible. When an infinitesimal amount of matter
passes through the choke the work done by the system is

d̄W = p2dV2 + p1dV1.

V1 V2

Initial state Vinit 0
Final state 0 Vfinal

The work done by the system is

∆W =
∫

d̄W = p2Vfinal − p1Vinit.

According to the first law we have

∆U = Ufinal − Uinit = ∆Q−∆W = −∆W,

so that
Uinit + p1Vinit = Ufinal + p2Vfinal.
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Thus in this process the enthalpy H = U + pV is
constant, i.e. the process is isenthalpic,

∆H = Hfinal −Hinit = 0.

We consider now a reversibel isenthalpic (and dN = 0)
process init→final. Here

dH = T dS + V dp = 0,

so
dS = −V

T
dp. (∗)

Now T = T (S, p), so that

dT =
(

∂T

∂S

)

p

dS +
(

∂T

∂p

)

S

dp.

On the other hand
(

∂T

∂S

)

p

=
T

Cp
,

where Cp is the isobaric heat capacity (see
thermodynamical responses).
Using the Maxwell relation

(
∂T

∂p

)

S

=
(

∂V

∂S

)

p

and the partial derivative relation

(
∂V

∂S

)

p

=

(
∂T
∂S

)
p(

∂T
∂V

)
p

we can write

dT =
T

Cp
dS +

T

Cp

(
∂V

∂T

)

p

dp.

Substituting into this the differential dS in constant
enthalpy (∗) we get so called Joule-Thomson coefficients

(
∂T

∂p

)

H

=
T

Cp

[(
∂V

∂T

)

p

− V

T

]
.

Defining the heat expansion coefficient αp so that

αp =
1
V

(
∂V

∂T

)

p

,

we can rewrite the Joule-Thomson coefficient as
(

∂T

∂p

)

H

=
V

Cp
(Tαp − 1).

We see that when the pressure decreases the gas

• cools down, if Tαp > 1.

• warms up, if Tαp < 1.

For ideal gases
(

∂T
∂p

)
H

= 0 holds. For real gases
(

∂T
∂p

)
H

is below the inversion temperature positive, so the gas
cools down.

Free energy
The Legendre transform

U → F = U − S

(
∂U

∂S

)

V,N

or
F = U − TS

defines the (Helmholtz) free energy.
Now

dF = −S dT − p dV + µ dN,

so the natural variables of F are T , V and N . We can
read the partial derivateves

S = −
(

∂F

∂T

)

V,N

p = −
(

∂F

∂V

)

T,N

µ =
(

∂F

∂N

)

T,V

.

From these we obtain the Maxwell relations
(

∂S

∂V

)

T,N

=
(

∂p

∂T

)

V,N(
∂S

∂N

)

T,V

= −
(

∂µ

∂T

)

V,N(
∂p

∂N

)

T,V

= −
(

∂µ

∂V

)

T,N

.

In an irreversible change we have

∆F < −S ∆T − p ∆V + µ ∆N,

i.e. when the variables T , V and N are constant the
system drifts to the minimum of the free energy.
Correspondingly

∆Wfree ≤ −∆F,

when (T, V, N) is constant.
Free energy is suitable for systems where the exchange of
heat is allowed.

Gibbs’ function
The Legendre transformation

U → G = U − S

(
∂U

∂S

)

V,N

− V

(
∂U

∂V

)

S,N

defines the Gibbs function or the Gibbs free energy

G = U − TS + pV.

9



Its differential is

dG = −S dT + V dp + µ dN,

so the natural variables are T , p and N . For the partial
derivatives we can read the expressions

S = −
(

∂G

∂T

)

p,N

V =
(

∂G

∂p

)

T,N

µ =
(

∂G

∂N

)

T,p

.

From these we obtain the Maxwell relations
(

∂S

∂p

)

T,N

= −
(

∂V

∂T

)

p,N(
∂S

∂N

)

T,p

= −
(

∂µ

∂T

)

p,N(
∂V

∂N

)

T,p

=
(

∂µ

∂p

)

T,N

.

In an irreversible process

∆G < −S ∆T + V ∆p + µ ∆N,

holds, i.e. when the variables T , p and N stay constant
the system drifts to the minimum of G.
Correspondingly

∆Wfree ≤ −∆G,

when (T, p,N) is constant.
The Gibbs function is suitable for systems which are
allowed to exchange mechanical energy and heat.

