
Classical phase space

Phase space and probability density
We consider a system of N particles in a d-dimensional
space. Canonical coordinates and momenta

q = (q1, . . . , qdN )
p = (p1, . . . , pdN )

determine exactly the microscopic state of the system.
The phase space is the 2dN -dimensional space {(p, q)},
whose every point P = (p, q) corresponds to a possible
state of the system.
A trajectory is such a curve in the phase space along
which the point P (t) as a function of time moves.
Trajectories are determined by the classical equations of
motion

dqi

dt
=

∂H

∂pi

dpi

dt
= −∂H

∂qi
,

where

H = H(q1, . . . , qdN , p1, . . . , pdN , t)
= H(q, p, t) = H(P, t)

is the Hamiltonian function of the system.
The trajectory is stationary, if H does not depend on
time: trajectories starting from the same initial point P
are identical.
Let F = F (q, p, t) be a property of the system. Now

dF

dt
=

∂F

∂t
+ {F,H},

where {F,G} stands for Poisson brackets

{F, G} ≡
∑

i

(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)
.

We define the volume measure of the phase space

dΓ =
dN∏

i=1

dqidpi

h
= h−dNdq1 · · · dqdNdp1 · · · dpdN .

Here h = 6.62608 · 10−34Js is the Planck constant.
Note [dq dp] = Js, so dΓ is dimensionless.
Note ∆0Γ = 1 corresponds to the smallest possible
volume element of the phase space where a point
representing the system can be localized in accordance
with the uncertainty principle. The volume ∆Γ =

∫
dΓ is

then roughly equal to the number of quantum states in
the part of the space under consideration.
The ensemble or statistical set consists, at a given
moment, of all those phase space points which correspond
to identical macroscopic systems.

Corresponding to a macro state of the system there are
thus sets of micro states which belong to the ensemble
with the probability ρ(P ) dΓ. ρ(P ) is the probability
density which satisfies the condition

∫
dΓ ρ(P ) = 1.

The statistical average, or the ensemble expectation
value, of a measurable quantity f = f(P ) is

〈f〉 =
∫

dΓ f(P )ρ(P ).

We associate every phase space point with the velocity
field

V = (q̇, ṗ) =
(

∂H

∂p
,−∂H

∂q

)
.

The probability current is then Vρ. The probability
weight of an element Γ0 evolves then like

∂

∂t

∫

Γ0

ρ dΓ = −
∫

∂Γ0

Vρ · dS.

d S

G 0

Because ∫

∂Γ0

Vρ · dS =
∫

Γ0

∇ · (Vρ) dΓ,

we get in the limit Γ0 → 0 the continuity equation

∂

∂t
ρ +∇ · (Vρ) = 0.

According to the equations of motion

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi

we have
∂q̇i

∂qi
+

∂ṗi

∂pi
= 0,

so we end up with the incompressibility condition

∇ · V =
∑

i

[
∂q̇i

∂qi
+

∂ṗi

∂pi

]
= 0.

From the continuity equation we get then

0 =
∂ρ

∂t
+∇ · (Vρ)

=
∂ρ

∂t
+ ρ∇ · V + V · ∇ρ

=
∂ρ

∂t
+ V · ∇ρ.
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When we employ the convective time derivative

d
dt

=
∂

∂t
+ V · ∇

=
∂

∂t
+

∑

i

(
q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
,

the continuity equation can be written in the form known
as the Liouville theorem

d
dt

ρ(P (t), t) = 0.

The points in the phase space move like an incompressible
fluid which carries with it the constant probability
describing the ensemble.

Flow in phase space
The energy surface ΓE is the manifold determined by the
equation

H(q, p) = E.

Since the energy is a constant of motion every phase
point P i(t) moves on a certain energy surface ΓEi.
The expectation value of the energy of the system

E = 〈H〉 =
∫

dΓHρ

is also a constant of motion.
The volume of the energy surface is

ΣE =
∫

dΓE =
∫

dΓ δ(H(P )− E).

The volume of the phase space is
∫

dΓ =
∫ ∞

−∞
dE ΣE .

Let us consider the element ∆ΓE of an energy surface.

Non ergodic flow: In the course of time the element
∆ΓE traverses only a part of the energy surface ΓE .

Ergodic flow: Almost all points of the surface ΓE are
sometimes arbitrarily close to any point in ∆ΓE

⇔
The flow is ergodic if ∀f(P ), f(P ) ”smooth enough”,

f̄ = 〈f〉E
holds. Here f̄ is the time average

f̄ = lim
T→∞

1
T

∫ T

0

dt f(P (t))

and 〈f〉E the energy surface expectation value

〈f〉E =
1

ΣE

∫
dΓE f(P ).

We define the microcanonical ensemble so that its density
distribution is

ρE(P ) =
1

ΣE
δ(H(P )− E).

Every point of the energy surface belongs with the same
probability to the microcanonical ensemble.
The microcacnonical ensemble is stationary, i.e. ∂ρE

∂t = 0
and the expectation values over it temporal constants.
The mixing flow is such an ergodic flow where the points
of an energy surface element dΓE disperse in the course of
time all over the energy surface.
If ρ̂E(P, t) is an arbitrary non stationary density
distribution at the moment t = t0, then

lim
t→∞

ρ̂E(P, t) =
1

ΣE
δ(H(P )− E) = ρE(P )

and

lim
t→∞

〈f〉 = lim
t→∞

∫
dΓ ρ̂E(P, t)f(P )

=
∫

dΓ f(P )ρE(P )

i.e. the density describing an arbitrary (non equilibrium)
state evolves towards a microcanonical ensemble.

Microcanonical ensemble and entropy
If the total energy of a macroscopic system is known
exactly its equilibrium state can be described by a
microcanonical ensemble. The corresponding probability
density is

ρE(P ) =
1

ΣE
δ(H(P )− E).

For a convenience we allow the energy to have some
”tolerance” and define

ρE,∆E(P ) =
1

ZE,∆E
θ(E + ∆E −H(P ))θ(H(P )− E).

Here the normalization constant

ZE,∆E =
∫

dΓ θ(E + ∆E −H(P ))θ(H(P )− E)

is the microcanonical state sum or partition function.
ZE,∆E is the number of states contained in the energy
slice E < H < E + ∆E (see the volume measure of the
phase space). In the microcanonical ensemble the
probability is distributed evenly in every allowed part of
the phase space.

Entropy
We define the Gibbs entropy as

S = −kB

∫
dΓ ρ(P ) ln ρ(P ).
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Let ∆Γi the volume of the phase space element i and ρi

the average probability density in i. The state of the
system is, with the probability

pi = ρi ∆Γi,

in the element i and
∑

pi = 1.

We chooce the sizes of all elements to be smallest
possible, i.e. ∆Γi = 1. Then

S = −kB

∑

i

∆Γiρi ln ρi = −kB

∑

i

ρi∆Γi ln ρi∆Γi

= −kB

∑

i

pi ln pi,

since ln ∆Γi = 0.
If ρ is constant in the range ∆Γ = W we have

ρ =
1
W

,

so that
S = −kB

1
W

ln
1
W

∫
dΓ.

We end up with the Boltzmann entropy

S = kB ln W.

Here W is the thermodynamic probability: the number of
all those states that correspond to the macroscopical
properties of the system.
One can show that the entropy is additive, i.e. if the
system is composed of two partial systems 1 and 2 its
entropy is

S1+2 = S1 + S2.

If we require that the entropy has a maximum under the
condition ∫

dΓ ρ(P ) = 1,

ρ takes the form

ρ(P ) = ρ0 ∀P ∈ ΓE .

The maximum principle of the entropy leads thus to the
microcanonical distribution.

Entropy and disorder
The maximum of entropy
⇔
Microcanonical ensemble
⇔
Every microscopic state which satisfies

E < H < E + ∆E,

is present with the same probability, i.e. there is a
complete lack of information
⇔
Disorder is at maximum.

Quantum mechanical ensembles

Systems of identical particles
Let H1 be a Hilbert space for one particle. Then the
Hilbert space for N identical particles is

HN = H1 ⊗H1 ⊗ · · · ⊗ H1

︸ ︷︷ ︸
N copies

.

If, for example, |xi〉 ∈ H1 is a position eigenstate the
N -particle state can be written as

|Ψ〉 =∫ ∫
· · ·

∫
dx1 · · · dxN |x1, . . . , xN 〉ψ(x1, . . . , xN ),

where

|x1, . . . , xN 〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉 .
There are two kinds of particles:

Bosons The wave function is symmetric with respect to
the exchange of particles.

Fermions The wave function is antisymmetric with
respect to the exchange of particles.

Note If the number of translational degrees of freedom is
less than 3, e.g. the system is confined to a two
dimensional plane, the phase gained by the many particle
wave function under the exchange of particles can be
other than ±1. Those kind of particles are called anyons.
The Hilbert space of a many particle system is not the
whole HN but its subspace:

H =
{ SHN = S(H1 ⊗ · · · ⊗ H1) symm.
AHN = A(H1 ⊗ · · · ⊗ H1) antisymm.

Dimension of space and statistics
Let us consider two identical particles in an
n-dimensional Euclidean space En.
We separate the center of mass and relative coordinates:

X =
1
2
(x1 + x2) ∈ En

x = (x1 − x2) ∈ En.

Since the particles are identical we identify the points

x = x1 − x2

−x = x2 − x1

in the space En of the relative motion. Let us call the
resulting space r(n, 2). The point  ∈ r(n, 2) is the
singular point in this space.

Two dimensional space
The space r(2, 2) is a circular cone with the vertex
aperture 60◦.
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x

- x

A closed curve that does not circulate the vertex

• corresponds in the original space En to a closed curve
which connects a point x to the same point x.

• can be continuously squeezed to a point without
crossing the singular point.

A closed curve that goes around the vertex

• corresponds in the original space En to a curve which
connects points x and −x, i.e. corresponds to
particle exchange.

• cannot be continuosly squeezed to a point without
crossing the singular point, no matter how many
times the curve circulates the vertex.

The space r(2, 2)− {} is said to be infinitely connected.

Three dimensional space
The vectors in the space r(3, 2) can be specified by telling
their

• length and

• direction identifying, however, the opposite
directions.

The space of the relative motion can be represented a the
product

r(3, 2)− {} = (0,∞)×P2,

where P2 is a surface of a three dimensional hemisphere
where the opposite points on the equator are identified.
A closed curve that does not circulate the singular point

• is closed on the hemisphere.

• corresponds to a closed curve from the point x to the
same point x in the original space E3.

• can be squeezed continuosly to a point without
crossing the singular point.

C 3

C 2

C 3

C 1

A closed curve that circulates the singular point once

• is a curve on the sphere connecting opposite points
and, consequently, opposite points on a hemisphere
with the equator passing through these points.

• corresponds to a curve connecting points x and −x
in the original space En, i.e. corresponds to the
exchange of the particles.

• cannot be squeezed continuously to a point without
crossing the singular point.

A closed curve that circulates the singular point twice

• corresponds to the double exchange.

• can be squeezed continuosly to a point without
crossing the singular point.

The space r(3, 2)− {} is said to be doubly connected.

Quantization

• The configuration space of two identical particles is
flat with the exception of the singular point x = .

• In general, the configuration space of N identical
particles is flat with the exception of a finite number
of singular points.

• The dynamics of classical systems is governed by
local equations of motion; occasional singular points
have no effect.

• Quantum mechanical description is global; the
topology of the configuration space is essential.

• In the quantum mechanics of identical particles the
configuration space must be treated (somewhat)
warped.

Proceeding formally

• At every point x we set a one dimensional Hilbert
space hx.

• The physical state of the system is described by the
vectors |Ψ(x)〉 ∈ hx.

• In every Hilbert space hx we specify the normalized
base vector

∣∣∣χx

〉
. The set {

∣∣∣χx

〉
} is called a gauge.

• A wave function ψ is the coordinate of a state vector
with respect to the base:

|Ψ(x)〉 = ψ(x)
∣∣∣χx

〉
.

• The transformation {
∣∣∣χx

〉
} → {|χ′x〉} from a base to

another causes the gauge transformation

ψ(x) → ψ′(x) = eiφ(x)ψ(x).

Physics is independent on the gauge.

• We employ a linear unitary operator P (x′, x), which
moves vectors from the space hx parallely to the
space hx′ .
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• The gauge can be chosen so that

P (x + dx, x)
∣∣∣χx

〉
= (1 + ibk(x)dxk)

∣∣∣χx+dx

〉
.

• Because the derivative operators

Dk =
∂

∂xk
− ibk(x)

are invariant in the gauge transform the Hamiltonian
must be written using them.

• The commutator

fkl = i[Dk, Dl] =
∂bl

∂xk
− ∂bk

∂xl

is independent of the gauge.

Due to the gauge invariance a vector potential b(x) shows
up in the Hamiltonian.

• b(x) is a consequence of the topology.

• The force field related to the potential is fkl

• We can set fkl = 0 everywhere in the configuration
space except the singular points.

• Moving an arbitrary vector |Ψ(x)〉 ∈ hx along a
closed curve it

– remains invariant provided that we are not
circulating a singular point.

– maps to the vector |Ψ′〉 = Px |Ψ〉 ∈ hx if we
circulate a singular point.

• Because hx is one dimensional we must have

Px = eiξ.

• Since

Px′ = P (x′,x)PxP (x′, x)−1 = Px,

the parameter ξ is independent on the point x; ξ is
characteristic to the two particle system.

• A route circulating a singular point once corresponds
in the two particle configuration space to a curve
connecting points (x1, x2) (x2, x1): Px exchanges
the particles.

• In two dimensional space there is no reason to
restrict the values of ξ to 0 (bosons) or π (fermions).

• In three dimensional space the extra condition
P 2

x = 1 forces the condition ξ = 0 or π.

Density operator and entropy
Let H be the Hilbert space of a many particle system.
The probability measure tells us the weight that a state
|ψ〉 ∈ H represents a system with given macroscopical
properties.
The apriory probability: when there is no knowledge of
the actual state of the system every state in H can taken
with equal weight.
We define the density operator ρ so that

ρ =
1
N

N∑
n=1

|n〉 〈n| ,

where N = dimH and |n〉 ∈ H are the base vectors of H.
The expectation value of an operator A is

〈A〉 = Tr ρA,

which is also called as the statistical expectation value.
Here TrB is the trace of the operator B

Tr B =
N∑

n=1

〈n|B|n〉.

Now

Tr ρ =
N∑

n=1

〈n|ρ|n〉 =
1
N

∑

n′

∑
n

〈n|n′〉〈n′|n〉

=
1
N

∑
n

1 = 1,

so, for example,
〈I〉 = Tr ρI = 1

and
〈Pn〉 =

1
N , when Pn = |n〉 〈n| .

Let |ψ〉 ∈ H be an arbitrary normalized state. The
probability for the state |ψ〉 is

〈Pψ〉 = Tr ρ |ψ〉 〈ψ| =
∑

n

〈n|ρ|ψ〉〈ψ|n〉

=
∑

n

〈ψ |n〉〈n|︸ ︷︷ ︸
I

ρ|ψ〉 = 〈ψ|ρ|ψ〉

=
1
N

∑
n

〈ψ|n〉〈n|ψ〉 =
1
N

∑
n

|ψn|2

=
1
N .

So, we can write

ρ =
1
N I.

Ensemble

Macrostate is the state determined by macroscopical
parameters.
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Microstate is a particular state in a Hilbert space.

Let us choose a set of identical macrostates. We perform
complete measurements whose results are the states
ψi, i = 1, . . . ,M. We define the density operator of this
set, ensemble, as

ρM =
1
M

M∑

i=1

∣∣ψi
〉 〈

ψi
∣∣ .

Then
Tr ρM = 1.

The ensemble expectation values of operators are

〈A〉 = Tr ρMA =
1
M

M∑

i=1

〈ψi|A|ψi〉

=
1
M

M∑

i=1

〈A〉i ,

where
〈A〉i = 〈ψi|A|ψi〉

is the expectation value of A in the quantum state
∣∣ψi

〉
.

In an ideal case there exists the limit

ρ = lim
M→∞

1
M

M∑

i=1

∣∣ψi
〉 〈

ψi
∣∣ ,

defining the macrostate of the system.
Note In practice the method is unrealistic since it
depends on the employed measurements.
Pure state: When the state of the system is known
”quntum mechanically” accurately we can set

ρ = |ψ〉 〈ψ| .

In the corresponding ensemble every state
∣∣ψi

〉
= |ψ〉.

The statistical mechanics of a pure state reduces to
ordinary quantum mechanics, e.g.

〈A〉 = Tr ρA = 〈ψ|A|ψ〉.

Other states are known as mixed states.

Properties of the density operator

ρ† = ρ

〈ψ|ρ|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H
Tr ρ = 1.

The density operator associates with every normalized
|ψ〉 ∈ H the probability

pψ = Tr ρPψ = 〈ψ|ρ|ψ〉.

