Classical phase space

Phase space and probability density
We consider a system of NV particles in a d-dimensional
space. Canonical coordinates and momenta

7QdN)
7pdN)

¢ = (q,--
p = (P

determine exactly the microscopic state of the system.
The phase space is the 2d N-dimensional space {(p,q)},
whose every point P = (p, q) corresponds to a possible
state of the system.

A trajectory is such a curve in the phase space along
which the point P(t) as a function of time moves.
Trajectories are determined by the classical equations of
motion

dt N 6p,»
dp. _ _OH
dt dq;’
where
H = H(q,...,qan,p1,---,Pan,1)
= H(g,p,t) = H(Pt)

is the Hamiltonian function of the system.

The trajectory is stationary, if H does not depend on
time: trajectories starting from the same initial point P
are identical.

Let F' = F(q,p,t) be a property of the system. Now
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where {F, G} stands for Poisson brackets
oF 0G  0G OF
F,.G} = — ——— .
{ } Z (a% 8]71 6%’ api)
We define the volume measure of the phase space

dN
dgdp;
ar =] th =h~"dgy - dgandp: - - - dpan-
i1

Here h = 6.62608 - 10734Js is the Planck constant.

Note [dgdp] = Js, so dI" is dimensionless.

Note Ay’ =1 corresponds to the smallest possible
volume element of the phase space where a point
representing the system can be localized in accordance
with the uncertainty principle. The volume AT = [ dT is
then roughly equal to the number of quantum states in
the part of the space under consideration.

The ensemble or statistical set consists, at a given
moment, of all those phase space points which correspond
to identical macroscopic systems.

Corresponding to a macro state of the system there are
thus sets of micro states which belong to the ensemble
with the probability p(P)dI. p(P) is the probability
density which satisfies the condition

[ o) -

The statistical average, or the ensemble expectation
value, of a measurable quantity f = f(P) is

f= [a e

We associate every phase space point with the velocity

field oH  oH
V=(0p)=( 55|
(4,p) (ap aq>

The probability current is then Vp. The probability
weight of an element I'g evolves then like

O

Vp - dS.
ot Jr, AT

Because
Vp~dS:/ V- (Vp)dl
T'o

we get in the limit T'y — 0 the continuity equation

al'g

s,
tp+V (Vp) = 0.

0
According to the equations of motion
. OH
q =
Op;
N OH
pi = 9
we have
9q; | Opi 0
dgi  Opi
so we end up with the incompressibility condition
0q; Op;
V- V= =0.
Z [8% Op;

From the continuity equation we get then

Op
ot
_ %L vvivy
T a Y’ P
_ 9

= 8t+VVp

0 = +V-(Vp)
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When we employ the convective time derivative

d 0

+Z<Qz + iy 0 )

the continuity equation can be written in the form known
as the Liouwille theorem

4@, =o.

The points in the phase space move like an incompressible
fluid which carries with it the constant probability
describing the ensemble.

Flow in phase space
The energy surface I'g is the manifold determined by the
equation

H(g,p) = E.

Since the energy is a constant of motion every phase
point P*(t) moves on a certain energy surface I'g;.
The expectation value of the energy of the system

:/dFHp

is also a constant of motion.
The volume of the energy surface is

ZE:/dFE:/dF(S(HP -

The volume of the phase space is

/dI‘:/ dEXE.

Let us consider the element AI'p of an energy surface.

Non ergodic flow: In the course of time the element
AT'g traverses only a part of the energy surface I'g.

Ergodic flow: Almost all points of the surface I'g are
sometimes arbitrarily close to any point in Al'g

<~
The flow is ergodic if Vf(P), f(P) "smooth enough”,

and (f)g the energy surface expectation value

:ZLE /dPEf(P
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We define the microcanonical ensemble so that its density
distribution is

Every point of the energy surface belongs with the same
probability to the microcanonical ensemble.

The microcacnonical ensemble is stationary, i.e. =5F =0
and the expectation values over it temporal constants.
The mizing flow is such an ergodic flow where the points
of an energy surface element dI'g disperse in the course of
time all over the energy surface.

If pg(P,t) is an arbitrary non stationary density
distribution at the moment ¢ = tg, then

9pE

lim pe(P.0) = 5 S(H(P) - B) = pi(P)
and
Jim () = Jim [ pe(POf(P)

/JﬂmM@)

i.e. the density describing an arbitrary (non equilibrium)
state evolves towards a microcanonical ensemble.

Microcanonical ensemble and entropy

If the total energy of a macroscopic system is known
exactly its equilibrium state can be described by a
microcanonical ensemble. The corresponding probability
density is

For a convenience we allow the energy to have some
"tolerance” and define

pe.ap(P) = 0(E + AE — H(P))(H(P) — E).

ZE.AE

Here the normalization constant
Zp AE = /dI‘Q(E+ AE —H(P)O(H(P)—E)

is the microcanonical state sum or partition function.
Zg,AE is the number of states contained in the energy
slice F < H < E+ AFE (see the volume measure of the
phase space). In the microcanonical ensemble the
probability is distributed evenly in every allowed part of
the phase space.

Entropy
We define the Gibbs entropy as

S = —k:B/dI‘p(P) In p(P).



Let AT'; the volume of the phase space element i and p;
the average probability density in ¢. The state of the
system is, with the probability

pi = pi ALy,
in the element 7 and

Zpi =1

We chooce the sizes of all elements to be smallest
possible, i.e. AI'; = 1. Then

1
—kB Zpi In p;,
;

since In AT"; = 0.
If p is constant in the range AI' = W we have

S

p:Wa

1 1

We end up with the Boltzmann entropy

so that

S=kphnW.

Here W is the thermodynamic probability: the number of
all those states that correspond to the macroscopical
properties of the system.
One can show that the entropy is additive, i.e. if the
system is composed of two partial systems 1 and 2 its
entropy is

S142 =51 + 5.

If we require that the entropy has a maximum under the
condition

JE Rt

p takes the form
p(P) = po VP € Tg.

The maximum principle of the entropy leads thus to the
microcanonical distribution.

Entropy and disorder

The maximum of entropy

=

Microcanonical ensemble

=

Every microscopic state which satisfies

E<H<E+AE,

is present with the same probability, i.e. there is a
complete lack of information

=

Disorder is at maximum.
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Quantum mechanical ensembles

Systems of identical particles
Let H' be a Hilbert space for one particle. Then the
Hilbert space for N identical particles is

HY=H' oH'®---aH'.

N copies

If, for example, |x;) € H' is a position eigenstate the
N-particle state can be written as

) =
//.../d;];1~~~d:13N|m1,...,33N>w(1D1,...,33N)7

where

|$1,,$N>:|$1>®|w2>®®|$N>

There are two kinds of particles:

Bosons The wave function is symmetric with respect to
the exchange of particles.

Fermions The wave function is antisymmetric with
respect to the exchange of particles.

Note If the number of translational degrees of freedom is
less than 3, e.g. the system is confined to a two
dimensional plane, the phase gained by the many particle
wave function under the exchange of particles can be
other than £1. Those kind of particles are called anyons.
The Hilbert space of a many particle system is not the
whole HY but its subspace:

|

Dimension of space and statistics

Let us consider two identical particles in an
n-dimensional Euclidean space &,,.

We separate the center of mass and relative coordinates:

SHN
AHN

SH'®---®@H') symm.
AH'®---®H") antisymm.

1
5(:81 + 1132) cé&,

(k1 —x2) € Ep.

X

xr

Since the particles are identical we identify the points

T L1 — L2

—X Lo — L1

in the space &, of the relative motion. Let us call the
resulting space r(n,2). The point o € r(n,2) is the
singular point in this space.

Two dimensional space
The space 7(2,2) is a circular cone with the vertex
aperture 60°.



e corresponds to a curve connecting points © and —x
in the original space &£, i.e. corresponds to the
exchange of the particles.

e cannot be squeezed continuously to a point without
crossing the singular point.

A closed curve that does not circulate the vertex A closed curve that circulates the singular point twice

e corresponds in the original space £, to a closed curve e corresponds to the double exchange.

which connects a point  to the same point «. ) ) )
e can be squeezed continuosly to a point without

e can be continuously squeezed to a point without crossing the singular point.

crossing the singular point.
8 8 P The space 7(3,2) — {o} is said to be doubly connected.

A closed curve that goes around the vertex

Quantization
e corresponds in the original space &, to a curve which
connects points  and —«, i.e. corresponds to e The configuration space of two identical particles is
particle exchange. flat with the exception of the singular point = o.
e cannot be continuosly squeezed to a point without e In general, the configuration space of IV identical
crossing the singular point, no matter how many particles is flat with the exception of a finite number
times the curve circulates the vertex. of singular points.
The space r(2,2) — {0} is said to be infinitely connected. e The dynamics of classical systems is governed by
local equations of motion; occasional singular points
Three dimensional space have no effect.
The vectors in the space r(3,2) can be specified by tellin,
their P (3,2) P Y & e Quantum mechanical description is global; the

topology of the configuration space is essential.

e length and
& e In the quantum mechanics of identical particles the

e direction identifying, however, the opposite configuration space must be treated (somewhat)
directions. warped.

The space of the relative motion can be represented a the Proceeding formally

product . . . )
(3,2) — {0} = (0,00) x Ps, e At every point & we set a one dimensional Hilbert
space hg.
where P, is a surface of a three dimensional hemisphere
where the opposite points on the equator are identified. o The physical state of the system is described by the
A closed curve that does not circulate the singular point vectors |¥(x)) € he.

e In every Hilbert space hgy we specify the normalized

e is closed on the hemisphere.
Xm>. The set {‘X:p>} is called a gauge.

base vector

e corresponds to a closed curve from the point @ to the
same point @ in the original space 3. e A wave function 1 is the coordinate of a state vector

. . . with respect to the base:
e can be squeezed continuosly to a point without

crossing the singular point. U (x)) = () ‘X >
= ® ) -

e The transformation {‘Xm>} — {|x})} from a base to

another causes the gauge transformation

U(@) = ¢ (x) = @y ().

A closed curve that circulates the singular point once Physics is independent on the gauge.
e is a curve on the sphere connecting opposite points e We employ a linear unitary operator P(x’, x), which
and, consequently, opposite points on a hemisphere moves vectors from the space hg parallely to the
with the equator passing through these points. space hg.
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e The gauge can be chosen so that

P(z + dz, z) ‘Xm> = (1 + iby(z)dz") (xw+dm> :

e Because the derivative operators

0
Dk*aixkflbk( )

are invariant in the gauge transform the Hamiltonian
must be written using them.

e The commutator

ob;  Oby

=i[Dy, D
fiw = i[Dg, D] = oz 0z,
is independent of the gauge.

Due to the gauge invariance a vector potential b(x) shows
up in the Hamiltonian.

e b(x) is a consequence of the topology.
e The force field related to the potential is fi;

e We can set fi; = 0 everywhere in the configuration
space except the singular points.

e Moving an arbitrary vector |¥(x)) € hg along a
closed curve it

— remains invariant provided that we are not
circulating a singular point.

— maps to the vector |¥') = Py |U) € hy if we
circulate a singular point.

e Because hg is one dimensional we must have

Py = et

e Since

P = P(wlvw)PiBP(wlaw)_l = Pg,
the parameter £ is independent on the point x; £ is
characteristic to the two particle system.

e A route circulating a singular point once corresponds
in the two particle configuration space to a curve
connecting points (21, x2) (€2, x1): Pr exchanges
the particles.

e In two dimensional space there is no reason to
restrict the values of £ to 0 (bosons) or 7 (fermions).

e In three dimensional space the extra condition
P2 =1 forces the condition ¢ = 0 or 7.

Density operator and entropy

Let ‘H be the Hilbert space of a many particle system.
The probability measure tells us the weight that a state
|1y € H represents a system with given macroscopical
properties.

The apriory probability: when there is no knowledge of
the actual state of the system every state in H can taken
with equal weight.