Grand potential
The Legendre transform

U → Ω = U − S

(
∂U

∂S

)

V,N

−N

(
∂U

∂N

)

S,V

defines the grand potential

Ω = U − TS − µN.

Its differential is

dΩ = −S dT − p dV −N dµ,

so the natural variables are T , p andµ.
The partial derivatives are now

S = −
(

∂Ω
∂T

)

p,µ

p = −
(

∂Ω
∂V

)

T,µ

N = −
(

∂Ω
∂µ

)

T,V

.

We get the Maxwell relations
(

∂S

∂V

)

T,µ

=
(

∂p

∂T

)

V,µ(
∂S

∂µ

)

T,V

=
(

∂N

∂T

)

V,µ(
∂p

∂µ

)

T,V

=
(

∂N

∂V

)

T,µ

.

In an irreversible process

∆Ω < −S ∆T − p ∆V −N ∆µ,

holds, i.e. when the variables T , V and µ are kept
constant the system moves to the minimum of Ω.
Correspondingly

∆Wfree ≤ −∆Ω,

when (T, V, µ) is constant.
The grand potential is suitable for systems that are
allowed to exchange heat and particles.

Bath
A bath is an equilibrium system, much larger than the
system under consideration, which can exchange given
extensive property with our system.
Pressure heat

F
D V

The exchanged property is the volume or a corresponding
generalized displacement; for example magnetization in a
magnetic field.
Heat bath

T
T
D Q
D S

Particle path

m

m

D N

D S

Baths can also be combined; for example a suitable
potential for a pressure and heat bath is the Gibbs
function G.

Thermodynamic responses

1) Volume heat expansion coefficient

αp =
1
V

(
∂V

∂T

)

p,N

or

αp = −1
ρ

(
∂ρ

∂T

)

p,N

,
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where ρ = N/V .

2) Isothermic compressibility

κT = − 1
V

(
∂V

∂p

)

T,N

=
1
ρ

(
∂ρ

∂p

)

T,N

3) Adiabatic compressibility

κS = − 1
V

(
∂V

∂p

)

S,N

=
1
ρ

(
∂ρ

∂p

)

S,N

.

The velocity of sound depends on the adiabatic
compressibility like

cS =
√

1
mρκS

,

where m the particle mass.
One can show that

κT = κS + V T
α2

p

Cp
.

4) Isochoric heat capacity
In a reversible process we have

∆Q = T ∆S.

The heat capacity C is defined so that

C =
∆Q

∆T
= T

∆S

∆T
.

In constant volume we define

CV = T

(
∂S

∂T

)

V,N

.

In constant volume and the number particles being fixed,
according to the first law

dU = T dS − p dV + µ dN = T dS,

we can write

CV =
(

∂U

∂T

)

V,N

.

5) Isobaric heat capacity

Cp = T

(
∂S

∂T

)

p,N

Because
dH = T dS + V dp + µ dN,

one can write

Cp =
(

∂H

∂T

)

p,N

.

Now
(

∂S

∂T

)

p

=
(

∂S (V (p, T ), T )
∂T

)

p

=
(

∂S

∂T

)

V

+
(

∂S

∂V

)

T

(
∂V

∂T

)

p

and (a Maxwell relation)
(

∂S

∂V

)

T

=
(

∂p

∂T

)

V

,

so

Cp = CV + T

(
∂p

∂T

)

V

(
∂V

∂T

)

p

.

Since (
∂p

∂T

)

V

(
∂T

∂V

)

p

(
∂V

∂p

)

T

= −1

or (
∂p

∂T

)

V

= −
(

∂V
∂T

)
p(

∂V
∂p

)
T

=
αp

κT
,

so

Cp = CV + V T
α2

p

κT
.

Thermodynamic equilibrium conditions
We divide the system into fictitious semimicroscopic
parts:

a p a ,  T a ,
V a ,  . . .

D U = D V = D N i = 0
Extensive variables satisfy

S =
∑
α

Sα

V =
∑
α

Vα

U =
∑
α

Uα

Nj =
∑
α

Njα.

Since each element is in equlibrium the state variables are
defined in each element, e.g.

Sα = Sα(Uα, Vα, {Njα})
and

∆Sα =
1
Tα

∆Uα +
pα

Tα
∆Vα − µjα

Tα
∆Njα.