Since ρ is hermitean there exists an orthonormal basis
{|α〉} for H, where ρ is diagonal

ρ =
∑
α

pα |α〉 〈α| .

Here
0 ≤ pα ≤ 1

and ∑
pα = 1.

In this basis

〈A〉 = Tr ρA =
∑
α

pα〈α|A|α〉.

The equation of motion

Let us fix the probabilities pα corresponding to the states
|α〉. Now

ρ(t) =
∑
α

pα |α(t)〉 〈α(t)| .

Since the state vectors satisfy the Schrödinger equations

ih̄
d
dt
|α(t)〉 = H |α(t)〉

−ih̄
d
dt
〈α(t)| = 〈α(t)|H,

we end up with the equation of motion

ih̄
d
dt

ρ(t) = [H, ρ(t)].

In a stationary ensemble the expectation values are
independent on time, so ρ̇ = 0 or

[H, ρ] = 0.

This is possible e.g. when ρ = ρ(H).

Entropy

The entropy is defined by

S = −kBTr ρ ln ρ.

In the base where ρ is diagonal,

S = −kB

∑
α

pα ln pα.

Entropy has the properties

1. S ≥ 0, because 0 ≤ pα ≤ 1.

2. S = 0 corresponds to a pure state, i.e. ∃α : pα = 1
and pα′ = 0 ∀α′ 6= α.

3. If the dimension N of the Hilbert space H is finite
the entropy has a maximum when

ρ =
1
N I

or pα = 1

N ∀ |α〉 ∈ H. Then

S = kB lnN .
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4. The entropy is additive

Let the total Hilbert space be

H1+2 = H1 ⊗H2

and correspondingly

ρ1+2 = ρ1 ⊗ ρ2.

If ρi

∣∣α(i)
〉

= p
(i)
α

∣∣α(i)
〉
, then

ρ1+2

∣∣∣α(1), β(2)
〉

= p(1)
α p

(2)
β

∣∣∣α(1), β(2)
〉

.

Now

Tr 1+2A =
∑

α,β

〈α(1), β(2)|A|α(1), β(2)〉,

so that

S1+2 = −kBTr 1+2ρ1+2 ln ρ1+2

= −kB

∑

α,β

p(1)
α p

(2)
β (ln p(1)

α + ln p
(2)
β )

= −kB

∑
α

p(1)
α ln p(1)

α − kB

∑

β

p
(2)
β ln p

(2)
β

= S1 + S2.

Density of states
Let us denote

H |n〉 = En |n〉 ,
so that

H =
∑

n

En |n〉 〈n| .

If the volume V of the system is finite the spectrum is
discrete and the states can be normalized like

〈n|m〉 = δn,m.

Thermodynamic limit:

V →∞ and N →∞

so that N/V remains constant.
The state cumulant (function) is defined as

J(E) =
∑

n

θ(E − En),

i.e. the value of J at the point E is the number of those
states whose energy is less than E.
The state density (function) is defined as

ω(E) =
dJ(E)

dE
=

∑
n

δ(E − En),

since dθ(x)/dx = δ(x).

Now
J(E + ∆E)− J(E) ≈ ω(E)∆E

is the number of those states whose energy lies between
(E,E + ∆E). We can also write

J(E) = Tr θ(E −H)
ω(E) = Tr δ(H − E).

ω(E) corresponds to the volume ΓE of the energy surface
of the classical phase space. When the system is large the
energy spectrum is almost continuous and ω(E) can J(E)
can be smoothened to continuos functions.
Example 1. Free particle
The Hamiltonian is

H =
p2

2m
.

The eigenfunctions are the plane waves

ψk =
1√
V

eik·r,

where the wave vector can acquire the values

k =
2π

L
(nx, ny, nz), ni ∈ I, V = L3.

The corresponding energies are

εk =
h̄2k2

2m
=

p2

2m
.

In the limit of large volume the summation can be
transformed to the integration over the wave vector, like

∑

k

=
∫

dNk = g
V

(2π)3

∫
d3k = g

V

h3

∫
d3p,

where g = 2S + 1 and S is the spin of the particle. Then

J1(E) =
∫

dNkθ

(
E − p2

2m

)
= g

V

h3
4π

∫ p

0

dp′p2

= g
V

h3

4π

3
p3.

So we get

J1(E) =
2
3
C1V E3/2

ω1(E) = C1V E1/2

C1 = 2πg

(
2m

h

)3/2

.

Example 2. Maxwell-Boltzmann gas
Let us consider N free particles. The total energy is

E =
∑

j

p2
j

2m
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and the state cumulant

JN (E)

=
∫

dNk1
· · ·

∫
dNkN

θ

(
E − p2

1

2m
− · · · − p2

N

2m

)

=
∫

dE1 · · ·
∫

dENω1(E1) · · ·ω1(EN )

×θ(E − E1 − · · · − EN ).

Thus the corresponding state density is

ωN (E) =
dJN (E)

dE

=
∫

dE1 · · · dENω1(E1) · · ·ω1(EN )

×δ(E − E1 − · · · − EN ).

We define the Laplace transformations

Ω1(s) =
∫ ∞

0

dE e−sEω1(E)

ΩN (s) =
∫ ∞

0

dE e−sEωN (E).

Now

ΩN (s)

=
∫ ∞

0

dE1 · · · dENω1(E1) · · ·ω1(EN )

×
∫ ∞

0

dE e−sEδ(E − E1 − · · · − EN )

=
∫ ∞

0

dE1 · · · dENω1(E1)e−sE1 · · ·ω1(EN )e−sEN

= [Ω1(s)]N .

Since

Ω1(s) =
∫ ∞

0

dE e−sEC1V E1/2 = C1V
1
2
√

πs−3/2,

we have
ΩN (s) = (C2V )Ns−3N/2,

where

C2 =
1
2
√

πC1 = g

(
2πm

h2

)3/2

.

Performing the inverse Laplace transformations we get

ωN (E) =
1

Γ( 3
2N)

(C2V )NE3/2N−1.

Note The permutation symmetry was ignored! An
approximative correction can be obtained when the state
density is diveded by N !:

ωN (E) =
1

N !Γ( 3
2N)

(C2V )NE3/2N−1.

Note Neither the multiple occupation of bosons nor the
Pauli exclusion principle have been taken into account.

Energy, entropy and temperature

Microcanonical ensemble
We require, that

1. with full certainty the energy lies between
(E,E + ∆E).

2. the entropy has its maximum.

Then the density operator is

ρE =
1

ZE
θ(E + ∆E −H)θ(H − E),

where (supposing ∆E > 0)

ZE = Tr θ(E + ∆E −H)θ(H − E)
= Tr [θ(E + ∆E −H)− θ(E −H)]
= J(E + ∆E)− J(E)

is the number of states between (E,E + ∆E). When ∆E
is small, we have

ZE ≈ ω(E)∆E.

Entropy is
SE = kB ln ZE .

Since ZE is a positive integer, SE ≥ 0 holds. Furthermore
we get

SE = kB ln[ω(E)∆E]
= kB ln ω(E) + S0,

so, we can write

SE = kB ln ω(E).

Note As a matter of fact

ω = ω(E, V,N).

In the definition of the density operator we have applied
quantum mechanical ”ergodicity hyphothesis”: all allowed
states in the Hilbert space are equally probable.

Temperature
According to thermodynamics we have

1
T

=
(

∂S

∂E

)

V,N

.

In the microcanonical ensemble we define the
temperature T so that

1
T

= kB
∂

∂E
ln ω(E, V, N).
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Denoting

β =
1

kBT
,

we have
β =

∂ ln ω

∂E
.

Example Maxwell-Boltzmann gas
Now

ωN ∝ E3/2N−1,

so
ln ωN =

3
2
N ln E + · · ·

and
β =

3N

2E

or we end up with the equation of state for 1-atomic ideal
gas:

E =
3
2

kBTN.

The thermodynamics of a quantum mechanical system
can be derived from the density of states ω(E, V, N). In
practice the state density of a microcanonical ensemble
(E and N constant) is difficult to calculate.

Equilibrium distributions

Canonical ensembles
We maximise the entropy under the conditions

〈H〉 = Tr ρH = E = constant
〈I〉 = Tr ρ = 1.

So, we require that

δ(S − λ 〈H〉 − λ′ 〈I〉) = 0,

where λ are λ′ are Lagrange multipliers. We get

δTr (−kBρ ln ρ− λρH − λ′ρ) =
Tr (−kB ln ρ− kB − λH − λ′I)δρ = 0.

Since δρ is an arbitrary variation, we end up with the
canonical or Gibbs distribution

ρ =
1
Z

e−βH ,

where Z is the canonical sum over states (or partition
function)

Z = Tr e−βH =
∑

n

e−βEn =
∫

dE ω(E)e−βE .

Note In the canonical ensemble the number of particles is
constant, i.e.

Z = Z(p, V, N, . . .).

The probability for the state ψ is

pψ = Tr ρPψ =
1
Z
〈ψ|e−βH |ψ〉.

Particularly, in the case of an eigenstate of the
Hamiltonian,

H |n〉 = En |n〉 ,
we have

pn =
1
Z

e−βEn .

For one particle system we get Boltzmann distribution

pν =
1
Z

e−βεν ; Z =
∑

ν

e−βεν .

Here εν is the one particle energy.
Because in the canonical ensemble we have

ln ρ = −βH − ln Z,

the entropy will be

S = −kBTr ρ ln ρ = −kB 〈ln ρ〉
= kBβE + kB ln Z.

We recall that E is the expectation value of the energy

E = 〈H〉 =
1
Z

TrHe−βH .
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The variation of the partition function is

δZ = Tr δ
(
e−βH

)
= −δβ TrHe−βH

= −δβ EZ.

The variation of the entropy is then

δS = kB

(
E δβ + β δE +

δZ

Z

)

= kBβ δE.

According to thermodynamics the temperature will be

T =
(

δE

δS

)

V,N

=
1

kBβ
,

or

β =
1

kBT
.

Free energy

Since
∂

∂β
Z = −Tr e−βHH = −Z 〈H〉

or

E = − ∂

∂β
ln Z = kBT 2 ∂ ln Z

∂T
,

we can write

S = kB
∂

∂T
(T ln Z) .

The Helmholtzin free energy F = E − TS can be
expressed as

F = −kBT ln Z.

With the help of this the density operator takes the form

ρ = eβ(F−H).

Fluctuations

Let us write the sum over states as

Z =
∫

dE ω(E)e−βE =
∫

dE e−βE+ln ω(E).

We suppose that the function ω(E)e−βE has a sharp
maximum at E = Ē and that ω(E) ≈ microcanonical
state density.

D E
w ( E ) e - b E

E_
E

Now

ln ω(E) =
1

kB
S(E)

and

ln ω(E)− βE =
ln ω(Ē)− βĒ

+

=0, maximum︷ ︸︸ ︷(
1

kB

∂S

∂E

∣∣∣∣
E=Ē

− β

)
(E − Ē)

+
1

2kB

∂2S

∂E2

∣∣∣∣
E=Ē

(E − Ē)2 + · · · .

At the point of maximum E = Ē we have

kBβ =
∂S

∂E

∣∣∣∣
E=Ē

=
1

T (Ē)

=
1

average temperature
.

So T is the average temperature. In the Taylor series

∂2S

∂E2 =
∂

∂E

(
1
T

)
= − 1

T 2

∂T

∂E
= − 1

T 2CV
,

so
Z ≈ ω(Ē)e−βĒ

∫
dE e

− 1
2kBT2CV

(E−Ē)2

︸ ︷︷ ︸
normal distribution

.

As the variance of the normal distribution in the
integrand we can pick up

(∆E)2 = kBT 2CV

or
∆E =

√
kBT 2CV = O(

√
N),

because CV , as well as E, is extensive (O(N)). Thus the
fluctuation of the energy is

∆E

E
∝ 1√

N
.

Note Fluctuations can be obtained more
straightforwardly from the free energy:

〈
(H − 〈H〉)2

〉
= −∂2(βF )

∂β2 .

Grand canonical ensemble
Let’s consider a system where both the energy and the
number of particles are allowed to fluctuate. The Hilbert
space of the system is then the direct sum

H = H(0) ⊕H(1) ⊕ · · · ⊕ H(N) ⊕ · · ·
and the Hamiltonian operator the sum

H = H(0) + H(1) + · · ·+ H(N) + · · · .
We define the (particle) number operator N̂ so that

N̂ |ψ〉 = N |ψ〉 ∀ |ψ〉 ∈ H(N).

27



We maximize the entropy S under constraints

〈H〉 = Ē = given energy〈
N̂

〉
= N̄ = given particle number

〈I〉 = 1.

With the help of Lagrange multipliers we start with

δ(S − λ 〈H〉 − λ′
〈
N̂

〉
− λ′′ 〈I〉) = 0,

and end up with the grand canonical distribution

ρ =
1

ZG
e−β(H−µN̂).

Here
ZG = Tr e−β(H−µN̂))

is the grand canonical partition function. In the base
where the Hamiltonian is diagonal this is

ZG =
∑

N

∑
n

e−β(E(N)
n −µN),

where

H |N ; n〉 = H(N) |N ; n〉 = E(N)
n |N ; n〉 ,

when |N ; n〉 ∈ H(N) is a state of N particles, i.e.

N̂ |N ; n〉 = N |N ; n〉 .

Number of particles and energy

Now

∂ ln ZG

∂µ
=

1
ZG

Tr e−β(H−µN̂)βN̂

= β
〈
N̂

〉
= βN̄

and

∂ ln ZG

∂β
= − 1

ZG
Tr e−β(H−µN̂)(H − µN̂)

= −〈H〉+ µ
〈
N̂

〉
= −Ē + µN̄,

so

N̄ = kBT
∂ ln ZG

∂µ

Ē = kBT 2 ∂ ln ZG

∂T
+ kBTµ

∂ ln ZG

∂µ
.

Entropy

According to the definition we have

S = −kBTr ρ ln ρ = −kB 〈ln ρ〉 .
Now

ln ρ = −βH + βµN̂ − ln ZG,

so

S =
Ē

T
− µ

N̄

T
+ kB ln ZG.

Grand potential

In thermodynamics we defined

Ω = E − TS − µN,

so in the grand canonical ensemble the grand potential is

Ω = −kBT ln ZG.

With the help of this the density operator can be written
as

ρ = eβ(Ω−H+µN̂).

Note The grand canonical state sum depends on the
varaibles T , V and µ, i.e.

ZG = ZG(T, V, µ).

Fluctuations

Now

∂2ZG

∂µ2 =
∂2

∂µ2 Tr e−β(H−µN̂)

= Tr e−β(H−µN̂)β2N̂2 = ZGβ2
〈
N̂2

〉
,

so

(∆N)2 =
〈
(N̂ − N̄)2

〉
=

〈
N̂2

〉
− N̄2

= (kBT )2
∂2 ln ZG

∂µ2 = kBT
∂N̄

∂µ
= O(N̄).

Thus the particle number fluctuates like

∆N

N̄
= O

(
1√
N̄

)
.

A corresponding expression is valid also for the
fluctuations of the energy. For a mole of matter the
fluctuations are ∝ 10−12 or the accuracy ≈ the accuracy
of the microcanonical ensemble.

Connection with thermodynamics
Let us suppose that the Hamiltonian H depends on
external parameters {xi}:

H(xi) |α(xi)〉 = Eα(xi) |α(xi)〉 .

Adiabatic variation

A system in the state |α(xi)〉 stays there provided that
the parameters xi(t) are allowed to vary slowly enough.
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E a ( x i )

x i

a = 0
a = 1

Then the probabilities for the states remain constant and
the change in the entropy

S = −kB

∑
α

pα ln pα

is zero. Now

∂Eα

∂xi
=

∂

∂xi
〈α|H |α〉 =

〈
α

∣∣∣∣
∂H

∂xi

∣∣∣∣α
〉

+ Eα
∂

∂xi
〈α| α〉

=
〈

α

∣∣∣∣
∂H

∂xi

∣∣∣∣α
〉

,

since 〈α| α〉 = 1.
Let Fi be the generalized force

Fi = −
〈

α

∣∣∣∣
∂H

∂xi

∣∣∣∣α
〉

= −∂Eα

∂xi

and δxi the related displacement. Then

δ 〈H〉 = −
∑

i

Fiδxi.

Statistical study

Let us consider the density operator in an equilibrium
state ([H, ρ] = 0). In the base {|α〉}, where the
Hamiltonian is diagonal,

H |α〉 = Eα |α〉 ,

we have
ρ =

∑
α

pαPα,

where
Pα = |α〉 〈α| .

We divide the variation of the density operator into two
parts:

δρ =

adiabatic︷ ︸︸ ︷∑
α

pαδPα +

nonadiabatic︷ ︸︸ ︷∑
α

δpαPα

= δρ(1) + δρ(2).