We define the density operator p so that

1 N
p=z 2 In)n

where N' = dimH and |n) € H are the base vectors of H.
The expectation value of an operator A is
(4) =TrpA,

which is also called as the statistical expectation value.
Here Tr B is the trace of the operator B

N
TrB = Z(n|B|n>
n=1
Now
N
Trp = Z (n|pln) = NZZ n|n')(
n=1

= %21:1,

so, for example,

(I)=Trpl =1

and 1
(P,) = N when P, = |n) (n].
Let |3) € H be an arbitrary normalized state. The
probability for the state [¢)) is
(Py) =

Trplep) (W] =D _(nlple) (¥|n)

n

= > W|n)n|ply) =

n

{¥lpl)

NZ\W

I

= Zw\n (nly) =

So, we can write

Ensemble

Macrostate is the state determined by macroscopical
parameters.



Microstate is a particular state in a Hilbert space.

Let us choose a set of identical macrostates. We perform
complete measurements whose results are the states

i, i=1,..., M. We define the density operator of this
set, ensemble, as

1
'OMM

[ -

HM§

Then
Trpopg =1

The ensemble expectation values of operators are

(4)

TrppmA = 1 §jwmw

LS
= —S
M i=1
where ‘ ' 4
(A)" = (W'|Alp")

is the expectation value of A in the quantum state |¢’>
In an ideal case there exists the limit

Zw

defining the macrostate of the system.

Note In practice the method is unrealistic since it
depends on the employed measurements.

Pure state: When the state of the system is known
”quntum mechanically” accurately we can set

p=1¥) (Wl

In the corresponding ensemble every state |W> = |[¢).
The statistical mechanics of a pure state reduces to
ordinary quantum mechanics, e.g.

(Y] Al¢).

Other states are known as mixed states.

p= hm

(A) =TrpA =

Properties of the density operator

T

p=p
Wlply) = OV[Y) e™r
Trp = 1.

The density operator associates with every normalized
|1)) € H the probability

py = TrpPy = (Y[plt)).

Since p is hermitean there exists an orthonormal basis
{]a)} for H, where p is diagonal

p=> pala)la

Here

and

In this basis
(4) = TrpA = 3 pafalAla).

The equation of motion
Let us fix the probabilities p, corresponding to the states

|a). Now
p(t) = palalt)) {a(t)].

Since the state vectors satisfy the Schrédinger equations

S la(t) = Hla()

b S al)] = (o],
we end up with the equation of motion
i p(t) = [H, p(1)]
ar = s P .

In a stationary ensemble the expectation values are
independent on time, so p =0 or

[H, p] = 0.
This is possible e.g. when p = p(H).

Entropy
The entropy is defined by

S=—kgTrplnp.

In the base where p is diagonal,

S =—kp Zpa Inp.

Entropy has the properties
1. § >0, because 0 < p, < 1.

2. S = 0 corresponds to a pure state, i.e. Ja: p, =1
and py =0 Vo' # a.

3. If the dimension N of the Hilbert space H is finite
the entropy has a maximum when

P:NI

Vl]a) € H. Then
S = kB ln./\/

or po =
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4. The entropy is additive
Let the total Hilbert space be

Hiteo =H1 ® He
and correspondingly
P42 = p1 & p2.

If p; |a(i)> = pg) |a(i)>, then

P142 ’a(l),ﬂ(2)> :p(l)pg) ‘a(1)75(2)>.

Now
Tr 1+2A = Z(a(l)’ ﬂ(z) |A|Oé(1)7 ﬂ@))’
so that
Siy2 = —kpTrijopiyeInpiio
= ks y_pUpf (npl) + npf)
a,B
= —kp Zp Dinp) — kp Zp(z) npf)
= Si+ Sg.

Density of states
Let us denote
Hn)

If the volume V of the system is finite the spectrum is
discrete and the states can be normalized like

= En ‘n> 5
so that

(n|m) = 0pm.-
Thermodynamic limit:
V - o and N — oo

so that N/V remains constant.
The state cumulant (function) is defined as

= ZG(E - En)v

i.e. the value of J at the point E is the number of those
states whose energy is less than FE.
The state density (function) is defined as

dIE) _ > 6(E - Ey),

since df(x)/dx = §(x).

w(E) =

Now

J(E + AE) — J(E) = w(E) AE

is the number of those states whose energy lies between
(E,E+ AE). We can also write

J(E) =
w(E) =

Tro(E — H)
Tré(H — E).

w(E) corresponds to the volume I'g of the energy surface
of the classical phase space. When the system is large the
energy spectrum is almost continuous and w(E) can J(E)
can be smoothened to continuos functions.
Example 1. Free particle
The Hamiltonian is

»?

H=—.
2m

The eigenfunctions are the plane waves

I
¢k =—=ce' r?

VvV

where the wave vector can acquire the values

2

k= f(nw,ny,nz), ni €I, V=1L

The corresponding energies are

h2k2 p2
2m  2m’

€l =

In the limit of large volume the summation can be
transformed to the integration over the wave vector, like

Zk:—/de—g

where g = 25 + 1 and S is the spin of the particle. Then

v
Ck=g5 [ Ip,

J(E) = /dNe oY,V /pd’2
1 = k om ) =9 T ) wp
N
So we get
2 3/2
WE) = GVE
wi(E) = CVEY/?

¢, =

Example 2. Maxwell-Boltzmann gas
Let us consider N free particles. The total energy is

p2
J

24



and the state cumulant

Thus the corresponding state density is

dJn(E)
dE

/dEl"'dENwl(El)"'w1<EN)
X0(E—Ey —---— Ey).

wN(E)

We define the Laplace transformations

O
Qn(s) = /OOOdEeSEwN(E).
Now
Qn(s)
:/OoodEl'~dENw1(E1)~~w1(EN)
x/ooodEesEcs(EEl.-.EN)
= /000 dE; ---dEywi (By)e B o w (B )e 5PN
= [Qu ().
Since

o0 1
Q1(s) = / dEe*ECLVEY? = OV 5 Vs 32,
0

we have

Qn(s) = (CQV)NS_SN/27

>3/2

Performing the inverse Laplace transformations we get

where
2mm

1
02—2ﬁ01—9<h2

1
3

wn(E) = (CoV)NE3/2NL,

I(5N)
Note The permutation symmetry was ignored! An
approximative correction can be obtained when the state
density is diveded by N!:

wn (E) (CoV)N B3N -1

1
~ NII(2N)
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Note Neither the multiple occupation of bosons nor the
Pauli exclusion principle have been taken into account.

Energy, entropy and temperature

Microcanonical ensemble
We require, that

1. with full certainty the energy lies between
(E,E+ AE).

2. the entropy has its maximum.

Then the density operator is
1

— L yE+AE—moH - B),
ZE

PE

where (supposing AE > 0)

75 Tr0(E + AE — H)0(H — E)
Tr[0(E + AE — H) — 0(E — H)|

J(E+ AE) — J(E)

is the number of states between (E, E + AE). When AFE
is small, we have

Zp ~w(E)AE.

Entropy is
SE = kB In ZE

Since Zg is a positive integer, Sg > 0 holds. Furthermore
we get

SE kB ln[w(E) AE]

kplnw(E) + So,
S0, we can write
Sgp =kplhw(E).
Note As a matter of fact
w=w(E,V,N).

In the definition of the density operator we have applied
quantum mechanical ”ergodicity hyphothesis”: all allowed
states in the Hilbert space are equally probable.

Temperature
According to thermodynamics we have

(@),

In the microcanonical ensemble we define the
temperature T so that

1

as
OE

T

1
—:kBilnw



Denoting
1
f=-—
kT
we have 51
nw
f= OF
Example Maxwell-Boltzmann gas
Now
wy oc B3/2N-1
SO 3
Inwy = §N1nE+~'
and 3N
>

or we end up with the equation of state for 1-atomic ideal
gas:

E= ngTN.

The thermodynamics of a quantum mechanical system
can be derived from the density of states w(E,V, N). In
practice the state density of a microcanonical ensemble
(E and N constant) is difficult to calculate.

Equilibrium distributions

Canonical ensembles
We maximise the entropy under the conditions

(H) =
1) =

So, we require that

Tr pH = E = constant
Trp=1.

5(S—X(H)—-\N(I))=0,
where X are N are Lagrange multipliers. We get
0Tr (—kpplnp — A\pH — X p) =
Tr(—kplnp—kg — XH — XN'1I)dp = 0.
Since dp is an arbitrary variation, we end up with the
canonical or Gibbs distribution

1
_ —BH
P=7zc

where Z is the canonical sum over states (or partition
function)

Z =Tre PH = Ze‘ﬁEn = /dEw(E)e_ﬁE.
n

Note In the canonical ensemble the number of particles is
constant, i.e.

Z=2Z{p,V,N,...).
The probability for the state v is

1 _
py =TrpPy = - (Wle PH|y).

Particularly, in the case of an eigenstate of the
Hamiltonian,
Hn) = En|n),
we have
1 -sE,

pn:ZG

For one particle system we get Boltzmann distribution
1 — Qe — Qe
py:Ze v Z:Ze v,
1%
Here €, is the one particle energy.
Because in the canonical ensemble we have
Inp=—-pBH —InZ,
the entropy will be

S = —kpTrplnp=—kp(Inp)

kgBE +kpln Z.

We recall that FE is the expectation value of the energy

1
E=(H)=_Tr He PH,
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The variation of the partition function is

0Z = Tré (efﬁH) = 68 TrHe PH
—dB EZ.

The variation of the entropy is then

0SS = k‘B(Eéﬁ—&—ﬁéE—l—éZZ)
= kpBoL.

According to thermodynamics the temperature will be

oF 1
T: —_— = —,
(5S>V,N kpp

or
1
f= kT
Free energy
Since
% Z=-Tre PHH = 7 (H)
or
0 olnZz
E=—-——InZ=kgT?—=
o B T

we can write

0

The Helmholtzin free energy F = E — TS can be
expressed as

F=—kgThZ.

With the help of this the density operator takes the form

p = BF=H)

Fluctuations
Let us write the sum over states as

Z:/dEw(E)efﬁE :/dEef’BEHn“’(E).

We suppose that the function w(E)e PF has a sharp
maximum at F = E and that w(F) ~ microcanonical
state density.

o(E)e e

Now

and
lnw(E) - BE =
lnw(E) - BE
=0, maximum
1 9S _
— = — F—-F
- (kB OF E=E ﬂ>( )
1 828 _
_— E—E?24+...
2]{;B 8E2 E:E( )

At the point of maximum E = E we have

a8
OE

1

-5 T(E)
1
average temperature

kB =

So T is the average temperature. In the Taylor series
9?s o (1\_ 19T 1
OFE* OE \T)  T20E  T2Cy’
SO .
dE ¢ Fpr7ey PP

normal distribution

7~ w(E)e‘ﬁE

As the variance of the normal distribution in the
integrand we can pick up

(AE)? = kgT?Cy
or
AE = \/kgT2Cy = O(VN),

because Cy, as well as F, is extensive (O(N)). Thus the
fluctuation of the energy is

AFE 1
— X

Note Fluctuations can be obtained more
straightforwardly from the free energy:
0*(BF)
op*

((H = (m))”) =

Grand canonical ensemble

Let’s consider a system where both the energy and the
number of particles are allowed to fluctuate. The Hilbert
space of the system is then the direct sum

H=HOesHVY g...a HM g ...

and the Hamiltonian operator the sum
H=HO 4+ g® 4. ..o gW 4 ...,

We define the (particle) number operator N so that

Ny) = N|p) V]g) € HM.
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We maximize the entropy S under constraints

(H) = FE = given energy
<N > = N = given particle number
(y = 1.

With the help of Lagrange multipliers we start with
8(S = A(H) = X (W) = X" (1)) = 0,
and end up with the grand canonical distribution

1 N
—B(H—upN)
P=7:°¢ ‘

Here

Za =Tr o~ BH—uN))

is the grand canonical partition function. In the base
where the Hamiltonian is diagonal this is

Za = Z Z —B(E(N)—MN

where

H|N;n)=H™N |N;n) = EN [N;n),

when |N;n) € HW) is a state of N particles, i.e.

N|N;n) = N|N;n).

Number of particles and energy

Now
aanG 1 _ — N &
- _— T BH—pN) 3N
o Za re 16}
= s{iy=ss
and
aanG 1 J ~
- Ty BH-uN) g _ N
7 7o e (H — pN)
= —(H)+u<N>:—E+uZ\7,
SO
N _ kBTaanG
o
_ dln Zg dln Zg
E = kgT? kgT
B aT + KB o
Entropy

According to the definition we have
S=—kgTrplnp=—kg(Inp).