We suppose that the system is composed of two parts:
α ∈ {A, B}. Then

∆UB = −∆UA, ∆VB = −∆VA and ∆NjB = −∆NjA
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so

∆S =
∑
α

∆Sα

=
(

1
TA

− 1
TB

)
∆UA +

(
pA

TA
− pB

TB

)
∆VA

−
∑

j

(
µjA

TA
− µjB

TB

)
∆NjA.

In an equilibrium S is at its maximum, so ∆S = 0 and

TA = TB

pA = pB

µjA = µjB .

This is valid also when the system consists of several
phases.

Stability conditions of matter
In a steady equilibrium the entropy has the true
maximum so that small variations can only reduce the
entropy.
We denote the equilibrium values common for all
fictitious parts by the symbols T , p and {µj} and the
equilibrium values of other variables by the superscript 0.
We write the entropy Sα of the fictious partial system α
close to an equilibrium as the Taylor series

Sα(Uα, Vα, {Njα}) =
S0

α(U0
α, V 0

α , {N0
jα})

+
(

∂S

∂Uα

)0

V,N

∆Uα +
(

∂S

∂Vα

)0

U,N

∆Vα

+
∑

j

(
∂S

∂Njα

)0

U,V

∆Njα

+
1
2

{
∆

(
∂S

∂Uα

)0

V,N

∆Uα + ∆
(

∂S

∂Vα

)0

U,N

∆Vα

+
∑

j

∆
(

∂S

∂Njα

)0

U,V

∆Njα

}

+ · · · .

Here ∆Uα = Uα − U0
α and correspondingly for other

quantities. The variations of partial derivatives stand for

∆
(

∂S

∂Uα

)0

V,N

=

(
∂2S

∂U2

)0

V,N

∆Uα +

[
∂

∂V

(
∂S

∂U

)

V,N

]0

U,N

∆Vα

+
∑

j

[
∂

∂Nj

(
∂S

∂U

)

V,N

]0

U,V

∆Njα

and similarly for other partial derivatives.

In an equilibrium

(
∂S

∂U

)0

=
(

∂S

∂V

)0

=
(

∂S

∂Nj

)0

= 0,

so

∆Sα =

1
2

{
∆

(
∂S

∂Uα

)0

V,N

∆Uα + ∆
(

∂S

∂Vα

)0

U,N

∆Vα

+
∑

j

∆
(

∂S

∂Njα

)0

U,V

∆Njα

}
.

This can be rewritten as

∆Sα =

1
2

{
∆

(
1
Tα

)
∆Uα + ∆

(
pα

Tα

)
∆Vα

−
∑

j

∆
(

µjα

Tα

)
∆Njα

}
.

Using the first law we get

∆S =
1

2T

∑
α

{
−∆Tα∆Sα + ∆pα∆Vα

−
∑

j

∆µjα∆Njα

}
.

This can be further written as

∆S = − 1
2T

∑
α

{
CV

T
(∆Tα)2 +

1
κT V

[(∆Vα)2Nα
]

+
(

∂µ

∂N

)0

p,T

(∆Nα)2
}

,

where

(∆Vα)Nα =
(

∂V

∂T

)0

N,p

∆Tα +
(

∂V

∂p

)0

N,T

∆pα.

Since ∆S ≤ 0, we must have

CV ≥ 0, κT ≥ 0,
∂µ

∂N
≥ 0.
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Application of thermodynamics

Classical ideal gas
From the equation of state

pV = NkBT

we obtain the mechanical response functions

αp =
1
V

(
∂V

∂T

)

p,N

=
NkB

V p
=

1
T

κT = − 1
V

(
∂V

∂p

)

T,N

=
NkBT

V p2
=

1
p
.

Thermal response functions cannot be derived from the
equation of state. Empirically we have

CV =
1
2
fkBN.

Here 1
2fkB is the specific heat capacity/molecule and f is

the number of degrees of freedom of the molecule.
Atoms/molecule f translations rotations

1 3 3 0
2 5 3 2

poly 6 3 3
For real gases f = f(T, p).

Entropy

dS =
(

∂S

∂T

)

V

dT +
(

∂S

∂V

)

T

dV

=
1
T

CV dT +
(

∂p

∂T

)

V

dV,

since according to Maxwell relations
(

∂S

∂V

)

T

=
(

∂p

∂T

)

V

.

V

T
TT 0

S 0

SV

V 0

Integrating we get

S = S0 +
∫ T

T0

dT
CV

T
+

∫ V

V0

dV
NkB

V

= S0 + CV ln
T

T0
+ NkB ln

V

V0

or

S = S0 + NkB ln

[(
T

T0

)f/2
V

V0

]
.