Then

δ 〈H〉 = Tr δρH + Tr ρ δH

= Tr δρ(1)H + Tr δρ(2)H +
∑

i

δxiTr ρ
∂H

∂xi

=
∑
α

pαTrH δPα + Tr δρ(2)H −
∑

i

Fiδxi.

Now

Tr H δPα =
∑

β

〈β|H (|α〉 〈δα|+ |δα〉 〈α|) |β〉

= Eαδ 〈α| α〉 = 0,

so
δ 〈H〉 = Tr δρ(2)H −

∑

i

Fiδxi.

Since
∫

dE ω(E)f(E) =
∑
α

∫
dE δ(E −Eα)f(E)

=
∑
α

f(Eα),

we can write the nonadiabatic term as

Tr δρ(2)H =
∑
α

δpαEα

=
∫

dE ω(E)E δp(E).

According to the definition the statistical entropy is

Sstat = −kB

∑
α

pα ln pα.

Its variation is

δSstat = −kB

∑
α

δpα ln pα − kB

=0︷ ︸︸ ︷∑
α

δpα

= −kB

∑
α

δpα ln pα

= −kB

∫
dE ω(E) δp(E) ln p(E).

In the microcanonical ensemble

p(E) ∝ 1
ZE,∆E

∝ 1
ω(E)

,

holds, so

−kB ln p(E) = kB ln ω(E) = Sstat(E),

where Sstat(E) is the microcanonical entropy. The
variation of the entropy can be written as

δSstat =
∫

dE ω(E)Sstat(E) δp(E).

We expand Sstat(E) as a Taylor series in a neighborhood
of the point E = Ē:

Sstat(E) = Sstat(Ē)

+
∂Sstat(E)

∂E

∣∣∣∣
E=Ē

(E − Ē) + · · ·

= Sstat(Ē) +
E − Ē

T stat(Ē)
+ · · · .
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Since ∫
dE ω(E) δp(E) =

∑
α

δpα = 0,

we get

δSstat =
1

T stat(Ē)

∫
dE ω(E)E δp(E)

=
1

T stat(Ē)
Tr δρ(2)H

or
δ 〈H〉 = T statδSstat −

∑

i

Fiδxi.

This is equivalent to the first law of the thermodynamics,

δU = T thermδStherm − δW,

provided we identify

〈H〉 = Ē = U = internal energy
T stat = T therm

Sstat = Stherm

∑

i

Fiδxi = δW = work.

Einstein’s theory of fluctuations
We divide a large system into macroscopical partial
systems whose mutual interactions are weak.
⇒ ∃ operators {X̂i} corresponding to the extensive
properties of the partial systems so that

[X̂i, X̂j ] ≈ 0

[X̂i,H] ≈ 0.

⇒ ∃ a mutual eigenstate |E,X1, . . . , Xn〉, which is one of
the macrostates of the system, i.e. corresponding to the
parameter set (E,X1, . . . , Xn) there is a macroscopical
number of microstates. Let Γ(E,X1, . . . , Xn) be the
number of the microstates corresponding to the
macrostate |E, X1, . . . , Xn〉 (the volume of the phase
space).
The total number of the states is

Γ(E) =
∑

{Xi}
Γ(E, X1, . . . , Xn)

and the relative probability of the macrostate
|E, X1, . . . , Xn〉

f(E,X1, . . . , Xn) =
Γ(E, X1, . . . , Xn)

Γ(E)
.

The entropy of the state |E, X1, . . . , Xn〉 is

S(E, X1, . . . , Xn) = kB ln Γ(E, X1, . . . , Xn)

or
f(E,X1, . . . , Xn) =

1
Γ(E)

e
1

kB
S(E,X1,...,Xn)

.

In the thermodynamic equilibrium the entropy S has its
maximum

S0 = S(E,X
(0)
1 , . . . , X(0)

n ).

Let us denote by
xi = Xi −X

(0)
i

deviations from the equilibrium positions.
The Taylor series of the entropy will be

S = S0 − 1
2

kB

∑

i,j

gijxixj + · · · ,

where

gij =
1

kB

(
∂2S

∂Xi∂Xj

)∣∣∣∣
{X(0)

i
}
.

We use notation

x =




x1

...
xn


 and g = (gij).

Then
f(x) = Ce−

1
2 xT gx,

where
C = (2π)−n/2

√
detg.

Correlation functions can be written as

〈xp · · ·xr〉 ≡
∫

dx f(x)xp · · ·xr

=
[

∂

∂hp
· · · ∂

∂hr
F (h)

]

h=0

,

where
dx = dx1 · · · dxn

and
F (h) = e

1
2 hT g−1h.

pVT-system

When studying the stability conditions of matter we
found out that

∆S = − 1
2T

∑

i

(∆Ti∆Si −∆pi∆Vi + ∆µi∆Ni).

Supposing that there is only one volume element in the
system we get

f = Ce
− 1

2kBT (∆T ∆S−∆p ∆V +∆µ ∆N)
.

We suppose that the system is not allowed to exchange
particles, i.e. ∆N = 0. Employing the definitions of the
heat capacity and compressibility we can write

f(∆T, ∆V ) ∝ e
− 1

2

[
CV

kBT2 (∆T )2+ 1
V kBT κT

(∆V )2
]
.
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We can now read out the matrix g:

g =

( T V

T CV

kBT 2 0
V 0 1

V kBTκT

)
.

The variances are then

〈
(∆T )2

〉
=

kBT 2

CV〈
(∆V )2

〉
= V kBTκT .

Reversibel minimum work

Let x = X −X(0) be the fluctuation of the variable X.
For one variable we have

f(x) ∝ e−
1
2 gx2

.

Now S = S(U,X, . . .) holds and

dU = T dS − F dX −d̄Wother.

We get the partial derivative

∂S

∂X
=

F

T
.

On the other hand we had

S = S0 − 1
2

kB

∑

i,j

gijxixj

= S0 − 1
2

kBgx2,

so
∂S

∂X
= −kBgx

and
F = −kBTgx.

When there is no action on X from outside, the deviation
x fluctuates spontaneously. Let us give rise to the same
deviation x by applying reversible external work:

dU = −F dx = kBTgx dx.

Integrating this we get

(∆U)rev ≡ ∆R =
1
2

kBTgx2,

where ∆R is the minimum reversible work required for
the fluctuation ∆X. We can write

f(∆X) ∝ e
− ∆R

kBT .

Ideal systems

System of free spins
Let us consider N particles with spin 1

2 :

Si = 1
2 h̄

Siz = ± 1
2 h̄

i = 1, . . . , N.

The z component of the total spin is

Sz =
∑

i

Siz =
1
2

h̄(N+ −N−),

where

N+ = +
1
2

h̄ spin count

N− = −1
2

h̄ spin count.

Sz determines the macrostate of the system.
Denoting Sz = h̄ν we have

N+ =
1
2

N + ν

N− =
1
2

N − ν

and
ν = −1

2
N,−1

2
N + 1, . . . ,

1
2

N.

Let W (ν) be the number of those microstates for which
Sz = h̄ν, i.e. W (ν) tells us, how many ways there are to
distribute N particles into groups of N+ and N−

particles so that N+ + N− = N and N+ −N− = 2ν.
From combinatorics we know that

W (ν) =
(

N
N+

)
=

N !
N+!N−!

=
N !

( 1
2 N + ν)!( 1

2 N − ν)!
.

W (ν) the degeneracy of the state Sz = h̄ν.
The Boltzmann entropy is

S = kB ln W (ν).

Using Stirling’s formula

ln N ! ≈ N ln N −N

we get

ln W (ν) ≈ N ln N −N

−
[
(
1
2

N + ν) ln(
1
2

N + ν)− (
1
2

N + ν)
]

−
[
(
1
2

N − ν) ln(
1
2

N − ν)− (
1
2

N − ν)
]

=
1
2

N ln
N2

1
4 N2 − ν2

− ν ln
1
2 N + ν
1
2 N − ν

.
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We look for the extremum of W (ν):

∂ ln W (ν)
∂ν

=
1
2

N
1
4 N2 − ν2

N2

N2

(
1
4 N2 − ν2

)2 2ν

− ln
1
2 N + ν
1
2 N − ν

−ν
1
2 N − ν
1
2 N + ν

1
2 N − ν + 1

2 N + ν
(

1
2 N − ν

)2

= − ln
1
2 N + ν
1
2 N − ν

= 0.

We can see that ν = 0.
Now

∂2 ln W (ν)
∂ν2

∣∣∣∣
ν=0

=
N

1
4 N2 − ν2

∣∣∣∣
ν=0

= − 4
N

< 0,

so ν = 0 is a maximum.
Let us expand ln W (ν) as a Taylor series in the vicinity of
its maximum:

ln W (ν) = ln W (0)− 2
N

ν2 +O(ν3),

so W (ν) obeys the normal distribution

W (ν) ≈ W (0)e−
2
N ν2

,

whose deviation is

∆ν =
1
2

√
N.

In this distribution

ln W (0) ≈ N ln 2

or
W (0) ≈ 2N .

Total number of states

We have exactly

Wtot =
∑

N+

(
N
N+

)
= (1 + 1)N

= 2N .

According to the previous treatment we can write
approximatively

W appr
tot ≈

∑
ν

W (0)e−
2
N ν2 ≈ W (0)

∫ ∞

−∞
dν e−

2
N ν2

≈ 2N

√
π

2
N.

On the other hand we have

ln W appr
tot =

extensive︷ ︸︸ ︷
N ln 2 +

non extensive︷ ︸︸ ︷
1
2

ln
(π

2
N

)

= ln Wtot + non extensive

Energy

Let’s put the system in the external magnetic field

B = µ0H,

where
H = Hẑ

is the magnetizing field.
The potential energy is

E = −µ0

∑

i

µi ·H = −µ0H
∑

i

µiz,

where µi is the magnetic moment of the particle i.
Now

µ = γS,

where γ is the gyromagnetic ratio. For electrons we have

γ = 2γ0 = − e

m
,

where γ0 is the classical value e
2m .

For electrons we can further write

µe
z = −µBσz = ∓µB .

Here σz is the Pauli spin matrix and

µB =
eh̄

2m
= 5.79 · 10−5 eV

T

the Bohr magneton.
Thus the energy is

E = −µ0H
∑

µiz = −µ0γHSz = εν,

where
ε = −h̄γµ0H

is the energy/particle. For electrons we have

ε = 2µ0µBH.

Now
∆E = ε∆ν,

so from the condition

ω(E)∆E = W (ν)∆ν

we get as the density of states

ω(E) =
1
|ε| W

(
E

ε

)
.
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1) Microcanonical ensemble

Denoting

E0 =
1
2

εN,

the total energy will lie between −E0 ≤ E ≤ E0.
With the help of the energy the degeneracy can be
written as

ln W (ν) =
1
2

N ln
4E2

0

E2
0 − E2

− E

ε
ln

E0 + E

E0 −E

= ln ω(E) + ln |ε|.

As the entropy we get

S(E) = kB ln ω(E)

= NkB

[
1
2

ln
4E2

0

E2
0 − E2

− E

2E0
ln

E0 + E

E0 − E

]

+non extensive term.

The temperature was defined like

1
T

=
∂S

∂E
,

so
β(E) =

1
kBT (E)

= − N

2E0
ln

E0 + E

E0 − E
.

We can solve for the energy:

E = −E0 tanh
βE0

N

= −1
2

Nµ0h̄γH tanh
(

µ0h̄γH

2kBT

)
.

The magnetization or the magnetic polarization means
the magnetic moment per the volume element, i.e.

M =
1
V

∑

i

µi.

The z component of the magnetization is

Mz = − 1
V

εν

µ0H
=

1
V

h̄γµ0Hν

µ0H

=
1
V

γh̄ν.

Now
E = −µ0HV Mz,

so we get for our system as the equation of state

M =
1
2

ρh̄γ tanh
(

µ0h̄γH

2kBT

)
,

where ρ = N/V is the particle density.
Note The relations derived above

E = E(T,H, N)
M = M(T, H, N)

determine the thermodynamics of the system.

2) Canonical ensemble

The canonical partition function is

Z =
∑

n

e−βEn .

Here

En = −µ0H

N∑

i=1

µiz

the energy of a single microstate.
Denote

µiz = h̄γνi, νi = ±1
2
.

Now

Z =
∑

all microstates

eβµ0H
∑

i
µiz

=

1
2∑

ν1=− 1
2

· · ·
1
2∑

νN=− 1
2

eβµ0h̄γH
∑

i
νi

=




1
2∑

ν=− 1
2

eβµ0Hγh̄ν




N

= ZN
1 ,

where Z1 the one particle state sum

Z1 = e−
1
2 βµ0Hγ + e

1
2 βµ0Hγ

= 2 cosh
µ0Hγ

2kBT
.

The same result can be obtained using the degeneracy:

Z =
∑

ν

W (ν)e−βE(ν)

=
∑

ν

W (ν)e−βεν

=
∑

N+

(
N
N+

)
e−βε(N+− 1

2 N)

= e−
1
2 βεN

(
1 + e−βε

)N
.

The free energy F is

F = F (T, H) = −kBT ln Z

= −kBTN

[
ln 2 + ln cosh

µ0Hγh̄

2kBT

]
.

The entropy is

S = −
(

∂F

∂T

)

H

= NkB

[
ln 2 + ln cosh

µ0Hγh̄

2kBT

−µ0h̄γH

2kBT
tanh

µ0h̄γH

2kBT

]
.
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Differentiating the free energy with respect to the field H
we get

−
(

∂F

∂Hz

)

T

= kBT
1
Z

∂

∂H

∑
ν

W (ν)e−βεν

= µ0γh̄
1
Z

∑
ν

νW (ν)e−βεν

= µ0γh̄ 〈ν〉 = µ0V Mz.

Since the differential of the free energy is

dF = −S dT − µ0V M · dH,

the magnetization is

M = − 1
µ0V

(
∂F

∂H

)

T

= −1
2

ρh̄γ tanh
(

µ0h̄γH

2kBT

)
.

This is identical with the result we obtained in the
microcanonical ensemble.
Also, the microcanonical entropy = the canonical entropy
+ a non extensive term.

Energy

a)

E = 〈E(ν)〉 = εν̄ = − 1
Z

∂

∂β
Z

= −1
2

Nε tanh
(

1
2

βε

)

= the energy of the microcanonical ensemble.

b) According to thermodynamics

F = E − TS

or

E = F + TS = F − T
∂F

∂T

= F + β
∂F

∂β
=

∂

∂β
(βF )

= − ∂

∂β
ln Z

= the energy given at a).

Susceptibility

According to the definition the susceptibility is

χ =
(

∂M

∂H

)

T

= − 1
µ0V

(
∂2F

∂H2

)

=
µ0ρ

kBT

(
1
2 h̄γ

)2

cosh2
(

h̄γµ0H
2KBT

) .

When H → 0 we end up with Curie’s law

χ =
C

T
,

where

C =
µ0ρ

kBT

(
1
2

h̄γ

)2

.

Thermodynamical identifications

Earlier we identified

Estat ≡ E = 〈H〉 = U term = internal energy,

so

F = E − TS = F therm

= the Helmholtz free energy
= U − TS.

Now

dF = −S dT − µ0V M · dH
= dF therm = −S dT −d̄W,

so
d̄W = µ0V M · dH.

Another possibility
Let us identify

E = enthalpy = Htherm = H.

Then

F = E − TS = Htherm − TS = Gtherm

= the Gibbs free energy = G

and

dG = −S dT − µ0V M · dH
dH = T dS − µ0V M · dH,

so

G = G(T, H)
H = H(S, H).

In the thermodynamics we had for a pV T system

dH = T dS + V dp,

from which we get the analogies

p ←→ −µ0H (intensive)
V ←→ V M (extensive).

On the other hand we had

U = H − pV
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and
dU = T dS − p dV = T dS −d̄W,

so now
U = H + µ0V M ·H

and
dU = T dS + µ0V H · dM,

from which
d̄W = −µ0V H · dM.

Example Adiabatic demagnetization Now

S

NkB
= ln 2 + ln cosh x− x tanh x,

where
x =

µ0h̄Hγ

2kBT
.

When T → 0, then x →∞, so that

ln cosh x = ln
1
2

ex(1 + e−2x)

= x− ln 2 + e−2x + · · ·
and

tanh x =
ex(1− e−2x)
ex(1 + e−2x)

= 1− 2e−2x + · · · .
Hence

S

NkB
→ 2xe−2x + · · · .

When T →∞, then x → 0, and

S

NkB
→ ln 2.

H 1 H 2 H 3< <

b a

T

S
N k B

l n  2

We decrease the field adiabatically within the interval
a → b. Now S = S(H/T ), so that

Sa = S

(
Ha

Ta

)
= Sb = S

(
Hb

Tb

)

or
Tb

Ta
=

Hb

Ha
.

Negative temperature

The entropy of the spin system is

S(E) = NkB

[
1
2

ln
4E2

0

E2
0 − E2

− E

2E0
ln

E0 + E

E0 − E

]
,

where

E0 = µ0µBHN ja − |E0| < E < |E0|.