Now

Inp=—BH + BuN —In Zg,

28

SO

N
— +kplnZg.

E
T M7

S =

Grand potential
In thermodynamics we defined

Q=FE—-TS5— uN,
so in the grand canonical ensemble the grand potential is
Q=—kpTlhZg.
With the help of this the density operator can be written
as

p= eﬁ(QfH+M\7).

Note The grand canonical state sum depends on the
varaibles 7', V' and p, i.e.

ZG = Z(;(T, V7 ,u).

Fluctuations
Now

2 2 .

PZc _ O o -BH-pN)

o’ o

Tre MH-N 22 — 752 (N2),
SO
(AN)? = ((V=N)?) = (N?) - N2
- (kBT)QM = kBT%—JZ O(N).

Thus the particle number fluctuates like

o)

A corresponding expression is valid also for the
fluctuations of the energy. For a mole of matter the
fluctuations are o< 10712 or the accuracy =~ the accuracy
of the microcanonical ensemble.

Connection with thermodynamics
Let us suppose that the Hamiltonian H depends on
external parameters {x;}:

H(z;) |o(2i)) = Eo(zi) [a(z:)) .

Adiabatic variation
A system in the state |a(x;)) stays there provided that
the parameters x;(t) are allowed to vary slowly enough.



Then the probabilities for the states remain constant and
the change in the entropy

S =—kp Zpa Inpe,

is zero. Now
oE, 0 OH 0
= H - o Eai
(933‘1‘ 8JLL' <OZ| ‘Ck> <Ol 8arl a>+ axi <Ol| OZ>
_ OH N
B 81’1 ’
since (a| a) = 1.
Let F; be the generalized force
OH 0F,
F=_ - _
! <a 8:171 Oé> (9561

and dx; the related displacement. Then

Statistical study

Let us consider the density operator in an equilibrium
state ([H, p] = 0). In the base {|a)}, where the
Hamiltonian is diagonal,

Hla) = Eola),

pP= Zpocpou

we have

where
P, =|a){a.

We divide the variation of the density operator into two
parts:

adiabatic nonadiabatic
—f— ——
op = Zpa(spa + Z(Spapa
= 5pW +5p@.
Then
0(H) = TropH+TrpdH

H
TropVH + Trép P H + Z ox;Trp g—
- ZT;

ZpaTrH(SPa + Tr 6p(2)H — ZFi5$i-

Now

TeHoPa = Y (BlH(|a)(6a +[da) (a])|B)
g
= E,{ala)=0,
SO
§(H) =TropP H =Y Fidw;.
Since

JRCEGIE Sy REE RV

Z f(EOé)a
«
we can write the nonadiabatic term as

> 0paFa
/ dE w(E)E 5p(E).

TrépP H

According to the definition the statistical entropy is

S = —kp Y palnpa.

Its variation is

=0
—
ggtat ~kp > 0pa Inpy —kp Y 4
B Pa N Po BZ Pa
« «

—kp Y 6pa Inpa
«

—k:B/dEw(E) dp(E) Inp(E).
In the microcanonical ensemble

p(E) L« ﬁ

x —

ZEAE
holds, so

—kplnp(E) = kplnw(E) = S (E),

where S53t( ) is the microcanonical entropy. The
variation of the entropy can be written as

S5t = / dE w(B)S** (E) 6p(E).

We expand S®%#*(E) as a Taylor series in a neighborhood

of the point F = E:

Sstat (E) Sstat (E)
8sstat (E)

t e

Sstat (E) +
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Since
[ BB spE) =3 3p. ~0.
we get
1
sstat — | ABw(E)E ép(E
s T | BB ()
= ——Trop?PH
Tstat(E) rop

or

§ (H) = T*'655 — N " Fyda;.

This is equivalent to the first law of the thermodynamics,
SU = Ttherméstherm _ 5W,

provided we identify

(Hy = FE =U = internal energy
Tstat _ Tthcrm
Sstat Stherm
= OW = work.

Einstein’s theory of fluctuations

We divide a large system into macroscopical partial
systems whose mutual interactions are weak.

= 3 operators {X;} corresponding to the extensive
properties of the partial systems so that

[Xi’Xj]

0

~
~

~

= 3 a mutual eigenstate |E, X1,..., X, ), which is one of
the macrostates of the system, i.e. corresponding to the
parameter set (E, X1,...,X,,) there is a macroscopical
number of microstates. Let I'(E, X1,..., X,,) be the
number of the microstates corresponding to the
macrostate |E, X1,...,X,) (the volume of the phase
space).

The total number of the states is

> T(E,Xy,...

{X:}

I'(E) s Xn)

and the relative probability of the macrostate

B, X1,..., X,)
fE, X1,...,X,) = F(E»)?(,E.).,Xn)
The entropy of the state |F, X1,...,X,) is
S(E,X1,...,X,) =kpnT(E,X1,..., X,)
" 1 1
f(B,Xq,...,X,) = T 7 S(B.X1,00X0)

In the thermodynamic equilibrium the entropy S has its
maximum

S0 =SB, x9 .. x).

Let us denote by

deviations from the equilibrium positions.
The Taylor series of the entropy will be

1
S:SO—ik‘Bzgijl‘ixj—i-"',
%)

where
- (o)
M s \0X:0X; ) | 0,
We use notation
1
T = and g = (gs5)-
T
Then
1 T
f(z)=Ce 2% 9%,
where

C = (2m)7"/2/dety.

Correlation functions can be written as

(Xp---xp) = /dxf(x)xpn-xr
0 0
S F(h
[5‘hp oh, (h) heo
where
dr =dz; - dzx,
and o
F(h)=e2h 9 h
pVT-system

When studying the stability conditions of matter we
found out that

1
AS = -2 Z(ATZASZ» — ApiAV; + Ap AN).

Supposing that there is only one volume element in the
system we get

f= (o~ TrsT (AT AS—Ap AVHAAN)

We suppose that the system is not allowed to exchange
particles, i.e. AN = 0. Employing the definitions of the
heat capacity and compressibility we can write

1| _Cv

2 | kg2

f(AT AV) o ei (AT)2+VkBlTNT (AV)?
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We can now read out the matrix g¢:

T V

o=+, o ’
V 0 Vk}BTKT

The variances are then

kpT?
(ary?) = 2
<(AV)2> = V,Z{}BTKZT.

Reversibel minimum work
Let z = X — X be the fluctuation of the variable X.
For one variable we have

fz) x ez 97"
Now S = S(U, X, ...) holds and
dU =TdS — FdX —dWother-

We get the partial derivative

95 _F
oxX T
On the other hand we had
1
S = SO* §kBZgijxizj
i3
1
= S°— 3 kpgx?,
SO
95
ox _ BI*
and
F=—kpTgx.

When there is no action on X from outside, the deviation

x fluctuates spontaneously. Let us give rise to the same
deviation = by applying reversible external work:

dU = —Fdz = kT gz dx.
Integrating this we get
1
(AU)rey = AR = 3 kpTgz?,

where AR is the minimum reversible work required for
the fluctuation AX. We can write

fAX) x ¢ FoT

Ideal systems

System of free spins
Let us consider N particles with spin %:

SS _ i=1

. ..., N.

H_m\»a
Nl= St

The z component of the total spin is

S.=> Si.= %h(NJF ~N7),

where

1
NT —&—5 h spin count

N-

1
—3 h spin count.

S, determines the macrostate of the system.
Denoting S, = hv we have

1
Nt = - N+v
2
1
N_ = §N_V
and 1 1 )
v=——N,——-N+1,...,- N.
2 2 2

Let W (v) be the number of those microstates for which
S, = hv, i.e. W(v) tells us, how many ways there are to
distribute N particles into groups of N* and N~
particles so that NT + N~ = N and Nt — N~ = 2v.
From combinatorics we know that

N N!
W) = < N+t ) T NTIN
N!
IN+)IEN )

W (v) the degeneracy of the state S, = hv.
The Boltzmann entropy is

S=kglnhW(v).
Using Stirling’s formula

InN!'~NInN - N

we get

Q
=
=3
=
|

=

In W (v)

1 1
—[(2N—V)ln(2N—1/)—(2N—1/)]
1 N2 1IN
= lenl —Vln% Jrl/.
2 < N2 — 12 sN—v

31



We look for the extremum of W (v):

1 1 3N?—? N?
OlnW(v) _ Llyi 21/ o
ov 2 N (iNQ—VQ)
1
=N
_1n?7+V
iN_V
1 1 1
_V?N_ViN—V‘f'i]\;‘f'V
NGV
1
=N
— 71117? +V:
§N—V
We can see that v = 0.
Now
92 In W (v) B N
o? =0 N %NQ—V2 Vo
= N ,

so v = 0 is a maximum.
Let us expand In W (v) as a Taylor series in the vicinity of
its maximum:

2
— 1240

InW(v) =InW(0) — N

(%),

so W(v) obeys the normal distribution

whose deviation is

In this distribution

InW(0) ~ NIn2

or
W(0) ~ 2V,
Total number of states
We have exactly
N

Wtot

According to the previous treatment we can write
approximatively

S W) ¥ W(O)/

— 00
9N, /%N.

oo

appr _2.,2
Wiot dve™ N

Q
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On the other hand we have

non extensive
extensive

—N 1

NIn2 +-In(=N

3 ()

In Wit + non extensive

T
appr
In Wioe

Energy
Let’s put the system in the external magnetic field

B = oH,

where
H=H:

is the magnetizing field.
The potential energy is

E= —AOZM'HZ —#OHZMZ,

where p; is the magnetic moment of the particle i.
Now

=S,
where v is the gyromagnetic ratio. For electrons we have
e
V= 270 =T
m

where g is the classical value 5.
m

For electrons we can further write

Ky = —[BO: = FLB.
Here o, is the Pauli spin matrix and

eh

pB =5

eV
= 9. . 1 =5 _
2m 57910 T

the Bohr magneton.
Thus the energy is

E= _.UOHZ,Uiz = —puvHS, = ev,

where

€ = —hyuoH
is the energy/particle. For electrons we have
€ =2uopupH.

Now
AFE = eAv,

so from the condition
w(E)AE =W(v)Av

we get as the density of states



1) Microcanonical ensemble
Denoting

the total energy will lie between —FEy < E < Ej.
With the help of the energy the degeneracy can be
written as

1 4E?2 E Ey+FE
InW = ZNlnh ——2_ =
nWiv) 2" "o ¢ "E-E
= Inw(E)+Inle.
As the entropy we get
S(E) = kphw(E)
1 4FE? E Ey+ E
= Nkpl|=In —4—2— - —
BloM B —E 2B, By -E
+non extensive term.
The temperature was defined like
1_08
T OFE’
% 1 N Ey+ E
Ey= —=——"+— 0 .
BB =T ® ~ 28, "B —F
We can solve for the energy:
BEo
E = —Fptanh —
o tan N
1 wohvH
= —= NpghyH tanh .
g - HoRy AR ( 2% 5T

The magnetization or the magnetic polarization means
the magnetic moment per the volume element, i.e.

1
M:V;“’”

The 2z component of the magnetization is

V. — I ev 1 h’yp,oHZ/
P VuwH V. opH
1

Now
E= _:LLOHVMZa

so we get for our system as the equation of state

pohyH
2kgT

1
M = 5 ph~y tanh (

where p = N/V is the particle density.
Note The relations derived above

E
M

E(T,H,N)
M(T,H,N)

33

determine the thermodynamics of the system.

2) Canonical ensemble
The canonical partition function is

Z = Ze‘ﬁE”.
n

Here

N

= _/“'LOH Z iz

i=1
the energy of a single microstate.
Denote 1

Wiz = hyvy, vy = ii'

Now

eProtl Do pis

>

all microstates

Z Z Py H Y v

1/1:—5 VN:——

1 N

_ 7N
_Zla

where Z; the one particle state sum
e~ 3 BroHY | o5 BroHy

poH~
2kpT"

A

2 cosh

The same result can be obtained using the degeneracy:

Z W (v
ZW v)e o
2( )

N+
ez IeN (1+ e‘ﬁE)N

A BE(V

N

N+ 3N

The free energy F' is
F

= F(T,H)=—kgTlhZ

h
—kgTN {m 2 + In cosh ”;k;T }

The entropy is

oF
5 = ‘(aT)H

H~h
Nkp po 17y

2kpT

uoth]

In2 + In cosh

_ kohyH
2kgT

2kpT



Differentiating the free energy with respect to the field H

we get
oH, ),

= poyh (V) = poV>M,.