Note A contradiction with the third law: S → −∞, when
T → 0.

Internal energy
We substitute into the firs law

dU = T dS − p dV

the differential

dS =
(

∂S

∂T

)

V

dT +
(

∂S

∂V

)

T

dV,

and get

dU = CV dT +
[
T

(
∂S

∂V

)

T

− p

]
dV.

According to a Maxwell relations and to the equation of
state we have

(
∂S

∂V

)

T

=
(

∂p

∂T

)

V

=
NkB

V
=

p

T
,

so
dU = CV dT

and

U = U0 + CV (T − T0) = U0 +
1
2
fkBN(T − T0).

If we choose U0 = CV T0, we get for the internal energy

U =
1
2
fkBNT.

Now

Cp = CV + V T
α2

p

κT

or

Cp = NkB

(
1
2
f + 1

)

or
Cp = γCV ,

where γ is the adiabatic constant

γ = Cp/CV = (f + 2)/f.

Free expansion of gas

V 1 D Q = D W = 0

In the process V1 → V2 and ∆Q = ∆W = 0, so ∆U = 0.
Process is irreversible.

a) Ideal gas

Now
U =

1
2
fkBTN,
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so T1 = T2, because U1 = U2. The cange in the entropy is
thus

∆S = NkB ln
V2

V1
.

b) Other material

The internal energy (and the number of particle) being
constant (dU = 0) we obtain from the expression

dU =
(

∂U

∂T

)

V

dT +
(

∂U

∂V

)

T

dV

for the Joule coefficient
(

∂T
∂V

)
U,N

the form

(
∂T

∂V

)

U,N

= −
(

∂U
∂V

)
T(

∂U
∂T

)
V

=
1

CV

(
p− T

αp

κT

)
.

Mixing entropy

A
T A
p A

B
T B
p B

Suppose that initially pA = pB = p and TA = TB = T .
The process is adiabatic so ∆Q = 0.
In a mixture of ideal gases every component satisfies the
state equation

pjV = NjkBT.

The concentration of the component j is

xj =
Nj

N
=

pj

p
,

where the total pressure p is

p =
∑

j

pj .

Way 1
Each constituent gas expands in turn into the volume V .
Since pA = pB and TA = TB , we have Vj = V xj . The
change in the entropy is (see the free expansion of a gas)

∆S =
∑

j

NjkB ln
V

Vj

or
∆Smix = −NkB

∑

j

xj ln xj .

Now ∆Smix ≥ 0, since 0 ≤ xj ≤ 1.
Way 2

For a process taking place in constant pressure and
temperature the Gibbs function is the suitable potential:

G = U − TS + pV

=
1
2
fkBTN − TS + pV = · · ·

= NkBT [φ(T ) + ln p] = Nµ(p, T ),

where

φ(T ) =
µ0

kBT
− ξ − (

f

2
+ 1) lnT.

Before mixing

G(b) =
∑

j

NjkBT [φj(T ) + ln p]

and after mixing

G(a) =
∑

j

NjkBT [φj(T ) + ln pj ],

so the change in the Gibbs function is

∆G(mix) = G(a) −G(b) =
∑

j

NjkBT ln
pj

p

=
∑

j

NjkBT ln xj .

Because

S = −
(

∂G

∂T

)

P,{Nj}
,

we get for the mixing entropy

∆Smix = S(a) − S(b) = −
∑

j

NjkB ln xj .

Gibbs’ paradox: If A ≡ B, i.e. the gases are identical no
changes take place in the process. However, according to
the former discussion, ∆S > 0. The contradiction can be
removed by employing quantum statitics of identical
particles.

Chemical reaction
Consider for example the chemical reaction

2H2S + 3O2
→←2H2O + 2 SO2.

In generall the chemical reaction formula is written as

0 =
∑

j

νjMj .

Here νj ∈ I are the stoichiometric coefficients and Mj

stand for the molecular species.
Example

j A B C D
Mj H2S O2 H2O SO2

νj −2 −3 2 2
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We define the degree of reaction ξ so that

dNj = νjdξ.

When ξ increments by one, one reaction of the reaction
formula from left to right takes place.
Convention: When ξ = 0 the reaction is as far left as it
can be. Then we always have

ξ ≥ 0.