- | E 0 | + | E 0 |
T > 0 T < 0

b > 0 b < 0
b = 0S ( E )

Now
β(E) =

1
kB

∂S

∂E
= − N

2E0
ln

E + E0

E − E0
.

- E 0 + E 0 + E 0 - E 0

e - b E

H - H

Originally the maximum of ω(E)e−βE/Z is at a negative
value E. Reversing the magnetic field abruptly E → −E
and correspondingly β → −β.
The temperature can be negative if the energy is bounded
both above and below.

Classical ideal gas (Maxwell-Boltzmann
gas)

2 Å
r i

We define ri so that

The volume occupied by one molecule =

vi =
4
3

πr3
i =

V

N
=

1
ρ

or

ri = 3

√
3

4πρ
.

Typically

• the diameter of an atom or a molecule d ≈ 2Å.

• the range of the interaction 2–4Å.

• the free path (collision interval) l ≈ 600Å.

• at STP (T = 273K, p = 1atm) ri ≈ 20Å.

or
d ¿ ri ¿ l
2 20 600 Å

The most important effect of collisions is that the system
thermalizes i.e. attains an equilibrium, which corresponds
to a statistical ensemble. Otherwise we can forget the
collisions.
Let us consider a system of one molecule which can
exchange energy (heat) with its surroundings. Then the
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suitable ensemble is the canonical ensemble and the
distribution the Boltzmann distribution

ρl = 〈l| ρ |l〉 =
1
Z

e−βεl ,

where the canonical partition function is

Z =
∑

l

e−βεl .

Since in the k-space the density of 1 particle states is
constant, in the velocity space, where

d3v =
1

m3
d3p =

(
h̄

m

)3

d3k,

the density of states is also constant.
Because the system is translationally invariant we have

εk = 〈k|H |k〉 =
h̄2k2

2m
=

1
2

mv2,

so that the velocity distribution is

f(v) ∝ 〈k| ρ |k〉 = e
− mv2

2kBT

or
f(v) = Ce

− mv2
2kBT .

C can be determined from the condition

1 =
∫

f(v) d3v = C

[∫ ∞

−∞
dvxe

− mv2
x

2kBT

]3

= C

(
2πkBT

m

)3/2

.

Thus the velocity obeys Maxwell’s distribution

f(v) =
(

m

2πkBT

)3/2

e
− mv2

2kBT .

From the relation
∫

d3v =
∫ ∞

0

4πv2dv

we can obtain for the speed (the absolute value of the
velocity v = |v|) the distribution F (v)

F (v) = 4πv2f(v).

F ( v )

v

• The most probable speed

vm =

√
2kBT

m
.

• The average of the speed

〈v〉 =
∫ ∞

0

dv vF (v) =

√
8kBT

πm
.

• The average of the square of the speed

〈
v2

〉
=

∫ ∞

0

dv v2F (v) =
3kBT

m
.

Note
〈

1
2

mv2
x

〉
=

〈
1
2

mv2
y

〉
=

〈
1
2

mv2
z

〉
=

1
2

kBT

and 〈
1
2

mv2

〉
= 3

〈
1
2

mv2
x

〉
=

3
2

kBT,

i.e. the energy is evenly distributed among the 3
(translational) degrees of freedom: the equipartition of the
energy.

Partition function and thermodynamics

The single particle partition function is

Z1(β) =
∫

dE ω(E)e−βE

= g
∑

k

e−β h̄2k2
2m = g

V

h3

∫
d3p e

− p2

2mkBT

= g
V

h3
(2πmkBT )3/2.

Here g is the spin degeneracy.
When we denote the thermal de Broglie wave length by

λT =

√
h2

2πmkBT

we can write the one body partition function as

Z1(β) = g
V

λ3
T

.

In the N particle system the canonical partition function
takes the form

ZN =
1

N !
gN

∑

k1

· · ·
∑

kN

e
−β(εk1

+···+εk1
)

=
1

N !
gN

(∑

k

e−βεk

)N

=
1

N !
ZN

1 .

Here N ! takes care of the fact that each state

|k1, . . . , kN 〉
is counted only once. Neither the multiple occupation nor
the Pauli exclusion principle has been taken into account.
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Using Stirling’s formula lnN ! ≈ N ln N −N the free
energy can be written as

FN =
= −kBT ln ZN

= NkBT

[
ln

N

V
− 1− ln g + ln λ3

T

]

= NkBT

[
ln

N

V
− 3

2
ln T − 1− ln g +

3
2

ln
h2

2πmkB

]
.

Since
dF = −S dT − p dV + µ dN,

the pressure will be

p = −∂F

∂V
= NkBT

1
V

i.e. we end up with the ideal gas equation of state

pV = NkBT.

With the help of the entropy

S = −∂F

∂T
= −F

T
+

3
2

NkB

the internal energy is

U = F + TS =
3
2

NkBT

i.e. the ideal gas internal energy.
The heat capacity is

CV =
(

∂U

∂T

)

V,N

=
3
2

NkB .

Comparing this with

CV =
1
2

fkBN

we see that the number of degrees of freedom is f = 3.

Grand canonical partition function

According to the definition we have

ZG =
∑

N

∑
n

e−β(E(N)
n −µN) =

∑

N

zNZN ,

where
z = eβµ

is called the fugacity and ZN is the partition function of
N particles.
So we get

ZG =
∑

N

1
N !

zNZN
1 = ezZ1

= exp
[
eβµ gV

λ3
T

]
.

The grand potential is

Ω(T, V, µ) = −kBT ln ZG = −kBTeβµ gV

λ3
T

.

Since
dΩ = −S dT − p dV − N̄ dµ,

we get

p = − ∂Ω
∂V

= −Ω
V

= kBTeβµ g

λ3
T

and
N̄ = −∂Ω

∂µ
= eβµ gV

λ3
T

=
pV

kBT

or we end up with the ideal gas equation of state

pV = N̄kBT.

Here

N̄ = 〈N〉 =
∑

N NzNZN∑
N zNZN

=
1

ZG
z

∂ZG

∂z
=

∂ ln ZG

∂ ln z
.

Another way
We distribute N particles among the 1 particle states so
that in the state l there are nl particles.

6
εl

t t nl = 2

t t t t nl = 4

t nl = 1

Now
N =

∑

l

nl and E =
∑

l

εlnl.

The number of possible distributions is

W = W (n1, n2, . . . , nl, . . .) =
N !

n1!n2! · · ·nl! · · · .

Since in every distribution (n1, n2, . . .) everyone of the N !
permutatations of the particles gives an identical state
the partition function is

ZG = Tr e−β(H−µN̂)

=
∞∑

n1=0

∞∑
n2=0

· · · 1
N !

We−β(E−µN)
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=
∞∑

n1=0

∞∑
n2=0

· · · 1
n1!n2! · · · e

−β
∑

l
nl(εl−µ)

=
∏

l

[ ∞∑
n=0

1
n!

e−βn(εl−µ)

]

=
∏

l

exp
[
e−β(εl−µ)

]

= exp

[∑

l

e−β(εl−µ)

]

= exp
[
eβµZ1

]

or exactly as earlier.
Now

∂ ln ZG

∂εl
=

−β
∑∞

n=0 n 1
n! e−βn(εl−µ)

∏
l

[∑∞
n=0

1
n! e−βn(εl−µ)

]

= −β 〈nl〉

so the occupation number n̄l of the state l is

n̄l = 〈nl〉 = − 1
β

∂ ln ZG

∂εl
= − 1

β

∂

∂εl
e−β(εl−µ)

= e−β(εl−µ).

The Boltzmann distribution gives a wrong result if the 1
particle states are multiply occupied. Our approximation
is therefore valid only if

n̄l ¿ 1 ∀l

or
eβµ ¿ eβεl ∀l.

Now min εl = 0, so that

eβµ ¿ 1.

On the other hand

eβµ =
N̄

V
λ3

T , when g = 1

and
N̄

V
=

1
vi

=
3

4πr3
i

,

so we must have
λT ¿ ri.

Now

λT =

√
h2

2πmkBT

is the minimum diameter of the wave packet of a particle
with the typical thermal energy (ε̄l = kBT ) so in other
words:
The Maxwell-Boltzmann approximation is valid when the
wave packets of individual particles do not overlap.

Occupation number representation
Let us consider a system of N non interacting particles.
Denote by

|n1, n2, . . . , ni, . . .〉
the quantum state where there are ni particles in the one
particle state i. Let the energy of the state i be εi. Then

H |n1, n2, . . .〉 =

(∑

i

niεi

)
|n1, n2, . . .〉

N =
∑

i

ni.

We define the creation operator a†i so that

a†i |n1, n2, . . . , ni, . . .〉 = C |n1, n2, . . . , ni + 1, . . .〉

i.e. a†i creates one particle into the state i.
Correspondingly the destruction operator ai obeys:

ai |n1, n2, . . . , ni, . . .〉 = C ′ |n1, n2, . . . , ni − 1, . . .〉 ,

i.e. ai removes one particle from the state i.
The basis {|n1, n2, . . .〉} is complete, i.e.

∑

{ni}
|n1, n2, . . .〉 〈n1, n2, . . .| = 1

and orthonormal or

〈n′1, n′2, . . . | n1, n2, . . .〉 = δn1n′1δn2n′2 · · · .

Bosons

For bosons the creation and destruction operators obey
the commutation relations

[ai, a
†
j ] = δij

[ai, aj ] = [a†i , a
†
j ] = 0.

It can be shown that

ai |n1, . . . , ni, . . .〉 =
√

ni |n1, . . . , ni − 1, . . .〉
a†i |n1, . . . , ni, . . .〉 =

√
ni + 1 |n1, . . . , ni + 1, . . .〉 .

The (occupation) number operator

n̂i = a†iai

obeys the relation

n̂i |n1, . . . , ni, . . .〉 = a†iai |n1, . . . , ni, . . .〉
= ni |n1, . . . , ni, . . .〉

and ni = 0, 1, 2, . . ..
An arbitrary one particle operator, i.e. an operator O(1),
which in the configuration space operates only on the
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coordinates on one particle, can be written in the
occupation number representation as

Ô(1) =
∑

i,j

〈
i
∣∣∣ O(1)

∣∣∣j
〉

a†iaj .

A two body operator O(2) can be written as

Ô(2) =
∑

ijkl

〈
ij

∣∣∣ O(2)
∣∣∣kl

〉
a†ia

†
jalak.

Example Hamiltonian

H =
∑

i

− h̄2

2m
∇2

i +
1
2

∑

i 6=j

V (ri, rj)

takes in the occupation representation the form

H =
∑

i,j

〈
i

∣∣∣∣−
h̄2

2m
∇2

∣∣∣∣j
〉

a†iaj

+
1
2

∑

ijkl

〈ij|V |kl〉 a†ia†jalak,

where
〈

i

∣∣∣∣−
h̄2

2m
∇2

∣∣∣∣j
〉

= − h̄2

2m

∫
φ∗i (r)∇2φj(r) d3r

and

〈ij|V |kl〉 =∫
φ∗i (r1)φ∗j (r2)V (r1, r2)φk(r2)φl(r1) d3r1 d3r2.

Fermions

The creation and destruction operators of fermions satisfy
the anticommutation relations

{ai, a
†
j} = aia

†
j + a†jai = δij

{ai, aj} = {a†i , a†j} = 0.

It can be shown that

ai |n1, . . . , ni, . . .〉 ={
(−1)Si

√
ni |n1, . . . , ni − 1, . . .〉 , if ni = 1

0, otherwise

a†i |n1, . . . , ni, . . .〉 ={
(−1)Si

√
ni + 1 |n1, . . . , ni + 1, . . .〉 , if ni = 0

0, otherwise

Here
Si = n1 + n2 + · · ·+ ni−1.

The number operator satisfies

n̂i |n1, . . . , ni, . . .〉 = ni |n1, . . . , ni, . . .〉

and ni = 0, 1.
One and two body operators take the same form as in the
case of bosons.
Note Since ai and aj anticommute one must be careful
with the order of the creation and destruction operators
in O(2).
In the case of non interacting particles the Hamiltonian
operator in the configuration space is

H =
∑

i

H1(ri),

where 1 body Hamiltonian H1 is

H1(ri) = − h̄2

2m
∇2

i + U(ri).

Let φj be eigenfunctions of H1 i.e.

H1φj(r) = εjφ(r).

In the occupation space we have then

Ĥ =
∑

j

εja
†
jaj =

∑

j

εj n̂j

and
N̂ =

∑

j

a†jaj =
∑

j

n̂j .

The grand canonical partition function is now

ZG = Tr e−β(Ĥ−µN̂) =
∑
n1

∑
n2

· · · e−β
∑

l
nl(εl−µ).

Bose-Einstein ideal gas
In bosonic systems the occupations of one particle states
are nl = 0, 1, 2, . . .. The grand canonical state sum is

ZG,BE =
∞∑

n1=0

∞∑
n2=0

· · · e−β
∑

l
nl(εl−µ)

=
∏

l

[ ∞∑
n=0

e−βn(εl−µ)

]

=
∏

l

1
1− e−β(εl−µ)

.

The grand potential is

ΩBE = kBT
∑

l

ln
[
1− e−β(εl−µ)

]
.

The occupation number of the state l is

n̄l = 〈nl〉 =
1

ZG

∑
n1

∑
n2

· · ·nle
−β

∑
m

nm(εm−µ)

= − 1
β

∂

∂εl
ln ZG =

∂Ω
∂εl

,
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and for the Bose-Einstein occupation number we get

n̄l =
1

eβ(εl−µ) − 1
.

Entropy

Since dΩ = −S dT − p dV −N dµ we have

S =
(

∂Ω
∂T

)

µ

= −kB

∑

l

ln
[
1− e−β(εl−µ)

]

−kBT
∑

l

1
1− e−β(εl−µ)

(εl − µ)e−β(εl−µ) −1
kBT 2

.

Now

eβ(εl−µ) = 1 +
1
n̄l

and
β(εl − µ) = ln(1 + n̄l)− ln n̄l,

so

S = −kB

∑

l

ln
(

1− n̄l

n̄l + 1

)

+kB

∑

l

n̄l [ln(n̄l + 1)− ln n̄l]

or
S = kB

∑

l

[(n̄l + 1) ln(n̄l + 1)− n̄l ln n̄l] .

Fermi-Dirac ideal gas
The Hamiltonian operator is

Ĥ =
∑

l

εla
†
l al

and the number operator

N̂ =
∑

l

a†l al.

Now
{al, a

†
l′} = δll′

and
{al, al′} = {a†l , a†l′} = 0.

The eigenvalues of the number operator related to the
state l,

n̂l = a†l al,

are
nl = 0, 1.

The state sum in the grand canonical ensemble is

ZG,FD

= Tr e−β(Ĥ−µN̂)

=
1∑

n1=0

1∑
n2=0

· · ·
〈
n1n2 · · ·

∣∣∣ e−β(Ĥ−µN̂)
∣∣∣n1n2 · · ·

〉

=
1∑

n1=0

1∑
n2=0

· · · e−β
∑

l
nl(εl−µ)

=
∏

l

{
1∑

n=0

e−βn(εl−µ)

}

=
∏

l

[
1 + e−β(εl−µ)

]
.

The grand potential is

ΩFD = −kBT
∑

l

ln
[
1 + e−β(εl−µ)

]
.

The average occupation number of the state l is

n̄l = 〈nl〉 =
1

ZG,FD
Tr n̂le

−β(Ĥ−µN̂)

=
1

ZG,FD

1∑
n1=0

1∑
n2=0

· · ·nle
−β

∑
l′ nl′ (εl′−µ)

= − 1
β

∂ ln ZG,FD

∂εl
=

∂ΩFD

∂εl

=
e−β(εl−µ)

1 + e−β(εl−µ)
.

Thus the Fermi-Dirac occupation number can be written
as

n̄l =
1

eβ(εl−µ) + 1
.

m

k B T1
n l

e l

The expectation value of the square of the occupation
number will be

〈
n2

l

〉
=

1
ZG,FD

Tr n̂2
l e
−β(Ĥ−µN̂)

=
1

ZG,FD

1∑
n1=0

1∑
n2=0

· · ·n2
l e
−β

∑
l′ nl′ (εl′−µ)

=
1
β2

1
ZG,FD

∂2ZG,FD

∂εl
2

= − 1
β

1
ZG,FD


∏

l′ 6=l

[
1 + e−β(εl′−µ)

]



× ∂

∂εl
e−β(εl−µ)
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=
e−β(εl−µ)

1 + e−β(εl−µ)
= n̄l.

This is natural, since n2
l = nl.

For the variance we get

(∆nl)2 =
〈
n2

l

〉− 〈nl〉2 = n̄l − n̄2
l

= n̄l(1− n̄l).

k B T

m

D n l

e l
There are fluctuations only in the vicinity of the chemical
potential µ.
The entropy is

S = −∂Ω
∂T

= kB

∑

l

ln
[
1 + e−β(εl−µ)

]

+
1
T

∑

l

=n̄l︷ ︸︸ ︷
e−β(εl−µ)

1 + e−β(εl−µ)
(εl − µ).