Since the differential of the free energy is
dF = -SdT" — poVM - dH,
the magnetization is
M o— .+ (oF
/L()V OH T

_ 1 pohyH
= 2ph7tanh< SinT )

This is identical with the result we obtained in the
microcanonical ensemble.

Also, the microcanonical entropy = the canonical entropy

+ a non extensive term.

Energy

a)

1 1
—3 Netanh (2 ﬁe)

= the energy of the microcanonical ensemble.

b) According to thermodynamics
F=FE-TS

or

F
F—l—TS:F—Ta—

oT

oF 0

= F+ﬁ%=%(ﬂF)
0

= —% an

= the energy given at a).

Susceptibility
According to the definition the susceptibility is

_ (3A4> _ b (52F>

X = \or ), v \om?
2
pop  (31)

kT nehy2 (P H '
Bcosh(z}’é‘#)
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When H — 0 we end up with Curie’s law
X = fa
2
pop (1
C=-——1(=h .
kT (2 7)

Thermodynamical identifications
Earlier we identified

where

E*% = F = (H) = U*™ = internal energy,

S0
F = E-TS=Fhm
= the Helmholtz free energy
= U-TS.
Now
dFF = —-5dT" — puoVM-dH
dFtherm = _SdT *d-VV,
SO
dW = poVM-dH.
Another possibility

Let us identify

FE = enthalpy = H"™™ = H,

Then
F = E—-TS = chcrm — TS = Gthcrm
the Gibbs free energy = G
and
dG = -SdT — puVM-dH
dH = TdS—puwVM-dH,
SO

G = G(T.H)
H = H(S, H).

In the thermodynamics we had for a pV'T' system
dH =T7dS + V dp,
from which we get the analogies

p<—>

—poH
V «— VM

(intensive)

(extensive).
On the other hand we had

U=H-—pV



and
dU =TdS — pdV =TdS —adw,

SO NOW
U=H+puVM-H
and
dU =TdS + poVH -dM,
from which

AW = —poVH-dM.
Example Adiabatic demagnetization Now
Nig =1In2+Incoshx — xtanhx,

where

_ hohHy
2kpT
When T — 0, then x — oo, so that

1
Incoshz = In 5 e”(1 4 e72)
= z-In2+e 4.
and
Tl — —2z
tanhz = Sd—e™)
e?(1+e27)
= 1-—- 26_21' + ...
Hence

N7]€B—>2x€72$+"'.

When T' — oo, then z — 0, and

—— — In2.

Nkg

> T

We decrease the field adiabatically within the interval
a —b. Now S = S(H/T), so that

Co(Ha\ _g (M
s.=5(52) =si=s (%)

H,

H,

or

T
T

Negative temperature
The entropy of the spin system is
1 4E3 E

E)= Nkg |= In —0__ _
S(E) kBQHEg—EQ

Ey+ FE
— In
2FE, Ey—E|’

where

Ey = poupHN ja — |E0| <FE< ‘E0|
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Now

Originally the maximum of w(E)e™#¥/Z is at a negative
value E. Reversing the magnetic field abruptly £ — —F
and correspondingly 3 — —/.
The temperature can be negative if the energy is bounded
both above and below.
Classical ideal gas (Maxwell-Boltzmann
gas)

: 24

> <
.o

We define r; so that

The volume occupied by one molecule =

or

Typically
e the diameter of an atom or a molecule d ~ 2A.
e the range of the interaction 2-4A.
e the free path (collision interval) I ~ 600A.
e at STP (T = 273K, p = latm) r; ~ 20A.

or
d < rp < l
2 20 600 A

The most important effect of collisions is that the system
thermalizes i.e. attains an equilibrium, which corresponds
to a statistical ensemble. Otherwise we can forget the
collisions.

Let us consider a system of one molecule which can
exchange energy (heat) with its surroundings. Then the



suitable ensemble is the canonical ensemble and the
distribution the Boltzmann distribution

1
o= ol = e,

where the canonical partition function is
Z = Z e P,
l

Since in the k-space the density of 1 particle states is
constant, in the wvelocity space, where

1 a\?
o= —d’p= () &k,
m m

the density of states is also constant.
Because the system is translationally invariant we have
PR 1,

er = (k| H |k) = 5y = 5 MY

so that the velocity distribution is

() o (K| p|k) = e FET

or R
f(v) = Ce %57,

C can be determined from the condition

oo mo2 73
1 = /f(v) dBo=0C {/ dvme_%BT}

_ o (%kBT)?’/?.

m

Thus the velocity obeys Mazwell’s distribution

m \Y? e
— — kT
/() (27rk;BT> cTr

From the relation
/d3v:/ A2 dv
0

we can obtain for the speed (the absolute value of the
velocity v = |v|) the distribution F(v)

F(v) = 4mv f(v).

F(v)

AN

> Vv

e The most probable speed

[2kgT
Uy, = .
m

e The average of the speed

(v) = /000 dvoF(v) = 87]:_1;7.

e The average of the square of the speed

(v?) = /000 dvv?F(v)

_ 3kgT
==L

Note

and

Lo\ /1 H,\ 3
<2mv >—3<2mvx>—2k3T,

i.e. the energy is evenly distributed among the 3
(translational) degrees of freedom: the equipartition of the
energy.

Partition function and thermodynamics
The single particle partition function is

Z(B) = / dEw(E)e PP
2,2 V _ p?
= gze_ﬂh%’fz :gﬁ/dgpe 2mkgT
k

|4
933 (2rmkgT)>/2.

Here g is the spin degeneracy.
When we denote the thermal de Broglie wave length by

h2
Ar = ormkpT

we can write the one body partition function as

Vv

Z1(B) :9E~

In the N particle system the canonical partition function
takes the form

_ 1 N —Bleg ++eg, )
S
k1 knx
1 N

_ - N —Be

- w5
1 N

— ﬁZl

Here N! takes care of the fact that each state
|k1,...,kN)

is counted only once. Neither the multiple occupation nor
the Pauli exclusion principle has been taken into account.
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Using Stirling’s formula In N! ~ NIn N — N the free
energy can be written as

Fy =
:—kBTanN
N 3
= NkpT lnv—l—lng—kln)\T
—NlenE—§lnT—1—ln + = 1In ’
- B Vo2 I M kg |
Since

dFf = —-SdI' — pdV + pudN,
the pressure will be

OF 1
=Y NkpT —
P="%v BLy

i.e. we end up with the ideal gas equation of state
pV = N]CBT
With the help of the entropy

_OF _
T

the internal energy is

F 3

S = 4+ SNk

T Ty VB
3

U=F+T8=3 NkgT

i.e. the ideal gas internal energy.
The heat capacity is

ou 3
Cyv=|—= = — Nkp.
Y (6T)V,N 2777
Comparing this with
1
Cv = 3 JkeN

we see that the number of degrees of freedom is f = 3.

Grand canonical partition function
According to the definition we have
Z= Y Y e ) 5N
N n

N

where

z = et

is called the fugacity and Zy is the partition function of
N particles.
So we get

Za
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The grand potential is

\%
Since )
dQ=—-SdT — pdV — N dy,
we get
o0 g
= ——— =—— =kgTe* =
P oV y o BLC A
and
N:—aﬁ:eﬁuﬂ:ﬂ
o AN kT
or we end up with the ideal gas equation of state
pV = NkBT.
Here
_ N NZ
N o= (vy= 2Ny
ZN ZNZN
1 0% 9nZg
- ZgT 0z Olnz

Another way
We distribute NV particles among the 1 particle states so
that in the state [ there are n; particles.

El‘

nl:].

— e —eo —eo e n; =4

*—eo n; =2
Now
N = an and I = Zeml.
1 1
The number of possible distributions is
N!
W = W(nl,ng,...,nl,...) = .
nilng!- - myl- .-

Since in every distribution (ni,ns,...) everyone of the N!
permutatations of the particles gives an identical state
the partition function is

Ty e BH-nN)

i i % WeB(E—pN)

n1=0ns=0

Za



Z Z B, mer—n) Occupation number representation
n1|n2 Let us consider a system of N non interacting particles.
Denote by

H li 1' —Bn(e— N)‘| |TL1,TL2,...,7”L¢,...>
n:

1 Ln=0 the quantum state where there are n; particles in the one

ny= =0 ’nz—O

_ Hexp [ —B(e— u)} particle state ¢. Let the energy of the state ¢ be ¢;. Then
— e [Z eﬁ(él#)] Hlny,ng,...) = (2; nm) [y, ma,...)
1
N = n;.
- el 2.
or exactly as earlier. We define the creation operator a! so that
Now
9ln Ze _ﬁzzoonie_ﬁn(q_u) a“nl,ng,...,ni,...):C’|n1,n2,...,ni+1,...>
- ) , I .
el IL [Zn 0 'n,| e=Anla= ”)} ie. az creates one particle into the state .
= —B(m) Correspondingly the destruction operator a, obeys:

so the occupation number n; of the state [ is /
P ! ai|n1,n2,...,ni,...>:C|n1,n2,...,ni—1,...>,

_ o 1 aanG - 1 0 _B(fl ) A . .
o= ()= 5 de, = 5 361 i.e. a; removes one particle from the state i.

The basis {|n1, ng,...)} is complete, i.e.

Z|n1,n2,.. 711,712,...‘:1

= e Bla—p)

The Boltzmann distribution gives a wrong result if the 1

particle states are multiply occupied. Our approximation {ni}
is therefore valid only if and orthonormal or

n <1 Vi (ny,ny,...|ni,na,...) = Onyn/ Onyny * -
or

el < efer vl
Now min e = 0, so that Bosons
For bosons the creation and destruction operators obey
ePr « 1. the commutation relations
- S

On the other hand [a;, aj} ij

- _ Tt

N [a00,) = [al,al] =0.

e = 37 Xp, when g =1 o o
It can be shown that
and _
E_i_ 3 ai|n1,...,ni,...> = \/ni|n1,...,ni—l,...>
=—=_—,
Voo Ay a“nl,...,ni,...) = Vni+1|ng,...,ni+1,...).
so we must have
Ay < T The (occupation) number operator
Now n; = ajaz,
B2
Ar = ommkgT obeys the relation

is the minimum diameter of the wave packet of a particle N1, ..., ni,...) = ajai [n1,. .y ng, ..
with the typical thermal energy (¢, = kgT) so in other = ni|na,..n..)
words:
The Maxwell-Boltzmann approximation is valid when the and n; = 0,1,2,....
wave packets of individual particles do not overlap. An arbitrary one particle operator, i.e. an operator O,

which in the configuration space operates only on the
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coordinates on one particle, can be written in the
occupation number representation as

oW = Z <2‘ oW ‘]> aiaj.
4,J

A two body operator O?) can be written as

0 = <zg‘ 0o® ‘kzl> a; al 70y,
ijkl

Example Hamiltonian
He Y v

takes in the occupation representation the form

Z V(T‘i,’l"j)

25

; n’ 20\ f
H = Z<z—2mv j>aiaj
i,j
+- Zm|V|k‘l)a a;a,ay,
ukl
where
. h? 2|, h? * 2 3
<Z T om ]>__2m /¢¢(7')V ¢j(7')d7"

and
(il V ki) =
[ 60065V (1216, ()61 s e
Fermions

The creation and destruction operators of fermions satisfy
the anticommutation relations

{a’z7 ]} = a'at“v_ata-:éij
{az7aj} = {G"L’ ]}_O
It can be shown that
a; |, ... ni,...) =
(=15 /i |ny, ... ,ni—1,...), ifn; =1
0, otherwise
a;r|n1,...,ni,...> =
(D)% ni+1|ng,...,ni+1,...), ifn;=0
0, otherwise
Here
Si=ni+no+-+n;_1.
The number operator satisfies
ﬁi |n1,...,ni,...> :ni|n17...,ni7...>

and n; =0, 1.
One and two body operators take the same form as in the
case of bosons.

Note Since a,; and a; anticommaute one must be careful
with the order of the creation and destruction operators
in 0@,

In the case of non interacting particles the Hamiltonian
operator in the configuration space is

H = ZHl(Ti),

where 1 body Hamiltonian H; is

o,

Hy ()
Let ¢; be eigenfunctions of H; i.e.