We suppose that p and T are constant in the reaction.
Then a suitable potential is the Gibbs function

G = U − TS + pV =
∑

j

µjNj .

Its differential is

dG =
∑

j

µjdNj = dξ
∑

j

νjµj .

We define

∆rG ≡ ∆r ≡
(

∂G

∂ξ

)

p,T

=
∑

j

νjµj .

∆r is thus the change in the Gibbs function per one
reaction.
Since (p, T ) is constant G has a minimum at an
equilibrium. The equilibrium condition is thus

∆rG
eq =

∑

j

νjµ
eq
j = 0.

In a nonequilibrium dG/dt < 0, so if ∆r > 0 we must have
dξ/dt < 0, i.e. the reaction proceeds to left and vice versa.
We assume that the components obey the ideal gas
equation of state. Then

µj = kBT [φj(T ) + ln p + ln xj ],

where

φj(T ) =
µ0

j

kBT
− ηj − (1 +

1
2
fj) ln T.

So

∆rG = kBT
∑

j

νjφj(T ) + kBT ln
(
p
∑

νj
∏

x
νj

j

)
.

The equilibrium condition can now be written as
∏

j

x
νj

j = p
−

∑
j

νj K(T ),

where
K(T ) = e

−
∑

j
νjφj(T )

is the equilibrium constant of the reaction. The
equilibrium condition is called the law of mass action.
The reaction heat is the change of heat ∆rQ per one
reaction to right. A reaction is

• Endothermic, if ∆rQ > 0 i.e. the reaction takes heat.

• Exothermic, if ∆rQ < 0 i.e. the reaction releases
heat.

We write ∆rG as

∆rG = −kBT ln K(T ) + kBT
∑

j

νj ln pxj .

Now

∆Q = ∆U + ∆W = ∆U + p ∆V = ∆(U + pV )
= ∆H,

since ∆p = 0.
When the total amount matter is constant

dG = −S dT + V dp

holds in a reversible process and

d
(

G

T

)
=

1
T

dG− G

T 2
dT = −

(
G

T 2
+

S

T

)
dT +

V

T
dp

= − H

T 2
dT +

V

T
dp,

because G = H − TS. We see that

H = −T 2

[
∂

∂T

(
G

T

)]

p,N

.

Now
∂

∂T

(
∆rG

T

)
= −kB

d
dT

ln K(T ),

so that
∆rH = kBT 2 d

dT
ln K(T ).

This expression is known as the reaction heat.

Phase equilibrium
In a system consisting of several phases the equilibrium
conditions for each pair (A and B) of phases are

TA = TB = T

pA = pB = p

µjA = µjB , j = 1, . . . , H, (∗)
where H is the number of particle species in the system.
Let us assume that the number of phases is F , so for each
species there are F − 1 independent conditions (∗). Now
µiα = µiα(p, T, {Njα}). Because the chemical potential is
an intensive quantity it depends only on relative
fractions, so

µjα = µjα(p, T, x1α, . . . , xH−1,α),

and the conditions (∗) take the form

µ1A(p, T, x1A, . . . , xH−1,A) =
µ1B(p, T, x1B , . . . , xH−1,B)

...
µHA(p, T, x1A, . . . , xH−1,A) =

µHB(p, T, x1B , . . . , xH−1,B).

There are
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• M = (H − 1)F + 2 variables,

• Y = H(F − 1) equations.

The simultaneous equations can have a solution only if
M ≥ Y or

F ≤ H + 2.

This condition is known as the Gibbs phase rule.
For pure matter the equilibrium condition

µA(p, T ) = µB(p, T )

defines in the (p, T )-plane a coexistence curve. If the
phase B is in equilibrium with the phase C we get
another curve

µB(p, T ) = µC(p, T ).

The phases A, B can C can be simultaneously in
equilibrium in a crossing point, so called triple point, of
these curves.

Phase transitions
In a phase transition the chemical potential

µ =
(

∂G

∂N

)

p,T

is continuous. Instead

S = −
(

∂G

∂T

)

p

and

V =
(

∂G

∂p

)

T

are not necessarily continuous.
A transition is of first order, if the first order derivatives
(S, V ) of G are discontinuous and of second order, if the
second order derivatives are discontinuous. Otherwise the
transition is continuous

T

p

m 1 = m 2
1 2

In a first order transition from a phase 1 to a phase 2

∆S = −
(

∂G

∂T

)(2)

p

+
(

∂G

∂T

)(1)

p

∆V =
(

∂G

∂p

)(2)

T

−
(

∂G

∂p

)(1)

T

.