Now β(εl − µ) = ln 1−n̄l

n̄l
and 1 + e−β(εl−µ) = 1

1−n̄l
, so

S = −kB

∑

l

[(1− n̄l) ln(1− n̄l) + n̄l ln n̄l] .

Bosonic systems

Bose condensate

Number of particles

The avaerage number of particles is

N̄ = 〈N〉 = −
(

∂Ω
∂µ

)

T

=
∑

l

1
eβ(εl−µ) − 1

or
N̄ =

∑

l

n̄l.

We denote
z = eβµ = fugacity,

so
n̄l =

1
eβεlz−1 − 1

.

Let us consider a free non interacting gas. Then

εl =
h̄2k2

l

2m
=

p2
l

2m
.

Now
1 ≤ eβεl < ∞.

Since n̄l ≥ 0, the fugacity is restricted to lie between

0 < z < 1

or µ < 0.
We treat the state p = 0 separately, since the
corresponding occupation number n̄0 can become
macroscopic:

n̄0 =
z

1− z
→z→1 ∞.

We write the grand potential as

ΩBE = kBT ln
[
1− eβµ

]

+kBT
∑

k 6=0

ln
[
1− eβµe−β h̄2k2

2m

]
.

Let us define functions gα(z) so that

gα(z) =
∞∑

n=1

zn

nα
.

Then

ΩBE = kBT ln(1− z)− V kBT

λ3
T

g5/2(z).

For the number of particles we get

N̄ = n̄0 +
V

λ3
T

g3/2(z).
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When the temperature is high or the density low, the
term n̄0

V is negligible as compared with g3/2(z)

λ3
T

, i.e.

N̄

V
λ3

T = g3/2(z).

Now g3/2(z) is a positive monotonically increasing
function and

(
N̄

V
λ3

T

)

z=0

= g3/2(0) = 0
(

N̄

V
λ3

T

)

z=1

= g3/2(1) = ζ(3/2) = 2.612.

z

N
V l T

3

2 . 6 1 2

1

Let us choose the density ρ = N̄
V and T so that

N̄

V
λ3

T = 2.612,

and z = 1. If we still increase the density or decrease the
temperature the increase of the term N̄

V λ3
T must originate

from n̄0
V λ3

T , since z ≤ 1, i.e.

N̄
V λ3

T = g3/2(z), when N̄
V λ3

T < 2.612

N̄
V λ3

T = n̄0
V λ3

T + g3/2(1), when N̄
V λ3

T ≥ 2.612.

When
λ3

T ≥ 2.612
V

N̄
,

the state p = 0 will be occupied macroscopically forming
the Bose-Einstein condensate. The formation starts when
the temperature is less than the critical temperature

Tc =
(

2πh̄2

mkB

) ( ρ

2.612

)2/3

or the density greater than the critical density

ρc = 2.612
(

mkBT

2πh̄2

)3/2

.

When T < Tc, the relative fraction of the condensate is

n̄0

N̄
= 1− 2.612

λ3
T

V

N̄
= 1−

(
T

Tc

)3/2

.

T
T C

1

n 0
N

Pressure

With the help of the grand potential the pressure is

p = −
(

∂Ω
∂V

)

T,N

= −ΩBE

V

=
kBT

λ3
T

g5/2(z),

so

p =





kBT
λ3

T

g5/2(z) above the
critical point

kBT
λ3

T

g5/2(1) = 1.342 kBT
λ3

T

below the
critical point.

t r a n s i t i o n  b o r d e rp

V

T 1

T 2

T 3

T 1 > T 2 > T 3

We are dealing with a 1st order phase transition.
C V

T C
T

4He liquid

A second order phase transition to a super liquid state at
the temperature Tc = 2.17K. The expression given above,

Tc =
2πh̄2

mkB

( ρ

2.612

)2/3

,

results Tc = 3.13K.
C V

T C
T

H e  I I
H e  I

This is called a λ-transition.

Two liquid modell

When T < Tc, we suppose that 4He is composed of two
components: super and normal components. Then

ρ = ρs + ρn

j = js + jn

...

When T → 0, then ρs
ρ → 1, but n̄0

N̄
→∼ 0.1.

This is due to the fact that 4He is not an ideal liquid:
between 4He atoms there is

42



• a strong repulsion at short distances,

• an attraction at longer distances.

Black body radiation (photon gas)
The photon is a relativistic massles boson, whose spin is
S = 1, so g = 2S + 1 = 3. In the vacuum only transversal
polarization exisits, so g = 2.
The energy of a photon is

ε(p) =
√

(m0c2)2 + (pc)2

= pc = h̄kc.

With the help of the frequency f or of the angular
velocity ω the energy is

ε = h̄ω = h̄2πf = hf.

Since the wave length λ is

λ =
2π

k
,

we have

f =
c

λ
ω = ck.

Density of states

Employing the periodic boundary conditions the wave
vector is

k =
2π

L
(nx, ny, nz),

so the number of states in the vicinity of k is

dNk = g

(
L

2π

)3

dk

= g
V

(2π)3
4πk2dk.

With the help of the angular velocity this is

dNk = dNω = g
V

(2π)3
4π

ω2

c2

dω
c

= g
V ω2dω
2π2c3

.

We denote now
dNω = f(ω) dω,

so

f(ω) dω = V
ω2 dω
π2c3

.

The sum over quantum states can be replaced by the
integration like

∑

l

· · · =
∑

k,λ

· · · =
∫ ∞

0

dω f(ω) · · · .

Here k is the wave vector and

λ =
{

L, left
R, right

is the polarization.
Photons obey the Bose-Einstein statistics
Let’s consider n photons each with the angular velocity
ω. The total energy of this system is

εn(ω) = nh̄ω,

so the system is equivalent with a single harmonic
ocillator,

En = (n +
1
2
)h̄ω = nh̄ω + 0-point motion.

Thus we can consider a system of one harmonic oscillator
which is allowed to exchage energy with its surroundings.
So we can set µ = 0.The Hamiltonian of the system is

Ĥ =
∑

k,λ

(h̄ck)a†kλ
akλ

.

According to the Bose-Einstein distribution the
occupation of the energy state ε(ω) is

n̄(ω) =
1

eβh̄ω − 1
.

The total energy is

E =
∫ ∞

0

dω f(ω)
h̄ω

eβh̄ω − 1
.

The energy density will be

E

V
= e(T ) =

h̄

π2c3

∫ ∞

0

dω
ω3

eβh̄ω − 1

=
∫ ∞

0

dω e(ω, T ),

where the energy density at the given angular velocity
obeys Planck’s law of radiation

e(ω, T ) =
h̄ω3

π2c3(eβh̄ω − 1)
.

w m a x

e ( w , T )

T 1 <
T 2 <

T 3

w

We can see that the maximum of the intensity follows the
Wien displacement law

ωmax = constant× T.

At the long wave length limit, λ À hc
kBT or ω ¿ kBT

h̄ , the
energy density obeys the Rayleigh-Jeans law

e(ω, T ) = vakio× ω2T.
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At a given temperature the energy density will be

e(T ) =
∫ ∞

0

dω
h̄ω3

π2c3(eβh̄ω − 1)

=
h̄

π2c3

1
(βh̄)4

∫ ∞

0

dx
x3

ex − 1

=
k4

BT 4

π2c3h̄3

π4

15
.

Thus the energy density obeys the Stefan-Boltzmann law

e(T ) =
4
c

σT 4,

where σ is the Stefan-Boltzmann constant

σ =
π2k4

B

60h̄3c2
= 5.67 · 10−8 W

m2K4 .

Now
Ω = F − µN = F,

since µ = 0. Thus the free energy is

F = kBT

∫ ∞

0

dω f(ω) ln
[
1− e−βh̄ω

]

=
V

π2c3
kBT

∫ ∞

0

dω ω2 ln
[
1− e−βh̄ω

]

=
V kBT

π2c3(βh̄)3

∫ ∞

0

dxx2 ln
[
1− e−x

]

= −V
k4

BT 4

π2c3h̄3

π4

45
,

or
F = −4

3
σ

c
V T 4 = −1

3
E.

Here
E = e(T )V

is the total energy.
The entropy is

S = −∂F

∂T
or

S =
16
3

σ

c
V T 3.

The pressure is

p = −∂F

∂V
or

p =
4
3

σ

c
T 4.

We see that the photon gas satisfies the relation

pV =
1
3

E.

Radiation of a black surface

We can think that the emitting surface is a hole on a
hollow container filled with isotropic black body
radiation. The radiation power can be determined by
counting the number of photons escaping through the
hole per time interval.

q

l ( q )

In the time interval τ the photons escaping into the
direction θ originate from the region whose depth is

`(θ) = cτ cos θ.

The total energy of photons landing into the space angle
element dΩ at the direction θ is

e(T )Acτ cos θ
dΩ
4π

.

Thus the total energy of the radiation is

Erad = e(T )Acτ

∫ π/2

θ=0

cos θ
dΩ
4π

= e(T )Acτ
1
2

∫ π/2

0

dθ sin θ cos θ

=
1
4

Ae(T )cτ.

The radiation power per unit area is

P =
Erad

Aτ
=

1
4

ce(T )

= σT 4.

Absorption and intensity of radiation

A

When the radiation arrives from a given direction its
intensity is

I =
E

Aτ
=

Acτe(T )
Aτ

= ce(T )
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or
I = 4σT 4.

The absorption power to a perpendicular surface is IA.

Phonons

Classical harmonic lattice

We let the ions of a crystal to oscillate in the vicinity of
their equilibrium position. We suppose that

1. At the average equilibrium position the crystal is a
Bravais lattice. With every point R of the lattice we
can thus associate an atom. The vector R, however,
reperents only the average position of the ion.

2. Typical deviations from the equilibrium positions are
small as compared with the interatomic distances.

According to the hypothesis 1 the atoms of the crystal
can be identified with the Bravais lattice points R; e.g.
r(R) stands for the actual position of the ion associated
with the lattice point R. If u(R) is the deviation of the
ion R from its equilibrium then

r(R) = R + u(R).

Let φ(r) be the potential energy of two ions separated by
the distance r. The energy of the whole lattice is then

U =
1
2

∑

RR′

φ(r(R)− r(R′))

=
1
2

∑

RR′

φ(R−R′ + u(R)− u(R′)).

When we use the notation P(R) for the momentum of the
ion R the total Hamiltonian is

H =
∑

R

P2(R)
2m

+ U.

Harmonic approximation

Since the evaluation of the total potential U starting from
the actual pair interactions is hopeless we approximate it
resorting to the hypothesis 2 (u(R) is small). The first
terms in the Taylor series of the potential U are

U =
N

2

∑

R

φ(R)

+
1
2

∑

RR′

(u(R)− u(R′)) · ∇φ(R−R′)

+
1
4

∑

RR′

[(u(R)− u(R′)) · ∇]2φ(R−R′)

+O(u3).

In the equilibrium the total force due to other ions
affecting the ion R is

F = −
∑

R′

∇φ(R−R′).

Since we are at a equilibrium this force must be zero.
Thus the linear term in the series expansion of U vanishes.
Up to the second order we are left with

U = U eq + Uharm,

where U eq is the potential energy of the equilibrium and

Uharm =
1
4

∑

RR′
µ,ν=x,y,z

[uµ(R)− uµ(R′)]φµν(R−R′)

×[uν(R)− uν(R′)]

φµν(r) =
∂2φ(r)
∂rµ∂rν

.

If we are not interested in the quantities related to the
equilibrium of the crystal ( total energy, total volume,
total compessibility, . . .) we can forget the term U eq. The
harmonic potential is usually written more generally as

Uharm =
1
2

∑

RR′
µν

uµ(R)Dµν(R−R′)uν(R′).

The former expression can be obtained by setting

Dµν(R−R′) = δRR′
∑

R′′

φµν(R−R′′)− φµν(R−R′).

The heat capacity of classical lattice

The volume element of the the 3N dimensional classical
phase space formed by the N ions of the lattice is

dΓ =
∏

R

1
h

du(R) dP(R) =
∏

R,µ

1
h

duµ(R)dPµ(R)

and the canonical partition sum

Z =
∫

dΓ e−βH .

The total energy E is then

E =
1
Z

∫
dΓ e−βHH = − ∂

∂β
ln Z.

When we change variables,

u(R) = β−1/2ū(R)
P(R) = β−1/2P̄(R),

the partion function can be written as

Z =
∫

dΓ exp
[
−β

(∑ P(R)2

2M
+ U eq + Uharm

)]

= e−βUeq
β−3N

∫ ∏

R

1
h

dū(R) dP̄(R)×

exp
[
−

∑ P̄(R)2

2M
− 1

2

∑
ūµ(R)Dµν(R−R′)ūν(R′)

]
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Since all dependence on the temperature is outside of the
integral the energy can be calculated easily

E = − ∂

∂β
ln(e−βUeq

β−3N × vakio)

= U eq + 3NkBT.

The heat capacity is

Cv =
∂E

∂T
= 3NkB .

This expression for heat capacity, due to the lattice
vibrations, is known as Dulong-Petit’s law.
Experimentally

• at low temperatures the heat capacity is smaller than
the one obtained from the Dulong-Petit law. When
we approach the temperature T = 0 the heat
capacity tends to zero.

• even at higher temperatures the measured heat
capacities do not approach the Dulong-Petit limit.

Normal modes of the harmonic crystal

One dimenional Bravais lattice
If the separation of the lattice points in the one
dimensional Bravais lattice is a the lattice points are na,
n an integer. Every lattice point na is associated with
one atom.
We suppose that in this one dimensional lattice only the
nearest neighbours interact. Using the notation

K = φ′′(x),

the harmonic potential of the lattice is

Uharm =
1
2
K

∑
n

[u(na)− u((n + 1)a)]2.

The classical equations of motion are

Mü(na) = −∂Uharm

∂u(na)
= −K[2u(na)− u((n− 1)a)− u((n + 1)a)].

We suppose that the N points of the lattice form a ring,
i.e. the deviations satisfy the boundary conditions

u((N + 1)a) = u(a); u(0) = u(Na).

We seek solutions of the form

u(na, t) ∝ ei(kna−ωt)

To satisfy the boundary conditions we must have

eikNa = 1.

We see that the allowed values for k are

k =
2π

a

n

N
, n integer.

Substituting the exponential trial into the equation of
motion we see that the angular velocity ω must satisfy

ω(k) =

√
2K(1− cos ka)

M
= 2

√
K

M
| sin 1

2
ka|.

The solutions represent a wave advancing in the ring with
the phase velocity c = ω/k and with the group velocity
v = ∂ω/∂k. If the wave length is large or the wave vector
k small then the disperssion relation

ω =

(
a

√
K

M

)
k

is linear and the phase and group velocities equal.
One dimensional lattice with base
We suppose that in the primitive cell there are two
atoms. Let the equilibrium positions of the ions to be na
and na + d, where d ≤ a/2. We denote the deviations of
the ions these equlibrium positions by u1(na) and u2(na).
For the simplicity we suppose that the masses of the
atoms are equal. The harmonic interaction due to the
nearest neighbours is

Uharm =
K

2

∑
n

[u1(na)− u2(na)]2

+
G

2

∑
n

[u2(na)− u1((n + 1)a)]2,

where K describes the interaction of the ions na and
na + d, and G the interaction of na + d and (n + 1)a.
The classical equations of motion are

Mü1(na) = − ∂Uharm

∂u1(na)
= −K[u1(na)− u2(na)]

−G[u1(na)− u2((n− 1)a)]

Mü2(na) = − ∂Uharm

∂u2(na)
= −K[u2(na)− u1(na)]

−G[u2(na)− u1((n + 1)a)].

Again we look for a solution of the form

u1(na) = ε1e
i(kna−ωt)

u2(na) = ε2e
i(kna−ωt).

Substituting these into the equations of motion we end up
with the linear homogenous simultaneous equations

[Mω2 − (K + G)]ε1 + (K + Ge−ika)ε2 = 0
(K + Geika)ε1 + [Mω2 − (K + G)]ε2 = 0.

This system has a non trivial solution only if the
coefficient determinant vanishes. From this we obtain

ω2 =
K + G

M
± 1

M

√
K2 + G2 + 2KG cos ka.
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The ration of the amplitudes is

ε1
ε2

= ∓ K + Geika

|K + Geika| .

For every allowed wave vector k (counting N) we get two
solutions. Alltogether the number of the normal modes is
now 2N .
We consider couple of limiting cases.
Case 1. k ¿ π/a
The angular velocities of the modes are now

ω =

√
2(K + G)

M
−O((ka)2)

ω =

√
KG

2M(K + G)
(ka).