Hi¢;(r) = €;(r).

In the occupation space we have then
m=> =D ey
J J
- i .
=2 a9 = iy
J J
The grand canonical partition function is now

= ZZ e B mla—n)

niy n2

+
EJCLCL =

and

Zg="Tr e~BH-uR)

Bose-Einstein ideal gas
In bosonic systems the occupations of one particle states
are n; = 0,1,2,.... The grand canonical state sum is

oo o0
g E e
n1:0 n2:0

1|
IS

B3 mie—m)

ZG,BE
oo

Ze

ﬁn(elm]
n=0

—B(er—p) "

The grand potential is

QBE = kBTZIH |:1 — B_ﬂ(el_#)
l
The occupation number of the state [ is
_,(3 Z

)

(€m—
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and for the Bose-FEinstein occupation number we get The state sum in the grand canonical ensemble is

1 ZG,FD
eBla—p) —1° — Ty e BH=uN)

1 1
-y ¥ ...<n1n2...‘e—ﬁ(ﬁ—u1\7) \n1n2-~->

n1=0n2=0

n; =

Entropy
Since dQ2 = —SdT — pdV — N du we have

) _ 21: i _“e—ﬁzlnl(ﬂ—ﬂ)

S — @ n1=0n2=0
oT L 1
_ —Bn(e—p)
= — _ e~ Bla—n) —H{Ze }
kg Zln [1 e il e
— —B(er—n)
N —Ble—m) "1 —H[H@ }
kBTZ e am (= we kBTz‘ z
The grand potential is
Now
eﬁ(qf,u,) =1+ i QFD = —kBTZh’l |:1 + eiﬁ(elip’)} .
ny l
and The average occupation number of the state [ is
Ble — p) =In(1 + 7ny) — Inny, .
n; = (nl> = Trﬁle_B(H_”N)
S0 ZG FD
g — —5 Ez’ nyr (e — )
S = -k In{1-
le:n< nl+1) ZGFD nlzzomz—:()
_ _ _ 1 0ln ZG FD 8QFD
1 1) -1 = —— 4D
—l—k‘le:nl[n(nl +1) = Inny] 3 g 9
e—Bla—p)
or 1 + 6*/6(61*#) ’

S =kp n;+ 1) In(n; + 1) — nyInnyg] .
; I )In( ) } Thus the Fermi-Dirac occupation number can be written

as

i 1
. . . = ebla—u) 11"
Fermi-Dirac ideal gas
The Hamiltonian operator is liu' > kT o
];AI = Z ela;al
l
and the number operator m >&
. ; The expectation value of the square of the occupation
N = Z apa. number will be
l
1 N N
2 — 52, —B(H—pN)
n = Trnje
NOW < ! > ZG,FD !
1
a,,a;, t = o
{ap aik =ou _ Z Z o8 (=)
and ZG FD =0 n2=0
{a’la al/} = {aja G‘}L’} =0. o 1 1 62ZG,FD
- B2 2
The eigenvalues of the number operator related to the 02 Zapp e
state [, 1 1 5 :
N, — T — - —pPl€yr—p
np = apap, ﬂ ZG,FD l/]; |:1 te i|
are 0
Y o Bla—p)
n; =0,1. X Oe; ¢
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e—Ble—p) B
= 1 + E*ﬁ(el*l") =

This is natural, since nlz =ny.
For the variance we get

(Anl)2

There are fluctuations only in the vicinity of the chemical

potential p.
The entropy is

o0
S = Tor
= kBZln[l—&-e_ﬁ(”_“)}
1
=y
e—Bla—p)

Tzl+e—5€z #)( M)'

Now [(e; — u) = In 1—:” and 1 + e Pla—n =

777,1’

S =—kg Z [(1 - ’ﬁl> In(1— ﬁl) + ny lnﬁl} .
l

SO

Bosonic systems

Bose condensate

Number of particles
The avaerage number of particles is

_ oN
N = @U=—<a>
K/
I
p eﬁ(ﬂ*#) — ]_
or
N = Z nj.
i
We denote
z = PP = fugacity,
SO
_ 1
T BT 1

Let us consider a free non interacting gas. Then

2
o — hek? _ pif
2m 2m
Now
1 <eéf < .

Since n; > 0, the fugacity is restricted to lie between
0<z<x1

or p < 0.
We treat the state p = 0 separately, since the
corresponding occupation number 7y can become

macroscopic:
z

1—=2

ng =

—z—1 0.

We write the grand potential as

QBE = kBTln [1 —eﬁ”]
2,2
+kgT Z In [1 _ BB e
K40
Let us define functions g,(z) so that
o0 Zn
n=1
Then VEAT
Qe = kpT'In(1 — 2) — )\733 gs5/2(2).
T

For the number of particles we get

B Vv
N =ng + bER g3/2(2)-
T
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When the temperature is high or the density low, the Pressure

term 72 is negligible as compared with 931\23(2)7 ie. With the help of the grand potential the pressure is
7 oN Opp
A ( Z) p = - 57 = -
v T = 93/20%)- V)¢ Vv
kT

Now g3/2(2) is a positive monotonically increasing
function and

N SO
—_ 3 = =
(V )\T> o g3/2(0) =0 kaT ) above the
Ng 52 critical point

—5— 95/2(2),
X3 7o

N
<V x;) = g3/2(1) = ((3/2) = 2.612. p= el €l
z=1 kT _ kBjT eloOwW (S]
N . AT 95/2(1) = 1.342 A7 critical point.
VA
P 4 -transition border
2.612 ' T>T>T,
) 1 z A".'AA. T3
Let us choose the density p = % and T so that >V
N We are dealing with a 1st order phase transition.
7 A3 = 2.612, Cy

and z = 1. If we still increase the density or decrease the
temperature the increase of the term % A3, must originate
from 72 A3, since 2z < 1, i.e.

%_ Ny o= g32(2), when % A3 < 2.612
. ) . ‘He liquid
TN = 20X +0;50(1), when & A3 >2.612. A second order phase transition to a super liquid state at
Wh the temperature T, = 2.17K. The expression given above,
en

1%
A2 > 2612 —
T = N’

LB ()"
the state p = 0 will be occupied macroscopically forming mkp 12612
the Bose-FEinstein condensate. The formation starts when results 7. = 3.13K.
the temperature is less than the critical temperature

T. = 2l ( ; )2/3
mkp 2.612

or the density greater than the critical density

9 619 <kaT) 3/2 This is called a A-transition.
pC = 4. 2
27h

Two liquid modell
When T < T, the relative fraction of the condensate is When T < T,, we suppose that *He is composed of two
components: super and normal components. Then

no_ 2612V (TN
N Xy N T.) p = ps+pn

7, J = Jstin

N

1
When T' — 0, then % — 1, but % —n~0.1.
. This is due to the fact that *He is not an ideal liquid:
Tc between “He atoms there is
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e a strong repulsion at short distances,

e an attraction at longer distances.

Black body radiation (photon gas)

The photon is a relativistic massles boson, whose spin is
S=1,s0g=25+1=3. In the vacuum only transversal
polarization exisits, so g = 2.

The energy of a photon is

(moc?)? + (pc)?
pc = hke.

e(p)

With the help of the frequency f or of the angular
velocity w the energy is

e=hw="h2rf=hf.

Since the wave length X is

we have

&

Q

Density of states
Employing the periodic boundary conditions the wave

vector is 5
™
k=—

L

so the number of states in the vicinity of k is

o(L) w

1%
Ark2dk.
I emp

(nwanya ’I’Lz),

L

dnN,
k 2

With the help of the angular velocity this is

14 w? dw
dN, = dN,=¢g —— 471 — —
k g(27r)5 TE e
B Vw?dw
- Iops
We denote now
d-Nw = f(w) dw,
SO 2 g,
w

The sum over quantum states can be replaced by the
integration like

R = Oodwf(w)...'
BN
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Here k is the wave vector and

L,
A= { "
is the polarization.
Photons obey the Bose-Finstein statistics
Let’s consider n photons each with the angular velocity
w. The total energy of this system is

left
right

en(w) = nhw,
so the system is equivalent with a single harmonic
ocillator,

1
E,=(n+ i)hw = nhw + 0-point motion.

Thus we can consider a system of one harmonic oscillator
which is allowed to exchage energy with its surroundings.

NN RISANISEh TP the system is

H= Z(hck)a};/\ak)\.
kX

According to the Bose-Einstein distribution the
occupation of the energy state e(w) is

1

n(w) = Ao 1

The total energy is

o hw
Ei/o dw f(w) Ao 1

|
0

/Ooodwe(w,T),

The energy density will be

w3

efhw — 1

E

Vv

h
m2c3

e(T)

where the energy density at the given angular velocity
obeys Planck’s law of radiation

B hw?

- m2c3(efhw — 1)

» O

We can see that the maximum of the intensity follows the
Wien displacement law

Wmax = constant x 7.
At the long wave length limit, A > k};CT or w <K kBTT, the
energy density obeys the Rayleigh-Jeans law

e(w, T) = vakio x w?T.



At a given temperature the energy density will be

° Fiw3
T = do—
e(T) /0 23 (e — 1)
_ h 1 /mdxxf’
w23 (BR)* er —1
_ RpT?
m2c3h° 15

Thus the energy density obeys the Stefan-Boltzmann law

4
e(T) = - oT?,
C

where o is the Stefan-Boltzmann constant

2)4 W
— LB 567105 ——.
60772 m2K

Now
Q=F—uN =F,

since ;= 0. Thus the free energy is
F o= k:BT/ dw f(w)In [1 — e~ "]
0

= % k:BT/O dww?In [1— e~ 7]

VkpT
= 2 / dra’In [l —e™?]
_ kpT* =
N n2c3R3 457
or 4 1
g
F=—-2VT'= E.
3¢ 3
Here
E=¢eT)V

is the total energy.
The entropy is

OF
S=—-——
oT
or 16
s==2vyrs
3¢
The pressure is
__or
P= "5y
or
_4o
p= 3c

We see that the photon gas satisfies the relation

1
V=-E
PY-=3

Radiation of a black surface

44

We can think that the emitting surface is a hole on a
hollow container filled with isotropic black body
radiation. The radiation power can be determined by
counting the number of photons escaping through the
hole per time interval.

In the time interval 7 the photons escaping into the
direction @ originate from the region whose depth is

£(0) = c7 cosb.

The total energy of photons landing into the space angle
element d2 at the direction 6 is

dn
e(T)Act cos b yre

Thus the total energy of the radiation is

TE o do
Ea = e(T)ACT/ cosf —
0=0 A

1 7'(/2
e(T)ACTi/ df sin 6 cos 6
0
= 1Ae(T)c

The radiation power per unit area is

Fraa 1
P = = ZcelT
ATt 466( )
= ol

Absorption and intensity of radiation

ey

8
K
g
!
s
N
"
@-._
S
‘e
A\

When the radiation arrives from a given direction its
intensity is

;o £ Acre(T)
T A Ar
= ce(T)



or
I =40T*

The absorption power to a perpendicular surface is I A.
Phonons

Classical harmonic lattice
We let the ions of a crystal to oscillate in the vicinity of
their equilibrium position. We suppose that

1. At the average equilibrium position the crystal is a
Bravais lattice. With every point R of the lattice we
can thus associate an atom. The vector R, however,
reperents only the average position of the ion.

Typical deviations from the equilibrium positions are
small as compared with the interatomic distances.

According to the hypothesis 1 the atoms of the crystal
can be identified with the Bravais lattice points R; e.g.
r(R) stands for the actual position of the ion associated
with the lattice point R. If u(R) is the deviation of the
ion R from its equilibrium then

r(R) = R+ u(R).

Let ¢(r) be the potential energy of two ions separated by
the distance r. The energy of the whole lattice is then

U= 53 or(R) - r(R)
RR
- % S 6(R- R+ u(R) - u(R)).
RR/

When we use the notation P(R) for the momentum of the
ion R the total Hamiltonian is

H:ZPZ(R)+U
R

2m

Harmonic approximation

Since the evaluation of the total potential U starting from
the actual pair interactions is hopeless we approximate it
resorting to the hypothesis 2 (u(R) is small). The first
terms in the Taylor series of the potential U are

N
vo= 3 %: $(R)
% (w(R) — u(R')) - V§(R ~ R))
RR'
S () - ur) - VPoR - R)
RR
+0O(u?).