When we cross a coexistence curve p and T stay constant,
so

∆Q = T ∆S = ∆U + p ∆V = ∆(U + pV )
= ∆H.

∆Q is called the phase transition heat or the latent heat.
Note First order transitions are associated with the heat
of phase transitions but not the higher order transitions.

Coexistence
T

p

1 2

c o e x i s t e n c e
c u r v e

On the coexistence curve

G1(p, T, N) = G2(p, T, N)

and
dG = −S dT + V dp

when the number of particles N is constant. Along the
curve

G1(p + dp, T + dT, N) = G2(p + dp, T + dT, N),

so that
−S1dT + V1dp = −S2dT + V2dp

or on the curve

dp

dT
=

S2 − S1

V2 − V1
=

∆S

∆V
=

T−1∆H

∆V

and we end up with the Clausius-Clapeyron equation
(

dp

dT

)

coex

=
1
T

∆H

∆V
.

Here ∆H = H2 −H1 and ∆V = V2 − V1.

Examples

a) Vapor pressure curve

s o l i d f l u i d

p

T

v a p o rT
t r i p l e  p o i n t

C
c r i t i c a l
p o i n t

f u s i o n  c u r v e

s u b l i m a t i o n
c u r v e v a p o r  p r e s s u r e

c u r v e

We consider the transition

liquid → vapor.

Supposing that we are dealing with ideal gas we have

∆V = Vv =
NkBT

p
,

since
Vl(iquid) ¿ Vv(apor).
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Because the vaporization heat (the phase transition heat)
∆Hlv is roughly constant on the vapor pressure curve we
have

dp

dT
=

∆Hlvp

NkBT 2
.

Integration gives us

p = p0e
−∆Hlv/NkBT .

b) Fusion curve

Now
∆Vls = Vl(iquid) − Vs(olid)

can be positive or negative (for example H2O).
According to the Clausius-Clapeyron equation

dp

dT
=

∆Hls

T ∆Vls

we have
dp
dT > 0, if ∆Vls > 0 1)

dp
dT < 0, if ∆Vls < 0 2) .

p

T

s o l i d f l u i d
d p
d T > 01 )

p

T

s o l i d
f l u i d
d p
d T < 02 )

We see that when the pressure is increased in constant
temperature the system

1) drifts ”deeper” into the solid phase,

2) can go from the solid phase to the liquid phase.

c) Sublimation curve

Now

dH = T dS + V dp = CpdT + V (1− Tαp) dp,

since S = S(p, T ) and using Maxwell relations and
definitions of thermodynamic response functions

dS =
(

∂S

∂p

)

T

dp +
(

∂S

∂T

)

p

dT = −
(

∂V

∂T

)

p

dp +
Cp

T
dT.

The vapor pressure is small so dp ≈ 0, and

Hs = H0
s +

∫ T

0

Cs
pdT solid phase

Hv = H0
v +

∫ T

0

Cv
pdT vapor (gas).

Let us suppose that the vapor satisfies the ideal gas state
equation. Then

∆Vvs =
NkBT

p
− Vs ≈ NkBT

p
,

so
dp

dT
=

∆Hvs

T ∆Vvs
≈ p ∆Hvs

NkBT 2
,

where ∆Hvs = Hs −Hv.
For a mono atomic ideal gas Cp = 5

2kBN , so that

ln p = − ∆H0
vs

NkBT
+

5
2

ln T− 1
kBN

∫ ∫ T

0
Cs

pdT ′

T 2
dT+constant.

Here ∆H0
vs is the sublimation heat at 0 temperature and

pressure.

Coexistence range

C
p

V

i s o t h e r m s
u n d e r c o o l e d

o v e r h e a t e d

B A

Matter is mechanically stable only if dV
dp < 0. Thus the

range of stability lies outside of the points A and B.
Overheated liquid and undercooled vapor are metastable.
According to the Gibbs-Duhem relation

dµ = − S

N
dT +

V

N
dp

we have on an isotherm

dµ =
V

N
dp.

Thus, when the phases A and B are in equilibrium,

µA − µB =
∫ B

A

V

N
dp = 0.

I I
IB A

p

V

i s o t h e r m

Maxwell’s construction: The points A and B have to be
chosen so that the area I = area II.
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