Since the latter dispersion relation is linear the
corresponding mode is called acoustic. In the former
mode ω =

√
2(K + G)/M , when k = 0. Since at the long

wave length limit this mode can couple with
electromagnetic radiation it is called the optical branch.
At the long wave length limit, when k ≈ 0, the
amplitudes satisfy

ε1 = ∓ε2

the upper sign corresponding to the optical mode and the
lower sing to the acoustic mode.
Case 2. k = π/a
At the border of the Brillouin zone the modes are

ω =

√
2K

M
, optical branch

ω =

√
2G

M
, acoustical branch.

Correspondingly for the amplitudes

ε1 = ∓ε2.

Case 3. K À G
The dispersion relations are now

ω =

√
2K

M

[
1 +O

(
G

K

)]

ω =

√
2G

M
sin

1
2
ka

[
1 +O

(
G

K

)]
,

and the amplitudes satisfy

ε1 ≈ ∓ε2.

The frequency of the optical branch is now independent
on the wave vector. Its magnitude corresponds to the
vibration frequency of a molecule of two atoms with equal
masses and coupled with the spring constant K.
On the other hand, the acoustical branch is the same as
in the case of the linear chain.

Case 4. K = G
Now we have a Bravais lattice formed by single atoms
with the primitive cell length a/2.

Three dimensional Bravais lattice of single atoms

Using the matrix notation the harmonic potential can be
written more compactly

Uharm =
1
2

∑

RR′

u(R)D(R−R′)u(R′).

Independent on the interionic forces the matrix
D(R−R′) obeys certain symmetries:
1. Dµν(R−R′) = Dνµ(R′ −R)
This property can be verified by exchanging the order of
differentiations in the definitions of the elements of D:

Dµν(R−R′) =
∂2U

∂uµ(R)∂uν(R′)

∣∣∣∣
u=

.

2. D(R) = D(−R)
Let’s consider a lattice where the displacements from the
equilibrium are u(R). In the corresponding reversal
lattice the displacements are −u(−R). Since every
Bravais lattice has the inversion symmetry the energies of
both lattices must be equal, no matter what the
deviations u(R) are, i.e.

Uharm =
1
2

∑

RR′

u(R)D(R−R′)u(R′)

=
1
2

∑

RR′

(−u(−R))D(R−R′)(−u(−R′))

=
1
2

∑

RR′

u(R)D(R′ −R)u(R′),

for an arbitrary u(R). This can be valid only if

D(R−R′) = D(R′ −R).

In addition, according to the symmetry 1, we have

Dµν(R−R′) = Dνµ(R−R′),

so the matrix D is symmetric.
3.

∑
R D(R) = 

We move every ion R to R + d. This is equivalent with
translating the whole lattice by the amount d. The
potential energies of the original and the translated
lattices are equal; in particular at the equilibrium 0, i.e.

0 =
∑

RR′
µν

dµDµν(R−R′)dν

=
∑
µν

Ndµdν

(∑

R

Dµν(R)

)
.

Since the vector d is arbitrary we must have
∑

R

D(R) = .
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The classical equations of motion

Müµ(R) = − ∂Uharm

∂uµ(R)
= −

∑

R′ν

Dµν(R−R′)uν(R′),

or in the matrix notation

M ü(R) = −
∑

R′

D(R−R′)u(R′)

form a system of 3N equations. Again we seek solutions
of the form

u(R, t) = εei(k·R−ωt).

Here the polarisation vector ε tells us the direction of the
motion of the ions. Furthermore we require that for every
primitive vector ai the solutions satisfy the Born-von
Karman boundary conditions

u(R + Niai) = u(R),

when the total number of primitive cells is N = N1N2N3.
These conditions can be satisfied only if the wave vector
k is of form

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3.

Here bi are vectors in the reciprocal lattice and ni

integers.
We see that we get different solution only if k is restricted
into the 1st Brillouin zone, i.e. there are exactly N
allowed values for the wave vector.
We substtitute the trial into the equations of motion and
end up with

Mω2ε = D(k)ε, (∗)
where

D(k) =
∑

R

D(R)e−ik·R

is so called dynamical matrix. For every allowed k we
have as the solution of (∗) three eigen values and vectors.
The number of normal modes is therefore 3N .
Employing symmetry properties of D(R) we can rewrite
the dynamical matrix as

D(k) =
1
2

∑

R

D(R)[e−ik·R + eik·R − 2]

=
∑

R

D(R)[cos(k ·R)− 1].

Thus the dynamical matrix is

D(k) = −2
∑

R

D(R) sin2(
1
2
k ·R).

We see that D(k) is a real and symmetric function of k.
Since D(R) is symmetric D(k) is also symmetric. We
rewrite the equation (∗) as

D(k)εs(k) = λs(k)εs(k).

As the eigen values of a real and symmetric matrix λs(k)
are real and the eigenvectors εs(k) can be
orthonormalized, i.e.

εs(k) · εs′(k) = δss′ , s, s′ = 1, 2, 3.

The polarizations of three normal modes are εs(k) and
the angular velocities correspondingly

ωs(k) =

√
λs(k)
M

.

Let us suppose now that the mutual interaction of the
ions decreases rapidly with the increasing separation.
Strictly speaking we suppose that

lim
R→∞

D(R) = O(R−5).

Then, at long wave length, i.e. when k ≈ , we have

sin2(
1
2
k ·R) ≈ (

1
2
k ·R)2

and

D(k) ≈ −k2

2

∑

R

(k̂ ·R)2D(R).

Let cs(k̂)2 be the eigenvalues of the matrix

− 1
2M

∑

R

(k̂ ·R)2D(R).

We see that at small wave vectors the frequency is

ωs(k) = cs(k̂)k.

Thus the dispersion of all three modes is a linear function
of k so all three modes are acoustical. In general cs(k̂),
together with ωs(k), depend also on the direction k̂ of the
propagation in addition to the mode s.

Three dimensional lattice with base

We proceed exactly like in the case the one dimensional
lattice with base. We suppose that there are p ions in the
primitive cell. Every ion in the primitive cell adds one
degree of freedom so the total number of modes at a
given wave vector k is 3p. The corresponding frequences
are ωi

s(k), where now s = 1, 2, 3 and i = 1, 2, . . . , p. The
corresponding displacements are

ui
s(R, t) = εi

s(k)ei(k·R−ωi
s(k)t).

The polarizations are no more orthogonal but satisfy

p∑

i=1

εi
s

∗
(k) · εi

s′(k) = δss′ .

Analogically with one dimensional lattice 3 of the modes
are now acoustical and the rest 3(p− 1) modes optical.
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Quantum mechanical treatment

Let us consider the harmonic Hamiltonian

Hharm =
∑

R

1
2M

P (R)2

+
1
2

∑

RR′

u(R)D(R−R′)u(R′)

describing the lattice. Let ωs(k) and εs(k) be the
frequences and polarizations in the corresponding
classical lattice. We define the operator aks so that

aks =
1√
N

∑

R

e−ik·Rεs(k) ·
[√

Mωs(k)
2h̄

u(R) + i

√
1

2h̄Mωs(k)
P(R)

]
.

The Hermitean conjugate a†ks
of the operator aks is

a†ks
=

1√
N

∑

R

eik·Rεs(k) ·
[√

Mωs(k)
2h̄

u(R)− i

√
1

2h̄Mωs(k)
P(R)

]
.

The operator a†ks
is called the phonon creation operator

and aks the phonon destruction operator.
We employ the canonical commutation relations for the
position and momentum

[uµ(R), Pν(R′)] = ih̄δµνδRR′

[uµ(R), uν(R′)] = [Pµ(R), Pν(R′)] = 0,

the identities
∑

R

eik·R =
{

0, k is not a reciprocal vector
N, k is a reciprocal vector

and ∑

k

eik·R = 0, R 6= 0

together with the property of an orthogonal vector set

3∑
s=1

[εs(k)]µ[εs(k)]ν = δµν .

One can straightforwardly show that the creation and
annihilation operators obey the commutation relations

[aks, a
†
k′s′ ] = δkk′δss′

[aks, ak′s′ ] = [a†ks
, a†k′s′ ] = 0.

With the help of the creation and destruction operators
the operators u(R) and P(R) can be written as

u(R) =
1√
N

∑

ks

√
h̄

2Mωs(k)
(aks + a†−ks

)×

εs(k)eik·R

P(R) =
−i√
N

∑

ks

√
h̄Mωs(k)

2
(aks − a†−ks

)×

εs(k)eik·R.

The Hamiltonian is now

H =
∑

ks

h̄ωs(k)(a†ks
aks +

1
2
).

This is simply the Hamiltonian of the system of 3N
independent harmonic oscillators whose energies are
correspondingly

E =
∑

ks

(nks +
1
2
)h̄ωs(k).

Here nks the eigenvalues of the occupation number
operator n̂ks = a†ks

aks, i.e. nks = 0, 1, 2, . . ..

Einstein’s model

Let us suppose that every ion of the crystal moves in a
similar potential well. Then

H =
∑

ks

h̄ωE(a†ks
aks

+
1
2
),

where the parameter

ωE ≡ kBTE

h̄

is the Einstein frequency common for all 3N oscillators
and TE the corresponding Einstein temperature.
The partition function of one single harmonic oscillator is

Zharm(ω) = Tr e−βh̄ω(a†a+ 1
2 ) =

∞∑
n=0

e−βh̄ω(n+ 1
2 )

= e−
1
2 βh̄ω

∑
n

(
e−βh̄ω

)n
=

e−
1
2 βh̄ω

1− e−βh̄ω

=
1

2 sinh( 1
2 βh̄ω)

.

Since the number of modes is 3N the canonical partition
function is

Z =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

n3N=1

e
−βh̄ωE

∑3N

j=1
(nj+

1
2 )

=
3N∏

j=1

∞∑
n=0

e−βh̄ωE(n+ 1
2 ) = Z3N

harm(ωE)

=
[
2 sinh

(
TE

2T

)]−3N

.

The heat capacity is

CV =
∂E

∂T
= − ∂

∂T

∂

∂β
ln Z =

∂

∂T

(
kBT 2 ∂ ln Z

∂T

)

= kBT
∂2

∂T 2 T ln Z = 3NkB
(TE/2T )2

sinh2(TE/2T )
.
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Debye’s model

To get the exact solution we should evaluate the partition
function

Z = Tr e
−β

∑
ks

h̄ωs(k)(a†
ks

a
ks

+ 1
2 )

=
∞∑

{nks
=0}

e−β
∑

ks
h̄ωs(k)(nks

+ 1
2 ),

which in turn would require the knowledge of of the
dispersions ωs(k). In practice we have to be satisfied
with, normally quite realistic, Debye’s model:

• At low temperatures only the contribution of the low
energetic phonons is prominent, so

– we take into account only the acoustic modes: 2
tranversal and 1 longitudinal.

– we take only the phonons associated with small
k, so we can employ the linear dispersions

ωl(k) = clk

ωt(k) = ctk.

• We cut the spectra at the Debye frequency

ωD ≡ kBTD

h̄
,

where TD is the corresponding Debye temperature.

In each mode j the density of states is

dNj(ω) =
(

L

2π

)3

4πk2dk =
V

2π2c3
j

ω2dω.

Thus the total density of states is

dN(ω) =
V

2π2

(
2
c3
t

+
1
c3
l

)
ω2dω.

Since the total number of states is

3N =
∫ ωD

ω=0

dN(ω) =
V

6π2

(
2
c3
t

+
1
c3
l

)
ω3

D,

where N is the number of primitive cells, we get as the
Debye temperature

ω3
D =

N

V
18π2

(
2
c3
t

+
1
c3
l

)−1

.

Correspondingly the state density is

dN(ω) =
9N

ω3
D

ω2dω (ω < ωD).

The canonical partition function is

Z =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

n3N=0

e−β
∑

ks
h̄ωs(k)(nks

+ 1
2 )

=
∏

ks

e−
1
2 βh̄ωs(k)

1− e−βh̄ωs(k)
,

from which we can derive as the free energy

F =
∑

ks

1
2

h̄ωs(k)

︸ ︷︷ ︸
0-point energy

+kBT
∑

ks

ln
[
1− e−βh̄ωs(k)

]

or

F = F0 + kBT
9N

ω3
D

∫ ∞

0

dω ω2 ln
(
1− e−βh̄ω

)
.

Since S = − ∂F
∂T and CV = T ∂S

∂T , is CV = −T ∂2F
∂T 2 , so we

have

CV = 3NkBfD

(
TD

T

)
.

Here

fD(x) =
3
x3

∫ x

0

dy
y4ey

(ey − 1)2

is the so called Debye function.
Typical Debye temperatures

TD

Au 170
Cu 315
Fe 420
Cr 460
B 1250

C (diamond) 1860

Note The higher TD the stiffer, harder crystal.
Behaviour of CV :
T →∞
Since

fD(x) →
x→0

3
x3

∫ x

0

dy y2 = 1,

we have
CV → 3NkB ,

or we end up with the Dulong-Petit heat capacity.
T → 0
Since

fD(x) →
x→∞

3
x3

∫ ∞

0

dy
y4ey

(ey − 1)2
=

constant

x3
,

we get

CV (T ) → vakio× T 3 =
12π4

5
NkB

(
T

TD

)3

.
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D e b y e

Diatomic ideal gas

d

We classify molecules of two atoms as

• homopolar molecules (identical atoms), e.g. H2, N2,
O2, . . ., and

• heteropolar molecules (different atoms), e.g. CO,
NO, HCl, . . .

When the density of the gas is low the intermolecular
interactions are minimal and the ideal gas equation of
state holds. The internal degrees of freedom, however,
change the thermal properties (like CV ).
When we suppose that the modes corresponding to the
internal degrees of freedom are independent on each
other, we can write the total Hamiltonian of the molecule
as the sum

H ≈ Htr + Hrot + Hvibr + Hel + Hnucl.

Here

Htr =
p2

2m
= kinetic energy

m = mass of molecule

Hrot =
L2

2I
= rotational energy

L = angular momentum
I = moment of inertia

I =
∑

i

mix
2
i =

m1m2

m1 + m2
d2

Example H2-molecule
d = 0.75Å
L = h̄

√
l(l + 1), l = 0, 1, 2, . . .

h̄2

2IkB
= 85.41K

eigenvalues
h̄2

2I
l(l + 1)

are (2l + 1)-fold degenerated

Hvibr = h̄ωv(n̂ +
1
2
) = vibration energy

The vibrational degrees of
freedom of the separation d of
nuclei correspond at small
amplitudes to a linear harmonic
oscillator.
n̂ = a†a = 0, 1, 2, . . .
Each energy level is non
degenerate

Hel = electronic energies

• jumping of electrons from an
orbital to another

• ionization

• energies >∼1eV ≈ kB104K

• in normal circumstances
these degrees of freedom are
frozen and can be neglected.

Hnucl = energies corresponding to
nucleonic degrees of freedom
In normal circumstances only the
nuclear spins are interesting. The
spin degeneracy is
gy = (2I1 + 1)(2I2 + 1),
where I1 and I2 are the spins of
the nuclei

Energy terms do not couple appreciably, i.e. the energy
Ei of the state i is

Ei ≈ Etr + Erot + Evibr,

so the partition sum of one molecule is

Z1 =
∑
p

∞∑

l=0

∞∑
n=0

gy(2l + 1)×

e−β p2

2m−β h̄2
2I l(l+1)−βh̄ωv(n+ 1

2 )

= ZtrZrotZvibrZnucl,

i.e. the state sum can be factorized.
Above

Ztr =
∑
p

e−β p2

2m =
V

λ3
T

λT =

√
h2

2πmkBT

Zrot =
∞∑

l=0

(2l + 1)e−
Tr
T l(l+1)

Tr =
h̄2

2IkB
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Zvibr =
∞∑

n=0

e−βh̄ωv(n+ 1
2 )

=
[
2 sinh

Tv

2T

]−1

Tv =
h̄ωv

kB

Znucl = gy = (2I1 + 1)(2I2 + 1).

Approximatively (neglecting the multiple occupation of
states) the state sum of N molecules is

ZN =
1

N !
ZN

1 ,

where 1/N ! takes care of the identity of molecules. We
associate this factor with the translational sum.
The free energy

F = −kBT ln ZN

can be divided into terms

F tr = −kBT ln
[

1
N !

(Ztr)N

]

= −kBT ln

[
1

N !
V

(
2πmkBT

h2

) 3
2 N

]

= −kBTN

[
ln

V

N
+ 1 +

3
2

ln kBT +
3
2

ln
2πm

h2

]

F rot = −NkBT ln

{ ∞∑

l=0

(2l + 1)e−
Tr
T l(l+1)

}

F vibr = NkBT ln
[
2 sinh

Tv

2T

]

Fnucl = −NkBT ln gy.