In the equilibrium the total force due to other ions
affecting the ion R is

F=-) V¢(R-R)).

R

Since we are at a equilibrium this force must be zero.
Thus the linear term in the series expansion of U vanishes.
Up to the second order we are left with

U = U + U’harm7

where U®? is the potential energy of the equilibrium and

pharm i Z [UAL(R) — UIL(R/)]QbMV(R— R’)
u,lf]ilﬂﬂ%,/yﬁ
X [uy (R) — uy (R'))
bulr) = 5o

If we are not interested in the quantities related to the
equilibrium of the crystal ( total energy, total volume,
total compessibility, ...) we can forget the term U®?. The
harmonic potential is usually written more generally as

1
prharm _ = Z /U/H(R)D;,LV(R_ R/)uy(R/).

2
RR/
nv
The former expression can be obtained by setting

Duy(R-R)=6rr Y ¢u(R-R')~ ¢ (R-R)).
R//

The heat capacity of classical lattice
The volume element of the the 3N dimensional classical
phase space formed by the N ions of the lattice is

1 1
ar=J]J - du(R) AP(R) = 11 - duy (R)AP, (R)
R R
and the canonical partition sum
Z= / dl e PH.

The total energy E is then

E= %/dFe’BHH = f%IHZ.
When we change variables,
w(R) = p'*u(R)
P(R) = ('?PR),
the partion function can be written as
zZ = /dFeXp [—ﬂ <Z PQ(]\EZ)2 + U + Uh‘”m)}

e—ﬂUeqﬁ—SN/ll;[ % dﬁ(R) dP(R) «

o [-% il

R? 1 _ "\ii /
Yi —gzuu(R)DW(R_R)uV(R )}
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Since all dependence on the temperature is outside of the
integral the energy can be calculated easily

—% ln(e_Bchﬁ_?’N x vakio)
= U®M+3NkpT.

E =

The heat capacity is

oF
oT
This expression for heat capacity, due to the lattice

vibrations, is known as Dulong-Petit’s law.
Experimentally

Cy, = = 3Nkp.

e at low temperatures the heat capacity is smaller than
the one obtained from the Dulong-Petit law. When
we approach the temperature 7' = 0 the heat
capacity tends to zero.

e even at higher temperatures the measured heat
capacities do not approach the Dulong-Petit limit.

Normal modes of the harmonic crystal

One dimenional Bravais lattice

If the separation of the lattice points in the one
dimensional Bravais lattice is a the lattice points are na,
n an integer. Every lattice point na is associated with
one atom.

We suppose that in this one dimensional lattice only the
nearest neighbours interact. Using the notation

K =¢"(x),

the harmonic potential of the lattice is
1
harm __ 2
U = iK g [u(na) —u((n+ 1)a)]*.

The classical equations of motion are

_8Uharm
du(na)
= —K[2u(na) —u((n — 1)a) — u((n + 1)a)].

Mii(na) =

We suppose that the N points of the lattice form a ring,
i.e. the deviations satisfy the boundary conditions

u((N + 1)a) = u(a); u(0) =u(Na).
We seek solutions of the form
u(na, t) oc efFre=et)
To satisfy the boundary conditions we must have

esza = 1.

We see that the allowed values for k& are

27 n

—, n integer.
a N &

Substituting the exponential trial into the equation of
motion we see that the angular velocity w must satisfy

12K (1 — | K 1

The solutions represent a wave advancing in the ring with
the phase velocity ¢ = w/k and with the group velocity

v = Ow/0k. If the wave length is large or the wave vector
k small then the disperssion relation

is linear and the phase and group velocities equal.

One dimensional lattice with base

We suppose that in the primitive cell there are two
atoms. Let the equilibrium positions of the ions to be na
and na + d, where d < a/2. We denote the deviations of
the ions these equlibrium positions by u;(na) and ug(na).
For the simplicity we suppose that the masses of the
atoms are equal. The harmonic interaction due to the
nearest neighbours is

Uharm

Gn 2
+ S i) - s+ V.

where K describes the interaction of the ions na and
na + d, and G the interaction of na + d and (n + 1)a.
The classical equations of motion are

Hyyharm
Ouy(na)
—Klui(na) — uz(na)]
~Glur(na) — w(n — 1)a)]
aUharm
" Ousy(na)
—Klus(na) — uy(na)]
—Gluz(na) — ui((n + 1)a)].

My (na)

Miis(na)

Again we look for a solution of the form

U (na) — 6161’(kna—wt)

u2(na) — €2ei(kna—wt).

Substituting these into the equations of motion we end up
with the linear homogenous simultaneous equations

[Mw? — (K + G)]e; + (K + Ge ey =
(K + Geika)Gl + [Mw2 - (K + G)]EQ
This system has a non trivial solution only if the
coefficient determinant vanishes. From this we obtain

w2_K+G
M

1
+ M\/K2+G2+2KGcoska.
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The ration of the amplitudes is

€1 K + Gette
€9 _¥|K+Geika|'

For every allowed wave vector k (counting N) we get two
solutions. Alltogether the number of the normal modes is
now 2N.

We consider couple of limiting cases.

Case 1. k< 7/a

The angular velocities of the modes are now

2(K + G)
w 7 —O((ka)2)
KG

© = N arr o k)

Since the latter dispersion relation is linear the
corresponding mode is called acoustic. In the former
mode w = \/2(K + G)/M, when k = 0. Since at the long
wave length limit this mode can couple with
electromagnetic radiation it is called the optical branch.
At the long wave length limit, when k = 0, the
amplitudes satisfy

€1 = €2

the upper sign corresponding to the optical mode and the
lower sing to the acoustic mode.

Case 2. k=m/a

At the border of the Brillouin zone the modes are

2K

\/; , optical branch
2G

\/; , acoustical branch.

Correspondingly for the amplitudes

w

€1 = F€a.

Case 8. K > G
The dispersion relations are now

- Bl @)
o 9)]

and the amplitudes satisfy
€1 X Fe€q.

The frequency of the optical branch is now independent
on the wave vector. Its magnitude corresponds to the
vibration frequency of a molecule of two atoms with equal
masses and coupled with the spring constant K.

On the other hand, the acoustical branch is the same as
in the case of the linear chain.
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Case 4. K =G
Now we have a Bravais lattice formed by single atoms
with the primitive cell length a/2.

Three dimensional Bravais lattice of single atoms
Using the matrix notation the harmonic potential can be
written more compactly

Uharm _

1
5 > u(R)D(R - R))u(R)).
RR/
Independent on the interionic forces the matrix
D(R — R’) obeys certain symmetries:
1. D,(R-R)=D,,(R —R)
This property can be verified by exchanging the order of
differentiations in the definitions of the elements of D:
_ 0*U
- Ouu(R)Ou (R |y

o

D,,(R—R)

2. D(R)=D(—R)

Let’s consider a lattice where the displacements from the
equilibrium are w(R). In the corresponding reversal
lattice the displacements are —u(—R). Since every
Bravais lattice has the inversion symmetry the energies of
both lattices must be equal, no matter what the
deviations u(R) are, i.e.

Uharm _ % Z ’U,(R)D(R — R/)’LL(R/)
RR'
_ % S (~u(~R))D(R - R)(~u(~R)))
RR
_ % S uw(R)D(R - R)u(R)),
RR

for an arbitrary w(R). This can be valid only if
D(R—-R')=D(R —R).
In addition, according to the symmetry 1, we have
Dy (R-R)=D,,(R-R),

so the matrix D is symmetric.

3. > rDR)=0

We move every ion R to R+ d. This is equivalent with
translating the whole lattice by the amount d. The
potential energies of the original and the translated
lattices are equal; in particular at the equilibrium 0, i.e.

> d.D,(R— R)d,
RR/

o
> Nd,d, <Z DW(R)> :
pv R

Since the vector d is arbitrary we must have

> D(R)=o.
R

0



The classical equations of motion

8Uharrn _
duu(R)

or in the matrix notation

~-> D(R- R)u(R)

Mii,(R) = — > Duw(R- R)u,(R),

R'v

form a system of 3N equations. Again we seek solutions
of the form

(R, t) = ec’FR-wt),

Here the polarisation vector € tells us the direction of the
motion of the ions. Furthermore we require that for every
primitive vector a; the solutions satisfy the Born-von
Karman boundary conditions

u(R + N;a;) = u(R),

when the total number of primitive cells is N = Ny Ny N3.
These conditions can be satisfied only if the wave vector
k is of form

k= 71)1 —|—

na n3

N i —by + N bs.
Here b; are vectors in the reciprocal lattice and n;
integers.
We see that we get different solution only if k is restricted
into the 1st Brillouin zone, i.e. there are exactly N
allowed values for the wave vector.
We substtitute the trial into the equations of motion and
end up with

Mw?e = D(k)e, (%)

k) =Y D(R)e
R

is so called dynamical matriz. For every allowed k we
have as the solution of (x) three eigen values and vectors.
The number of normal modes is therefore 3N.
Employing symmetry properties of D(R) we can rewrite
the dynamical matrix as

where
—ik-R

Dk) - ’ZD ek R kR g
= ZD )[cos(k - R) — 1].
Thus the dynamical matrix is
=-2 Z D(R)sin? k: R).

We see that D(k) is a real and symmetric function of k.
Since D(R) is symmetric D(k) is also symmetric. We
rewrite the equation (x) as

D(k)es (k) =X (k)es(k)
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As the eigen values of a real and symmetric matrix A, (k)
are real and the eigenvectors €4(k) can be
orthonormalized, i.e.

€s(k) - €5 (k) =ss, 8,8 =1,2,3.

The polarizations of three normal modes are €;(k) and
the angular velocities correspondingly

As(k)
Y

ws(k) =
Let us suppose now that the mutual interaction of the
ions decreases rapidly with the increasing separation.
Strictly speaking we suppose that

lim D(R) =

—5
Jim O(R).

Then, at long wave length, i.e. when k ~ o, we have

1 1
sinz(ik ‘R) ~ (Qk ‘R)?

and
k’2

D(k) ~ — 5

> (k- R)’D(R).

R

Let ¢s(k)? be the eigenvalues of the matrix

1

~51 (k- R)’D(R).
R

We see that at small wave vectors the frequency is

ws (k) = cs(k)k.

Thus the dispersion of all three modes is a linear function
of k so all three modes are acoustical. In general c,(k),
together with wg(k), depend also on the direction k of the
propagation in addition to the mode s.

Three dimensional lattice with base

We proceed exactly like in the case the one dimensional
lattice with base. We suppose that there are p ions in the
primitive cell. Every ion in the primitive cell adds one
degree of freedom so the total number of modes at a
given wave vector k is 3p. The corresponding frequences
are w'(k), where now s = 1,2,3 and i = 1,2,...,p. The
corresponding displacements are

(R t) z(k) i(k-R—w L(k)t)

The polarizations are no more orthogonal but satisfy

Analogically with one dimensional lattice 3 of the modes
are now acoustical and the rest 3(p — 1) modes optical.



Quantum mechanical treatment
Let us consider the harmonic Hamiltonian

arm _ 1
H" = ZmP(R)2
+= Z D(R - R)u(R))
RR/

describing the lattice. Let w,(k) and e,(k) be the
frequences and polarizations in the corresponding
classical lattice. We define the operator ay, so that

1 —ik-R
s = —— E e e (k) -

[ Muw, (k)

o W)t Qnng( )P(R)]

n

The Hermitean conjugate a,  of the operator ag, is

aTkS — \/» Z ezk R
Mw, (k) . 1
l on B = e P(R)] '

The operator a;rcs is called the phonon creation operator

and ap, the phonon destruction operator.
We employ the canonical commutation relations for the
position and momentum

[U#(R)7PV(R/)] = ih5/zu5RR'
[uu(R), un(R)] = [Pu(R),P,(R)]=0
the identities
Z ik-R 0, kis not a reciprocal vector
e = . .
7 N, kis a reciprocal vector

and

Zeik'Rzo, R#0
k

together with the property of an orthogonal vector set

3

Z[GS("’)]M[ES (k)] = 6y

s=1
One can straightforwardly show that the creation and

annihilation operators obey the commutation relations

[aksa a}-c’s’] 5kk’ 655/

[aksa ak’s’] = [a;fcs7 aTk,S,] =0.