The internal energy is

U = F + TS = F − T
∂F

∂T

= −T 2 ∂

∂T

(
F

T

)
,

so the internal energy corresponding to tranlational
degrees of freedom is

U tr = −T 2 ∂

∂T

(
F tr

T

)
= N

3
2

kBT

and
Ctr

V =
3
2

NkB

so we end up with the ideal gas result.
Since only F tr depends on volume V the pressure is

p = −∂F

∂V
= −∂F tr

∂V
=

NkBT

V
,

i.e. we end up with the ideal gas equation of state

pV = NkBT.

Rotation

Typical rotational temperatures
Gas Tr

H2 85.4
N2 2.9
NO 2.4
HCl 15.2
Cl2 0.36

We see that Tr ¿ the room temperature.
T ¿ Tr

Now

Zrot =
∞∑

l=0

(2l + 1)e−
Tr
T l(l+1) ≈ 1 + 3e−2 Tr

T ,

so the corresponding free energy is

F rot ≈ −3NkBTe−2 Tr
T

and the internal energy

U rot = −T 2 ∂

∂T

(
F rot

T

)
≈ 6NkBTre

−2 Tr
T .

Rotations contribute to the heat capacity like

Crot
V ≈ 12NkB

(
Tr

T

)2

e−2 Tr
T →

T→0
0.

T À Tr

Now

Zrot ≈
∫ ∞

0

dl (2l + 1)e−
Tr
T l(l+1)

= − T

Tr

/∞

0

e−
Tr
T l(l+1) =

T

Tr
,

so the free energy is

F rot ≈ −NkBT ln
T

Tr

and the internal energy

U rot ≈ NkBT.

The contribution to the heat capacity is

Crot
V ≈ NkB = f rot 1

2
NkB ,

or in the limit T À Tr there are f rot = 2 rotational
degrees of freedom.
Precisely:

N k B

C r o t
V

T r
T
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Vibration

Typical vibrational temperatures:
Gas Tv

H2 6100
N2 3340
NO 2690
O2 2230
HCl 4140

We see that Tv À the room temperature.
T ¿ Tv

The free energy is

F vibr = NkBT ln
[
e

Tv
2T (1− e−

Tv
T )

]

≈ 1
2

NkBTv −NkBTe−
Tv
T ,

so

Cvibr
V ≈ NkB

(
Tv

T

)2

e−
Tv
T .

T À Tv

Now the free energy is

F vibr ≈ NkBT ln
Tv

T

and the internal energy correspondingly

Uvibr ≈ NkBT,

so the heat capacity is

Cvibr
V ≈ NkB .

We see that in the limit T À Tv two degrees of freedom
are associated with vibrations like always with harmonic
oscillators (E = 〈T 〉+ 〈V 〉 = 2 〈T 〉).

C r o tV
N k B r o o m

t e m p e r a t u r e
i o n i z a t i o n
d i s s o c i a t i o n
e t c .

T r T v
T

Rotation of homopolar molecules

The symmetries due to the identity of nuclei must be
taken into account.
Example H2-gas:
The nuclear spins are

I1 = I2 =
1
2
,

so the total spin of the molecule is

I = 0, 1.

We consider these two cases:

I = 1 I = 0
Iz = −1, 0, 1 Iz = 0

triplet singlet
orthohydrogen parahydrogen

spin
wavefunctions
symmetric:

spin wave
function
antisymmetric:

|1 1〉 = |↑↑〉
|1 0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|1−1〉 = |↓↓〉
|0 0〉 = 1√

2
(|↑↓〉 − |↓↑〉)

Space wave
function
antisymmetric:

Space wave
function
symmetric:

(−1)l = −1 (−1)l = 1

The corresponding partition functions are

Zortho =
∑

l=1,3,5,...

(2l + 1)e−
Tr
T l(l+1)

Zpara =
∑

l=0,2,4,...

(2l + 1)e−
Tr
T l(l+1)

and the partition function associated with rotation is

Zrot = 3Zortho + Zpara.

When T À Tr collisions cause conversions between ortho
and para states so the system is in an equilibrium. In
addition Zorto ≈ Zpara, so all 4 spin states are equally
probable.
When T <∼Tr the gas may remain as an metastable mixture
of ortho and para hydrogens. In the mixture the ratio of
the spin populations is 3 : 1. Then we must use the
partion sum

Zrot
N = Z

3N
4

ortoZ
N
4

para.

The internal energy is now

U rot =
3
4

Uorto +
1
4

Upara

and the heat capacity correspondingly

Crot =
3
4

Corto +
1
4

Cpara.
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Fermionic systems

Electron gas
The ideal Fermi gas is a good approximation for example
for the conducting electrons in a metal.
When the single particle energies are εk = h̄2k2

2m the
density of states is

ω1(ε) = V
gs

4π2

(
2m

h̄2

)3/2√
ε

= V 2πgs

(
2m

h2

)3/2√
ε.

As the density we get

ρ =
N̄

V
=

gs

4π2

(
2m

h̄2

)3/2 ∫ ∞

0

dε
√

ε

eβ(ε−µ) + 1
.

The energy per particle will be

ε̄ =
E

N̄
=

∫∞
0

dε ε3/2

eβ(ε−µ)+1∫∞
0

dε ε1/2

eβ(ε−µ)+1

.

Degenerated Fermi gas

Suppose that kBT ¿ µ.
Let’s write

1
eβ(ε−µ) + 1

= θ(µ− ε) + h(ε− µ),

where
h(x) = sign(x)

1
eβ|x| + 1

.

The function h(x) deviates from zero only at the narrow
domain |x|<∼kBT ¿ µ.

h ( x )

x = e - m

Let’s evaluate the integral
∫ ∞

0

dε
φ(ε)

eβ(ε−µ) + 1

=
∫ ∞

0

dε φ(ε) [θ(µ− ε) + h(ε− µ)]

=
∫ µ

0

dε φ(ε) +
∫ ∞

0

dε h(ε) [φ(µ + ε)− φ(µ− ε)]

+
∫ ∞

µ

dε h(ε)φ(µ− ε).

The last term is of the order

h(µ) =
1

eµ/kBT + 1
≈ e−µ/kBT

and can be discarded.
If φ(ε) regular enough in the vicinity of ε ≈ µ we can
expand

φ(µ + ε)− φ(µ− ε) ≈ 2φ′(µ)ε + 2
1
3!

φ′′′(µ)ε3 + · · · .

Now
∫ ∞

0

dε
φ(ε)

eβ(ε−µ) + 1

≈
∫ µ

0

dε φ(ε)

+2φ′(µ)(kBT )2
∫ ∞

0

dz
z

ez + 1

+2φ′′′(µ)
1
3!

(kBT )4
∫ ∞

0

dz
z3

ez + 1
+ · · ·

and we end up with Sommerfeld’s expansion
∫ ∞

0

dε
φ(ε)

eβ(ε−µ) + 1
≈

∫ µ

0

dε φ(ε) +
π2

6
(kBT )2φ′(µ)

+
7π4

360
(kBT )4φ′′′(µ) + · · · .

Temperature T = 0

Now
n̄(ε) = θ(µ− ε)

and h(x) = 0.
The Fermi energy is

εF = µ =
h̄2k2

F

2m
.

The Fermi momentum is

pF = h̄kF .

The density is

ρ =
gs

4π2

(
2m

h̄2

)3/2 ∫ µ

0

dε
√

ε

=
gs

6π2

(
2mεF

h̄2

)3/2

or
ρ =

gs

6π2
k3

F .

The spin degeneracy factor of electrons is
gs = 2 · 1

2 + 1 = 2, so

ρ =
k3

F

3π2
.

For the energy per particle we get

ε̄ = εF

∫ 1

0
dx x3/2

∫ 1

0
dx x1/2

= εF
2/5
2/3

=
3
5

εF .
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The total energy is

E =
3
5

εF N =
3
5

N
h̄2

2m

(
6π2ρ

gs

)2/3

.

Since
E = constant×N5/3V −2/3,

we have

−p =
(

∂E

∂V

)

N

= −2
3

E

V

or

pV =
2
3

E.

Metallic electron gas

When we write the density as

ρ =
N̄

V
=

1
4
3 πr3

i

and define the dimensionles number

rs =
ri

a0
,

where a0 is the Bohr radius

a0 =
4πε0h̄

2

me2
= 0.529Å,

we can see that

ρ =
1.613 · 1030

r3
s

1
m3

.

For metals we have

1.9<∼rs
<∼5.6.

The Fermi wave vector will become

kF =
1

a0rs

3

√
9π

4
=

1.92
a0rs

.

The Fermi velocity is

vF =
pF

m
=

h̄kF

m
=

1.92h̄

ma0rs

=
4.2 · 106

rs

m
s

.

For example in aluminium

vF = 2029
km
s

=
c

148
.

The Fermi temperature or the degeneracy temperarure TF

is defined so that
kBTF = εF .

Now

εF =
h̄2

2ma2
0︸ ︷︷ ︸

binding
energy of
hydrogen

(
1.92
rs

)2

=
3.69
r2
s

13.6eV.

Since
1eV = 11604kBK,

we have

TF =
(

1.92
rs

)2

13.6 · 11604K.

For aluminium the Fermi temperature is TF = 136 000K.
In general, the metals satisfy

T ¿ TF ,

so the metallic electron gas is strongly degenerated.
Specific heat Let now T > 0, but T ¿ TF .
We need µ = µ(T ), when N̄

V = ρ is known.
With the help of the Sommerfeld expansion we get

2
3

ε
3/2
F =

4π2

gs

(
h̄2

2m

)3/2

ρ =
∫ ∞

0

dε
ε1/2

eβ(ε−µ) + 1

≈ 2
3

µ3/2 +
π2

12
(kBT )2

1√
µ

+ · · ·

so we can write

2
3

µ3/2

[
1 +

π2

8
(kBT )2

1
ε2F

+ · · ·
]

=
2
3

ε
3/2
F .

From this we get for the chemical potential the expression

µ(T ) = εF

[
1− π2

12

(
kBT

εF

)2

+ · · ·
]

.

Employing again the Sommerfeld expansion we get
∫ ∞

0

dε
ε3/2

eβ(ε−µ) + 1

≈ 2
5

µ5/2 +
π2

4
(kBT )2

√
µ + · · ·

=
2
5

ε
5/2
F

[
1 +

5
12

π2

(
kBT

εF

)2
]

+ · · · .

Now the energy/particle is

ε̄(T ) =

∫∞
0

dε ε3/2

eβ(ε−µ)+1∫∞
0

dε ε1/2

eβ(ε−µ)+1

=
3
5

εF

[
1 +

5
12

π2

(
kBT

εF

)2
]

=
3
5

εF +
π2

4
k2

BT 2

εF
.
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The heat capacity which can be written as

CV =
∂Nε̄

∂T
= N

π2

2
k2

B

εF
T

= NkB
π2

2
T

TF
,

is small when compared e.g. with the specific heat of the
Maxwell-Boltzmann gas (CV = NkB

3
2 ). This is

understandable since the number of those particles that
can be excited with the thermal energy ∼ kBT in Fermi
gas is much less than in MB or BE gases due to the Pauli
exclusion principle.

Pauli’s paramagnetism

The magnetic moment of the electron is

µ = − e

m
s

or
µz = −µBσz,

where
µB =

eh̄

2m
= 5.66 · 10−5 eV

T
and

σz =
2
h̄

sz = ±1.

In an external magnetic field the energy of an electron is

εpσz = εp± =
p2

2m
− µzB = εp + µBBσz

when the kinetic energy is

εp =
p2

2m
.

We still treat electrons as non interacting so the grand
canonical partition function is as before, provided that we
replace εp → εp + µBBσz.
The occupation numbers of the states are now

n̄pσz = n̄p± =
1

eβ(εp+µBBσz−µ) + 1
.

n p s

n p +

n p -

e p

Since the metallic electron gas is strongly degenerated
(T ¿ TF ), we can restrict to the temperature T = 0.

e k e k +e k -

e F = m

k
k F +k F -

The Fermi wave vectors can be determined from the
conditions

h̄2k2
F+

2m
+ µBB = µ

h̄2k2
F−

2m
− µBB = µ.

Since the number density is

ρ =
gs

6π2
k3

F ,

the spin population densities are

ρ+ =
k3

F+

6π2

ρ− =
k3

F−
6π2

.

If the strength of the magnetic field is

B0 =
εF

µB
,

the magnetic energy is of the same order as the Fermi
energy. For metals εF ≈ 5eV, so B0 ≈ 105T. So the
realistic magnetic fields are ¿ B0 and we can work at the
small B limit. Let us denote

kF± = kF ± δkF ,

so

h̄2k2
F±

2m
± µBB =

h̄2k2
F

2m
± h̄2kF

m
δkF ± µBB

= µ =
h̄2k2

F

2m
.

From this we get

δkF = −mµB

h̄2kF

B

and

ρ± =
k3

F

6π2
± k2

F

2π2
δkF

=
k3

F

6π2
∓ kF mµB

2π2h̄2 B.

The relative polarization is

r ≡ ρ+ − ρ−
ρ+ + ρ−

= −3mµB

h̄2k2
F

B

= −3µB

2εF
B.

The magnetization per volume element is

M =
N

V
〈µz〉 = −ρµB 〈σz〉 = −ρµBr
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or

M =
3
2

ρ
µ2

B

εF
B.

The susceptivity is, according to its definition,

χ =
∂M

∂H
= µ0

∂M

∂B
.

Pauli’s paramagnetic susceptivity is then

χ =
3
2

µ0ρ
µ2

B

εF

provided that T ¿ TF and µBB ¿ εF .
In aluminium the electron density is

ρ = 1.82 · 1029m−3

and the Fermi energy

εF =
(

1.92
2.07

)2

13.6eV = 11.7eV.

The susceptivity

χ =
3
2
· 4π · 10−7 · 1.82 · 1029 · (5.66 · 10−5)2

11.7
Vs
Am

1
m3

(eV)2

T2eV

= 9.4 · 1013 eVVs
Am4

(
m2

Vs

)2

= 9.4 · 1013 · 1.6 · 10−19

= 1.5 · 10−5

is now small since only the electrons very close to the
Fermi surface can be polarized magnetically.

Two dimensional electron gas
The Hamiltonian for a free electron in the magnetic field

B = ∇×A

is given by

H0 =
1

2m∗

(
−ih̄∇+

e

c
A

)2

.

Convenient unit of

• the energy for non-interacting electrons is h̄ωc, where
ωc = eB/m∗c is the cyclotron frequency.

• the energy for interacting electrons is e2/ε`0, where

• the length is `0 = (h̄c/eB)
1
2 , the magnetic length.

Consider electrons

• confined to xy-plane.

• subjected to a perpendicular magnetic field B‖ẑ.

The eigenenergies are the discrete Landau levels

En =
(

n +
1
2

)
h̄ωc, n = 0, 1, 2, . . . .

Choosing the Landau gauge

A = (0, Bx, 0)

the single particle Hamiltonian is

H0 =
1

2m∗

[
p2

x +
(

py +
eB

c
x

)2
]

.

The eigenfunctions are

φnX = eikyye−(x−X)2/2`20Hn

(
x−X

`0

)
,

where the center of the oscillatory motion is given by

X = −ky`20.

Confine the system in a rectangular cell

¾ -
ª

µ

Lx

Ly

6

-

ª

6

-

x

y

z

B

A

Using periodic boundary conditions we have

ky =
2πny

Ly
, ny = 0,±1,±2, . . .

and
X = −2πny

Ly
`20, 0 ≤ X < Lx.

The number of allowed values of ny, i.e. the degeneracy
of each Landau level, is

Ns =
LxLy

2π`20
=

e

hc
Φ =

Φ

Φ0
,

where Φ0 = hc/e is the flux quantum.
Thus, on each Landau level there is exactly one state for
each flux quantum and for each spin polarization.
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When Ne is the number of electrons in an area and Ns

the number of flux quanta we define the filling fraction as

ν =
Ne

Ns

(
= 4.136

n0

1015m−2

T
B

)
.

To treat the spin we note that

• there should be the Zeeman coupling term

H
Zeeman

= µ ·B = −gµBBsz

in the Hamiltonian. Here g is the Lande factor and
µB the Bohr magneton.

• in addition to the Zeeman term there are no spin
dependent terms in the Hamiltonian, not even in the
interacting many body system.

• the problem can be solved disregarding the spin. At
later stages we can add the total Zeeman energy

E
Zeeman

= gµBBSz.

Quantum Hall states
Consider an experiment like

µ

µ

+

+

+

+

−

−

−

−

-

6

jx

B

Ey

Ex

VL

VH

The conductivity σ and the resistivity ρ are defined by
j = σE, E = ρj. Classically the diagonal and Hall
conductivities are

σxx =
n0e

2τ

m

1
1 + (ωcτ)2

σxy = − n0ec

B
+

σxx

ωcτ
,

where τ is the relaxation time. In particular
ρxy = −B/n0ec.
Experimentally the resistivities behave like
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We observe that

• the Hall resistivity develops plateaus with

ρxy =
h

ne2
, n = 1, 2, 3, . . . .