With the help of the creation and destruction operators
the operators u(R) and P(R) can be written as

fz \ 2Mws aks taly)

u(R) =

€ (k) kR

Z /7‘LM(.«.)g aks _ks

€s (k:)e”c R

P(R) -

The Hamiltonian is now
H= Z hws(k

This is simply the Hamiltonian of the system of 3N
independent harmonic oscillators whose energies are
correspondingly

E = Z nkg

Here ny, the eigenvalues of the occupation number
operator Ny = aLSakS, ie ng,=0,1,2,....

1).

ak Afs + 5

hws( ).

Einstein’s model
Let us suppose that every ion of the crystal moves in a
similar potential well. Then

1
H = ZFL(UE((ILSCL,CS + 5),
ks

where the parameter
k B TE
h

is the Einstein frequency common for all 3N oscillators
and T the corresponding Finstein temperature.
The partition function of one single harmonic oscillator is

WE =

oo
Zharm(w) = Tre_ﬁh‘”(atﬁé):Ze‘ﬁh‘”(’”“%)
n=0
—1 Bhw
_ —1 Bhw —Bhw\" _ € ?
= ¢ Z(e ) T 1 — e Bhw

n

1
2sinh (5 fhw)’

Since the number of modes is 3V the canonical partition
function is

f: f: f: Ohen N (44

Z =
n1:0n2:0 TL3N21
3N oo
_ —Bhwp(n+3) _
- Hze = ) Zharm( )
j=1n=0

s (2]

The heat capacity is

OE 9 0 B dln 7
- 9 %=L (g1
Cv ar — oroep ' ° " oT (kB aT )
2 2
= kT L Tz = 3Nk (Tfﬂ
aT sinh?(Tg/2T)
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Lo The canonical partition function is

3Nk
A Dulong-Petit
1 oo 00 o
e 7 - Z Z e*ﬁst hws (k) (ng, +3)
Einstein
TL1=0 ?’L2=0 ?’L3N=0
....... o T e~ % Bhws (k)

1— e_ﬁhws(k) ’
]

F

Debye’s model

To get the exact solution we should evaluate the partition from which we can derive as the free energy
function

1
— _ _ _5hws(k)
7 = Tre P2k w(R)ag ap +3) F= ;2%’5(’“) +kBT%:1n [1 ¢
= — w n 1 - )
= Z e B2k, o (R k5+2)7 0-point energy

{ng,,=0}
ks or

which in turn would require the knowledge of of the 9N [
dispersions w; (k). In practice we have to be satisfied F=Fo+kpT / dww?In (1 - e*ﬁﬁw) .
with, normally quite realistic, Debye’s model: “p Jo

e At low temperatures only the contribution of the low Sipce § = — g% and Cy =T g%, isCy =-T g%j SO we
energetic phonons is prominent, so have
T
— we take into account only the acoustic modes: 2 Cv =3Nkpfp <1?> .
tranversal and 1 longitudinal.
— we take only the phonons associated with small Here 3 7 ey
k, so we can employ the linear dispersions = — dy ————
ploy p fp(z) = 3 /0 Y o =192
wi(k) = ak is the so called Debye function.
wi(k) = ok Typical Debye temperatures
e We cut the spectra at the Debye frequency Tp
Au 170
kgT
wp = Bh b Cu 315
Fe 420
where Tp is the corresponding Debye temperature. Cr 460
B 1250

In each mode j the density of states is C (diamond) 1860

3
dN;(w) = (L) 4rkidk = 53 widw. Note The higher T the stiffer, harder crystal.
2m 2mc; Behaviour of Cy:
Thus the total density of states is T — o0
Since N
vV o[(2 1\ , 3 2 _
dN(w):ﬁ (C?+C?’)w dw. fD(x)ijE /O dyy” =1,
Since the total number of states is we have
CV — 3NkB,
v [ ave) = L (24 L)
3N = 0 (w) = 672 E + g “D> or we end up with the Dulong-Petit heat capacity.
a T—0
where N is the number of primitive cells, we get as the Since
Debye temperature
1 f ( ) 3 e d y4€y constant
N 2 1\~ D\T) — 73 YTy 7 = 3
3 _ 2 T—00 e¥—1 x
(.{JD—V].SW (C?+C‘;) . 0 ( )
we get
Correspondingly the state density is
9N Cv(T oxrs = 2 (T
dN(w) = —5 w?dw  (w <wp). v(T) = vaio ~ 5 UP\1, )
“p
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c, —
Debye The vibrational degrees of

freedom of the separation d of
nuclei correspond at small
amplitudes to a linear harmonic
oscillator.

n=a'a=0,1,2,...

Each energy level is non
Diatomic ideal gas degenerate

H® = electronic energies

e jumping of electrons from an
orbital to another

We classify molecules of two atoms as e lonization

e homopolar molecules (identical atoms), e.g. Ho, No, e energies J1eV ~ kpl10*K
O,, ..., and . .
e in normal circumstances
e heteropolar molecules (different atoms), e.g. CO, these degrees of freedom are
NO, HC], ... frozen and can be neglected.

When the density of the gas is low the intermolecular
interactions are minimal and the ideal gas equation of

state holds. The internal degrees of freedom, however, el _ energies corresponding to

change the thermal properties (like Cy/). nucleonic degrees of freedom
When we suppose that the modes corresponding to the In normal circumstances only the
internal degrees of freedom are independent on each nuclear spins are interesting. The
other, we can write the total Hamiltonian of the molecule spin degeneracy is

as the sum gy = (211 +1)(2I2 + 1),

H ~ H + H™ 4 Fvibr gl 4 ppovel where I; and I are the spins of

the nuclei
Here Energy terms do not couple appreciably, i.e. the energy
2 ..
E; of the stat
HY = % = kinetic energy i Of he state v
m
m = mass of molecule E; = Ety + Erot + Evibr,
L? i
™t = 37 = rotational energy so the partition sum of one molecule is
L = angular momentum 0o oo
I = moment of inertia Z1 = Z Z Zgy(Ql +1) x
P [=0n=0
I = mez __Mmz e B B B2 1(14+1) ~ Bhwy (nt )
— T my 4 my t t rrvib 1
i — Z rzro ZV] rznuc ,
Ezample Hs-molecule
_ i.e. the state sum can be factorized.
d=0.75A
L=n/l(l+1), 1=0,1,2,... Above
h2 A - —B gpi — 14
= 85.41K = e =g
21kp zp: A

eiger;valucs \ B2
h = _—
o7 I+ D) "=\ 27mksT

are (21 + 1)-fold degenerated ot i(zl n 1)6—% 1(1+1)
1=0
HY™ = huy(f 4+ ©) = vibrati 7, - 1
= hwy,(n+ 5) = vibration energy " kg

51



o0
gvibr Ze‘ﬁhwl’("+%)

711
= {2 sinh U}

2T
hw,
T, =
kp
el = g, = (21 + 1)(21 + 1).

Approximatively (neglecting the multiple occupation of
states) the state sum of N molecules is

1
ZszZ{V,

where 1/N! takes care of the identity of molecules. We
associate this factor with the translational sum.
The free energy

F = —k?BT In ZN

can be divided into terms

F' — _kyThn [N' (Z”)}
iN
1 ormkpT\ 2
1% 2
- —kBTN[1n+1+ nkgT + 2 122”}

oo
Frot = —NkBTln{Z(QH—l)e_TTTl(l“)}

=0
FYiPr  — NEkpTln 2smh5
B oT

Fowa = —NkgTlng,.

The internal energy is

F4+TS=F- Ta—F

or
o (F
— _72 = [
B T8T<T>’

so the internal energy corresponding to tranlational
degrees of freedom is

o (F% 3
tr _ _ 2 ¥ _ e
U = Ta ( )—N2kBT

U

and 5
Ctr = 5 NkB

so we end up with the ideal gas result.
Since only F'** depends on volume V the pressure is

_ OF _ OF"  NkgT
P="3v = "v ~ v

i.e. we end up with the ideal gas equation of state

pV = NkgT.

Rotation
Typical rotational temperatures
Gas | T
H, | 854
Ny | 29
NO | 24
HCI | 15.2
Cly | 0.36
We see that T, < the room temperature.
T'<KT,
Now

Zt =3 (@4 1)e F U x 14 3e72F
=0

so the corresponding free energy is
F‘mt —SNICB Te™ T

and the internal energy

Frot .
Uret = T2;; ( - >z6Nk:BTTeQTT.

Rotations contribute to the heat capacity like

T.\>
Cy* ~ 12Nkp <er> e‘zTTjOO.

T>1T,
Now

ot o /OO 21 + 1) l(lJrl)

_ —/ T -

so the free energy is

T
F™' ~ —NkpTln =

T

and the internal energy
U™ =~ NkgT.
The contribution to the heat capacity is
Ci' ~ Nkp = fmt% Nkp,

or in the limit 7" > T;. there are f™' = 2 rotational
degrees of freedom.
Precisely:
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Vibration
Typical vibrational temperatures:
Gas | T,
H, | 6100
Ny | 3340
NO | 2690
0O, | 2230
HCI1 | 4140
We see that T, > the room temperature.
T < T,

The free energy is

pibr NkpTln [e%(l _ e—%)}

Ty

1
5 NkgT, — NkgTe T,

Q

SO
2
. T, :
OV ~ Nkg () e~

T>T,
Now the free energy is

; T
FY" ~ NkpTln =2
T
and the internal energy correspondingly
UVibr ~ N]fBT,
so the heat capacity is
Cvibr ~ Nk
v~ Nkp.

We see that in the limit T > T, two degrees of freedom
are associated with vibrations like always with harmonic
oscillators (E = (T') + (V) = 2(T)).

gm
Nk, room
A temperature
ionization
dissociation
ol etc.
- > T
T T,

Rotation of homopolar molecules

The symmetries due to the identity of nuclei must be
taken into account.

Example Hs-gas:

The nuclear spins are

1
1121225,

so the total spin of the molecule is

I=0,1

We consider these two cases:

I=1 I1=0
I.,=-1,0,1 I.,=0
triplet singlet
orthohydrogen parahydrogen
spin spin wave
wavefunctions function
symmetric: antisymmetric:
L=
[10) = Z(TH+UD)  j00)= 5 (T1) —1I1)
-1 = [l
Space wave Space wave
function function
antisymmetric: symmetric:
(1)l =-1 (-1 =1

The corresponding partition functions are

Zortho = Z (20 + 1)e~ 7 10+D)
1=1,3,5,...

Zpara 3 (20 + 1)~ F L+D
1=0,2,4,...

and the partition function associated with rotation is
ZrOt = 3Zortho + Zpara-

When T > T, collisions cause conversions between ortho
and para states so the system is in an equilibrium. In
addition Zorto & Zpara, so all 4 spin states are equally
probable.

When T'XT, the gas may remain as an metastable mizture
of ortho and para hydrogens. In the mixture the ratio of
the spin populations is 3 : 1. Then we must use the
partion sum

Zrot _ Z% Z%
N — “orto“/para-

The internal energy is now
3 1
Urot _ = Uorto Z [Jpara
4 + 4
and the heat capacity correspondingly

3 1
Crot — = Corto — (Qpara
4 * 4



Fermionic systems

Electron gas
The ideal Fermi gas is a good approximation for example
for the conducting electrons in a metal.

When the single particle energies are ¢ = ﬁ; 7’;2 the
density of states is
3/2
Js 2m
wile) =V 472 (7L2) ve
o\ 3/2
— vang () Ve
As the density we get
_ E _ 9 Zﬂ i /OO d \ﬁ
P=V a2 \ 32 L e 1

The energy per particle will be

fooo de
fooo de

£3/2
P11

el/2
=y

Degenerated Fermi gas
Suppose that kpT < p.

Let’s write
1
Bl 11 =0(u—¢€) + h(e—p),
where )
h(z) = si _
() = sign(z) 51—

The function h(z) deviates from zero only at the narrow
domain |z|SkpT < p.

Let’s evaluate the integral

[ ae
0

€ eBle—n) 4+ 1
-/ " e d(0) (1 — ) + h(e — )]
= [[aeot+ [ deh) i+ — o)
0 0
+/ de h(e)p(p — €).