This quantization condition is obeyed with extreme
accuracy. In fact, the current ISO standard for
resistivity defines

ρxy =
25812.807

n
Ω.

• at the same time the diagonal resistivity practically
vanishes.

For the moment we suppose that the electrons are
polarized. If the current carrying electrons fill up exactly
n Landau levels, it can be shown that ρxy = h/ne2 and
ρxx = 0.
The plateaus can be explained by noting that

• in an ideal pure 2DEG the density of states is a
series of δ-peaks separated by h̄ωc.

• In a real impure system the δ-peaks are spread and
between the Landau levels there are localized states.

h w c

D(
E)

E

D(
E)

EE F
F i l l e d E m p t y

h w c

The Hall conductivity can be written in the form

σxy = − n0ec

B
+ ∆σxy,

where, according to the Kubo formula, the contribution
from a localized state |α〉 to ∆σxy is

∆σα
xy =

f(Eα)ec
B

.

Here f(E) is the Fermi distribution function.
When the number of electrons changes we observe (at
T = 0) that

• as long as the Fermi level lies within the localized
states, σxy remains constant.

• if all states below the Fermi level are localized, the
terms in σxy cancel exactly and σxy = 0.

• for QHE to exist there must be extended states in
Landau levels.

As a function of the density the conductivities behave like

D(
E)

e 2
h
- s

xy
s

xx

2 p l 0 n 0
20 1

n 0 e C
B

Noting that

ν =
Ne

Ns
= 2π`20n0 ∝ n0

B
,

decreasing magnetic field corresponds to increasing filling
factor, i.e. decreasing the magnetic field is equivalent to
increasing the number of electrons.
Increasing the magnetic field (i.e. reducing the electron
density) furthermore one finds resistivities to behave like
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The plateaus in the Hall resistivity and the minima in the
longitudinal resistivity correspond to filling fractions

ν =
p

q
,

where

• p and q are small integers (<∼11).

• q is an odd integer.

This behaviour is called as the Fractional Quantum Hall
Effect (FQHE) as opposed to the previous Integer
Quantum Hall Effect (IQHE).
Regarding the IQHE we note that

• the plateaus correspond to full Landau levels,

• the Landau levels are energetically far from each
other as compared to typical electron-electron
interaction energies (at least when ν<∼5).

• the mutual electronic interactions play practically no
role.

While this single particle picture is sufficient in the IQHE
it cannot explain the FQHE where

• the Landau levels are only partially filled, so that

• there is room for the Coulomb intra level interaction.

It turns out that the correlations due to the electron
interaction are essential in the FQHE.

Laughlin’s theory

For a while we work in the symmetric gauge

B =
1
2

(−y, x, 0)

and in the cylindrical coordinate system. The single
particle Hamiltonian is now

H =
p2

2m∗ +
1
2

ωcpφ +
1
8

m∗ω2
cr2.

The Schrödinger equation takes the form

− h̄2

2m∗

[
1
r

∂

∂r

(
r

∂ψ

∂r

)
1
r2

∂2ψ

∂φ2

]

−1
2

ih̄ωc
∂ψ

∂φ
+

(
1
8

m∗ω2
cr2 − E

)
ψ = 0.

Its solutions can be written as

ψn,m(r, φ) =
[

n!
2π`202mm!

] 1
2

e−imφ−r2/4`20

×
(

r

`0

)|m|
L|m|n

(
r2

2`20

)
.

The corresponding energies are

En,m =
1
2

(2n + |m|+ 1−m)h̄ωc.

In particular, in the lowest Landau level (n = 0,m ≥ 0),
the wave functions are

ψm(z) =
[

1
2π`202mm!

] 1
2

(
z

`0

)m

e−|z|
2/4`20 ,

where we have written

z = re−iφ = x− iy.

It is easy to show, that the quantum number m can take
the values

m = 0, 1, . . . , Ns − 1,

where
Ns =

A

2π`20

is the degeneracy of a Landau level. In the lowest Landau
level the wave functions are therefore of the form

1, z, z2, . . . , zNs−1 times Gaussian.

The great idea of Laughlin was to propose the Jastrow
type function

ψm =
Ne∏

j<k

(zj − zk)m
Ne∏

j=1

e−|zj |2/4`20

as the many body ground state wave function. To get the
Fermi statistics m must be odd.
Laughlin’s wave function has some remarkable properties:

• in the thermodynamical limit the parameter m is
related to the filling fraction ν as

m =
1
ν

.

• it can be mapped to a charge neutral two
dimensional classical plasma, which makes it possible
to use classical statistical mechanics to evaluate e.g.
the energy.

• small systems (<∼12 particles) can be solved exactly.
Comparisions with Laughlin’s wave function show
that it is practically the exact solution of the many
body problem
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Spin polarization
We consider the filling fraction ν = 1, i.e. the lowest
Landau level is fully occupied. We turn on the
electron-electron interaction and note that

• typically the Landau level separation h̄ωc is
(much) larger than the characteristic Coulomb
interaction energy e2/ε`0.

• if the electrons remain polarized the interaction
cannot do much: all energetically favorable states are
already occupied.

So, we let electrons to flip their spins. However,

• according to Hund’s rule the repulsive interaction is
the smaller the larger the total spin S.

• In the absence of the Zeeman coupling all possible Sz

states are degenerate.

• the Zeeman coupling gµBBSz tends to polarize the
system, although the Lande g-factor is rather small
(in GaAs g ≈ 0.5).

We conclude that the ground state at ν = 1 is polarized.

The diagonalization method
We will work in rectangular geometry with periodical
boundary conditions.

u ue e
ue

ue
ue ue

e e
e

e
e e

e e
e

e
e e

e e
e

e
e e

e e
e

e
e e

e e
e

e
e e

e e
e

e
e e

e e
e

e
e e

-

6 ¾ -

6

?

Lx
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x

y

Our Hamiltonian is

H = H0 +He-e +He-im +He-b +Hb-b,

where

• we suppose a homogenous positive background,

• H0 is the single particle Hamiltonian,

• He-e is the Coulomb interaction between an
electron and all other electrons and their images
summed over all electrons,

• He-im is the interaction between an electron and its
images,

• He-b is the electron-background interaction,

• Hb-b is the background-background interaction.

The Zeeman coupling is treated afterwards.
We

1. restrict to the lowest Landau level.

2. work in occupation representation. There

H =
∑

jσ

wja
†
jσajσ

+
∑

j1σ1 j2σ2

j3σ3 j4σ4

Aj1j2j3j4a
†
j1σ1

a†j2σ2
aj3σ3

aj4σ4
,

where operators a†jσ (ajσ) create (destroy) an
electron with spin σ in a single particle state j.

3. fix Ns, the number of flux quanta (≈ 10). This is
also the number of allowed single particle states.

4. fix Ne, the number of electrons. At full Landau level
(ν = 1) Ne = Ns.

5. fix the polarization Sz and the total momentum since
they are preserved by Coulomb interaction.

6. form the basis by constructing all possible
non-interacting states satisfying the above conditions.

7. represent the Hamiltonian as a matrix in the basis
constructed above.

8. diagonalize the matrix. As a result we have the
energy spectrum and corresponding eigenvectors.

9. for each eigenstate find its total spin S. Since
[H, S] = 0, we know that these eigenstates are
eigenstates of spin, too.

〈Sz〉
We now have the spectrum E0, E1, E2, . . . for the
interacting many particle system. To calculate the
polarization we note that

• the energies Ei are associated with other quantum
numbers like the total spin Si and its z-component
Szi.
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• since there are no spin dependent term in the
Hamiltonian all states with quantum numbers
(Ei, Si, Szi = −Si), (Ei, Si, Szi = −Si + 1), . . .,
(Ei, Si, Szi = +Si) are degenerate. So, the
expectation value of Sz would be 0.

• the Zeeman interaction must be turned on. The
energies will shift like

εi = Ei − gµBBSzi.

It turns out that, as expected, the total spin in the ground
state is S0 = Ne/2 (supposing Ne to be even). Due to the
Zeeman coupling the ground state is polarized at T = 0.
The spins of the excited states, however, have all the
possible values 0, 1, . . . , Ne/2. So, we expect the
polarization to decrease with increasing temperature.
The dependence on temperature is evaluated in the
canonical ensemble as

〈Sz〉 =
1
Z

∑

i

Szie
−(Ei−gµBBSzi)/kBT ,

where Z is the canonical partition sum

Z =
∑

i

e−(Ei−gµBBSzi)/kBT .

Relativistic electron gas
The rest energy of an electron is

mc2 = 0.511keV

and the relativistic total energy

εp =
√

(mc2)2 + (cp)2

= mc2 +
p2

2m
+ · · · .

Denote by
kc =

mc

h̄
= 2.59 · 1012m−1

the Compton wave vector of an electron and by

λc =
2π

kc
= 2.43 · 10−12m

its Compton wave length.
Since p = h̄k, we have

εk = ch̄
√

k2 + k2
c .

Periodic boundary conditions are the same as in the non
relativistic case i.e.

k =
2π

L
(nx, ny, nz),

so we have

ρ =
k3

F

3π2
.

When kF = (3π2ρ)1/3 is of the order kc, the relativistic
corrections must be taken into account. The
corresponding density is

ρc =
k3

c

3π2
= 5.87 · 1035 1

m3

≈ 106 × density of metallic electron gas

We have an ultrarelativistic electron gas when kF À kc or
correspondingly ρ À ρc.
Let us consider cold relativistic material, i.e. let us
suppose T ¿ TF .
The total energy is

E = Nε̄ = N

∫ kF

0
dk k2ch̄

√
k2 + k2

c∫ kF

0
dk k2

,

where

ε̄ = mc2

∫ kF /kc

0
dxx2

√
1 + x2

∫ kF /kc

0
dxx2

= mc2 + mc2

∫ kF /kc

0
dxx2

[√
1 + x2 − 1

]
∫ kF /kc

0
dxx2

is the average electronic energy.
At the non relativistic limit we have

ε̄ ≈ mc2

[
1 +

∫ kF /kc

0
dxx2[ 12 x2 + · · ·]

∫ kF /kc

0
dxx2

]

= mc2

[
1 +

3
10

(
kF

kc

)2

+ · · ·
]

,

from which our earlier results can be derived, provided
that the rest energy of electrons is taken into account.
At the ultrarelativistic limit kF À kc we get

ε̄ ≈ mc2

∫ kF /kc

0
dxx3

∫ kF /kc

0
dxx2

=
3
4

ch̄kF .

Thus the energy density is

E

V
=

3
4

(3π2)1/3ch̄ρ4/3

and the pressure

p = −
(

∂E

∂V

)

N

at the ultrarelativistic limit

p =
1
3

E

V
=

1
4

(3π2)1/3ch̄ρ4/3.

White dwarf

In a properly functioning star the energy released in
nuclear reactions (mainly 2H → He) and the collapsing
gravitational force are in balance. When the nuclear fuel
is comsumed the start collapses. If the mass of the star is
large enough all material will become ionized. Depending
on the mass of the star the final state can be for example
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• white dwarf, if the pressure of the degenerated
electronic plasma prohibits further compression.

• neutron star if the electronic pressure is not enough
to compensate the gravitational force. The matter
compresses further to neutrons and their degeneracy
pressure prohibits further collapse.

Typical properties of a white dwarf:

• the diameter of the star 2R ≈ 104km.

• the total number of nuclei NN ≈ 1057.

• the mass M ≈ 1030kg ≈ M¯, where
M¯ = 1.989 · 1030kg is the mass of the sun.

• the mass density ρm ≈ 1010kgm−3 is about 106× the
density of the sun or of the earth.

• the number density of electrons ρ ≈ 1036m−3. Then
kF ≈ kc, so the electron gas is only moderately
relativistic. In inner parts the gas can be much
denser and thus ultrarelativistic.

• the pressure p ≈ 1022Pa ≈ 1017atm.

• the temperature in inner parts T ≈ 107K ≈ T¯.
Since the Fermi temperature is TF ≈ 1010K À T we,
however, have a cold electron gas.

Let p(r) be the pressure at the distance r from the center
of the star, g(r) the corresponding gravitational
acceleration and ρm(r) the density.

p

p + d p r + d r
r

p A

( p + d p ) A
r m A d r g

The condition for the balance of hydrostatic mechanical
forces is

dp

dr
= −g(r)ρm(r).

Now

g(r) =
GM(r)

r2
,

where M(r) is the mass inside of the radius r and

G = 6.673 · 10−11 Nm2

kg2

is the gravitational constant. We get the pair of equations

dp(r)
dr

= −G
M(r)ρm(r)

r2

dM(r)
dr

= 4πr2ρm(r).

Because in nuclei there are roughly as many neutrons as
protons, and, on the other hand, there are as many
protons as electrons, we have

ρm(r) ≈ 2mpρ(r).

Here
mp = 1.673 · 10−27kg

is the proton mass and ρ(r) the number density of the
electrons.
As a good approximation the electron density of a star
can be taken as a constant, ρ say. Then

M(r) =
8
3

πmpρr3

and thus the total mass

M =
8
3

πmpρR3,

when R is the radius of the star. The pressure must now
satisfy the differential equation

dp

dr
= −16

3
πm2

pρ
2Gr

with the boundary condition that the pressure vanishes at
the surface, i.e.

p(R) = 0.

Integrating the differential equation we get for the
pressure at the center

p =
8π

3
Gm2

pρ
2R2.

Since the electron gas is not quite ultrarelativistic we
calculate more accurately than before. The average
electronic energy is

ε̄ = mc2

∫ kF /kc

0
dxx2

√
x2 + 1

∫ kF /kc

0
dxx2

= mc2

∫ kF /kc

0
dxx3

[
1 + 1

2
1
x2 + · · ·]

∫ kF /kc

0
dxx2

= mc2

[
3
4

kF

kc
+

3
4

kc

kF
+ · · ·

]
.

From this we can get for the pressure

p =
h̄c

12π2
(k4

F − k2
ck2

F + · · ·)

=
1
4

(3π2)1/3h̄cρ4/3

[
1− m2c2

h̄2(3π2ρ)2/3
+ · · ·

]
.

This is the equation of state of the relativistic electron
gas.
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We require that the pressures obtained from the equation
of state and from the hydrodynamic balance conditions
are equal in the center, i.e.

8π

3
Gmpρ

2R2 =

1
4

(3π2)1/3h̄cρ4/3

[
1− m2c2

h̄2(3π2ρ)2/3
+ · · ·

]
.

When we substitute the electron density (as a function of
the mass and radius)

ρ =
3M

8πmpR3

we get the condition

(
M

Mc

)2/3

= 1−
(

R

Rc

)2 (
Mc

M

)2/3

,

where

Mc = mp

(
9π

512

)1/2 (
h̄c

Gm2
p

)3/2

≈ 0.52 · 1057mp

Rc =
h̄

mc

(
9π

8

)1/3 (
Mc

mp

)1/3

≈ 4700km.

For the radius of the star we get

R = Rc

(
M

Mc

)1/3
[
1−

(
M

Mc

)1/3
]

.

We see that the white dwarf has the maximum mass
M = Mc. A more careful calculation shows that the mass
of a white dwarf cannot exceed Chandrasekhar’s limit,
about 1.4M¯, without collapsing to a neutron star or a
black hole.

Other Fermionic systems

Nuclear matter

The mass density of heavy nuclei is

ρm ≈ 2.8 · 1017kgm−3.

When we assume that the proton and neutron densities
are equal the Fermi wave vectors of both gases are

kF ≈ 1.36 · 1015m−1

and the Fermi energies

εF ≈ 38MeV.

Since mnc2 = 938MeV, the nuclear matter is non
relativistic. The attractive nucleon interactions cancel the
pressure due to the kinetic energy.

Neutron star

When the mass of a star exceeds the Chandrasekar limit
the Fermi pressure of the electrons is not enough to
cancel the gravitational force. The star continues its
collapse. The star forms a giant nucleus where most
electrons and protons have transformed via the reaction

p + e− → n + νe

to neutrons. The radius of the star is

R ≈ 10km,

the nucleon count
NN ≈ 1057

and the mass density

ρm ≈ 1018kgm−3.

The pressure acting against the gravitation is mostly due
to the pressure of the Fermi gas and to the strong, at
short distances very repulsive nuclear forces.

Quark matter

When nuclear matter is compressed 2–10 times denser
than in atomic nuclei the nucleons start to ”overlap” and
their constituent quarks form a quark plasma.

Liquid 3He

The nucleus is p+p+n and the nuclear spin 1
2 .

At low temperatures the nuclear spin determines the
statistics, i.e. 3He atoms are Fermions.
The Fermi temperature corresponding to the normal
density is

TF =
εF

kB
≈ 5K.

Since the mutual interactions between 3He atoms are
considerable the 3He matter forms an interacting Fermi
liquid. The 3He liquid has two super phases (A and B).
These are in balance with the normal phase at the critical
point

Tc ≈ 2.7mK <
TF

1000
.
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