The last term is of the order

1

T ~ e_lt/k:BT
en/ksT 41

h(p) =

and can be discarded.
If ¢(€) regular enough in the vicinity of € ~ p we can
expand

P+ €) — d(p —€) = 2¢'(n)e + 2 1 ¢" ()€’ + -

3!
S
0 eﬁ(e_l‘) + 1

/0 " ded(e)

20/ () (kT / T

Now

~
~

z
er+1

23

e+ 1

/" 1 >
20" ) g o T)* [
_|_ e

and we end up with Sommerfeld’s expansion

< 6 " e
| et~ [ oo+ T mmre
7774 k T4 n
T (T () +

Temperature 7' =0

Now

A(e) = O(u— )
and h(z) = 0.
The Fermi energy is

h2k2,

s

The Fermi momentum is
pr = hkp.

The density is

Js
472

3/2
) o
h 0

Js
672

or

p= 672

The spin degeneracy factor of electrons is
gs:2~%+1:2,so

K
32
For the energy per particle we get
— fol drl.3/2 2/5
€ = €p 7T ——— =€F
[ da /2 2/3
3
= —€p.
5 6F
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The total energy is

hg 2 2/3
E=3en=3N" <67T p) .

5 5 2m Js
Since
E = constant x N°/3y~2/3,
we have
L, (9B __2F
P=\ov),” 3V
or

2
V=-F.
PY =3
Metallic electron gas
When we write the density as
N1
P=v = 33

and define the dimensionles number

ri
Ts = —,
aop
where ag is the Bohr radius
4regh?
ap = —2L — 0.5294,
me
we can see that
1.613-10%° 1
P s

For metals we have
1.95r,55.6.
The Fermi wave vector will become

1 /97 1.92
kp = — = .
aoprs 4 agrs

The Fermi velocity is

’UF = = —_—=

m m magTs

4.2-105 m

Ts S
For example in aluminium

— 90290 _ €
v s 148

The Fermi temperature or the degeneracy temperarure 1r

is defined so that
k‘BTF — €F.

]E hkF - 1.92h

Now
2 1.92\>  3.69
= = —— 13.6eV.
r 2ma? < Ty ) 2 ¢
——

binding

energy of

hydrogen
Since

leV = 11604k K,

we have

1.92\2
Tpr = ( 9 ) 13.6 - 11604K.
For aluminium the Fermi temperature is Tr = 136 000K.
In general, the metals satisfy

T'<Tp,

so the metallic electron gas is strongly degenerated.
Specific heat Let now T > 0, but T < Tp.
We need p = pu(T), when £ = p is known.

With the help of the Sommerfeld expansion we get

2 3/2 47’(2 ﬁz e 61/2
3fr = Gy, p= de Bl 11
3 gs \2m 0 ePle—m) +1

g3/2+7T—2(I<: T — +
i TRV n

3/2

%

SO we can write

2 3/ m? 2 1 2 30
- 1+ —(kgT)" - +--| == .
3t |:+8(B)62F+ 3 F

From this we get for the chemical potential the expression

W(T) = er ll - 7;—; <kfFT>2 +] :

Employing again the Sommerfeld expansion we get

0 63/2
/0 de eBle—p) 41

2
e
i T kT Vi -
5 kpT\>
1 . 2
TR ( - )

Now the energy /particle is

~
~

[N G ]

5/2
:5€F/

0o £3/2
T . fo de eBle—m) 41
6( ) - o0 el/2
Jo de =
3 5 kpT\”
= = 1+ — 72
5N TR ( er )
_ 3, R

5 4 €r



The heat capacity which can be written as

ONE w2 k2
Cy = ——=N_2BT
v oT 2 e
w2 T
= Nkp— —
B 2 TF’

is small when compared e.g. with the specific heat of the
Maxwell-Boltzmann gas (Cy = Nkp 3). This is
understandable since the number of those particles that
can be excited with the thermal energy ~ kg7 in Fermi
gas is much less than in MB or BE gases due to the Pauli
exclusion principle.

Pauli’s paramagnetism
The magnetic moment of the electron is

e
p=-—s
m
or
Hz = —HBOz,
where " -
hp = — = 5661077~
2m
and
2 +1
0, = =8, = +1.
h

In an external magnetic field the energy of an electron is

2

p
=5 T Hz

o B =¢p+upBo,

epo'z = Cpi

when the kinetic energy is

p2

€p = —.
P~ om

We still treat electrons as non interacting so the grand
canonical partition function is as before, provided that we
replace ep — €p + pupBo..

The occupation numbers of the states are now

1
= BletusBo.—p) +1°

ﬁPUz - ’ﬁ‘pi

>

Since the metallic electron gas is strongly degenerated
(T' <« Tp), we can restrict to the temperature T' = 0.

€
&y N €t
gF M
> k
kF_ N kF+

56

The Fermi wave vectors can be determined from the
conditions

h2k2
2£++MBB = p
h2k2
275 —pB = p.

Since the number density is

Js
672

p= k?’v

the spin population densities are

Ky
Pro= Gt
K
P~ = G

If the strength of the magnetic field is

€F

BO )
KB

the magnetic energy is of the same order as the Fermi
energy. For metals er ~ 5eV, so By ~ 10°T. So the
realistic magnetic fields are < By and we can work at the
small B limit. Let us denote

kpy = kp &+ 0kp,
S0

h2k2,
2m

h2k
+ " Skp £ upB
m

n2k2

2m

From this we get

meB

Skp = —HB
B R,

B

and

k%

— 5k

om2 F

krmpp
2m2h?

Ki
672
Ki
672

P+ +

The relative polarization is

P+ —p— _ _3mp
p+ +p- Rk,
_3uB g

26F

The magnetization per volume element is

N
M==

v —pup (0:) = —pusr

(p=) =



or

3 2
M="2,"B B
2 (2

The susceptivity is, according to its definition,

_ oM
X= oH

_ oM
—HoeBe

Pauli’s paramagnetic susceptivity is then

3 2
x=§uopLB
€EF

provided that T < Tr and upB < €p.
In aluminium the electron density is

p=182-10"m™3

and the Fermi energy

er = (

The susceptivity

1.92

2
13. =11. .
207) 3.6eV eV

3
S 47-1077-1.82-10% .

2
Vs 1 (eV)?
>2

(5.66 - 105)2

X 11.7

Am m3 T2eV
1’I12

eV Vs m*
Vs

m4
9.4-103-1.6-107%
1.5-107°

9.4-10%

is now small since only the electrons very close to the
Fermi surface can be polarized magnetically.

Two dimensional electron gas
The Hamiltonian for a free electron in the magnetic field

B=Vx A

is given by

Convenient unit of

e the energy for non-interacting electrons is hw,., where
we = eB/m*c is the cyclotron frequency.

e the energy for interacting electrons is 2 /efy, where

e the length is {y = (hc/eB)% , the magnetic length.
Consider electrons

e confined to zy-plane.

e subjected to a perpendicular magnetic field B||z.

o7

The eigenenergies are the discrete Landau levels
E, = (n+;> hw.,, n=0,1,2,....
Choosing the Landau gauge
A = (0,Bxz,0)
the single particle Hamiltonian is

B

2
e
T
Cc

Ho D

- 2m*

2
er(per

The eigenfunctions are

z—X

4

bnx = by o= (@=X)% /260 o (

where the center of the oscillatory motion is given by
X = —k, 0.

Confine the system in a rectangular cell

Using periodic boundary conditions we have

2
ky = % p,=0,£1, 42, ...
Ly
and )
X=-"Wpe 0<X <L,
Ly

The number of allowed values of n,, i.e. the degeneracy
of each Landau level, is

_LL, e

s

2103 he

where ®g = he/e is the flux quantum.
Thus, on each Landau level there is exactly one state for
each flux quantum and for each spin polarization.



When N, is the number of electrons in an area and N,
the number of flux quanta we define the filling fraction as

Un) T
== (=4136—2 ).
TN, < 1055m—2 B)

To treat the spin we note that

e there should be the Zeeman coupling term

=p-B=—gupBs.

Zeeman

in the Hamiltonian. Here ¢ is the Lande factor and
pp the Bohr magneton.

e in addition to the Zeeman term there are no spin
dependent terms in the Hamiltonian, not even in the
interacting many body system.

e the problem can be solved disregarding the spin. At
later stages we can add the total Zeeman energy

= gupBS..

Zeeman

Quantum Hall states
Consider an experiment like

The conductivity o and the resistivity p are defined by

j=o0E, FE = pj. Classically the diagonal and Hall
conductivities are

58

noe’r 1
Oax m 1+ (wer)?
oy = — ngec azz’
B WeT

where 7 is the relaxation time. In particular
Py = —B/npec.
Experimentally the resistivities behave like



14000 , ; : . ; , .

12000 -

10000 -

8000 |- -

6000 |- .

Pxy(€2)

4000 |- —

2000 |- -

300

200 |- 63 4

Pxxg (Q)

100 |-

B(kG)
We observe that

e the Hall resistivity develops plateaus with

h

2 n=1,2,3,....
ne2

Pzy =
This quantization condition is obeyed with extreme
accuracy. In fact, the current ISO standard for
resistivity defines

_ 25812.807

pa:y - TQ.

e at the same time the diagonal resistivity practically
vanishes.

For the moment we suppose that the electrons are
polarized. If the current carrying electrons fill up exactly
n Landau levels, it can be shown that p,, = h/ne* and
Pzx = 0.

The plateaus can be explained by noting that

e in an ideal pure 2DEG the density of states is a
series of J-peaks separated by hw,.

e In a real impure system the J-peaks are spread and
between the Landau levels there are localized states.

< h(’)c-)g

ho

D(E)
D(E)

E Filled £ Empty E
F

The Hall conductivity can be written in the form

ngec

B

Oy = — + Aogy,
where, according to the Kubo formula, the contribution
from a localized state |a) to Aoy, is

f(Ea)ec.

Aoy, = B

Here f(FE) is the Fermi distribution function.
When the number of electrons changes we observe (at
T =0) that

e as long as the Fermi level lies within the localized
states, 0, remains constant.

e if all states below the Fermi level are localized, the
terms in o4y cancel exactly and o,y = 0.

e for QHE to exist there must be extended states in
Landau levels.

As a function of the density the conductivities behave like

g
a
eZ
n
? B
Jp
0 2alin, 1
Noting that
Ne no
v=—2=21lng x —,
N, 070 B

decreasing magnetic field corresponds to increasing filling
factor, i.e. decreasing the magnetic field is equivalent to
increasing the number of electrons.

Increasing the magnetic field (i.e. reducing the electron
density) furthermore one finds resistivities to behave like

13

Pxy [h/62]

Pxx
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The plateaus in the Hall resistivity and the minima in the
longitudinal resistivity correspond to filling fractions

p
v=-,
q
where
e p and g are small integers (<11).

e ¢ is an odd integer.

This behaviour is called as the Fractional Quantum Hall
Effect (FQHE) as opposed to the previous Integer
Quantum Hall Effect (IQHE).

Regarding the IQHE we note that

e the plateaus correspond to full Landau levels,

e the Landau levels are energetically far from each
other as compared to typical electron-electron
interaction energies (at least when v<5).

e the mutual electronic interactions play practically no
role.

While this single particle picture is sufficient in the IQHE
it cannot explain the FQHE where

e the Landau levels are only partially filled, so that
e there is room for the Coulomb intra level interaction.

It turns out that the correlations due to the electron
interaction are essential in the FQHE.

Laughlin’s theory
For a while we work in the symmetric gauge

1
B=-

2 (_ya Z, O)

and in the cylindrical coordinate system. The single
particle Hamiltonian is now

2m

1
+ = m*wir?.

" 2

WePp + 3

*

The Schrodinger equation takes the form

W1 o (v 1 0%
2m* |r Or or ) r2 0¢?
1. oY 1 2 2
—= . — —m* - F =0.
2zhw a¢+<8mwcr =0
Its solutions can be written as
n! I 2 1402
[ A —ime—r= /4L
¢n7m(r, ¢)) |:27T€(2)2mm':| €
|m| 2
r r
— Lim ().
(%) ' (5)
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The corresponding energies are

1
(2n + |m| + 1 — m)hw,.

Enmzf
2

)

In particular, in the lowest Landau level (n = 0,m > 0),
the wave functions are
1

z=re " =z —iy.

1
27032 m)!

z

Ym(2) = [ go)m 67|Z\2/4£37

where we have written

It is easy to show, that the quantum number m can take
the values

m=0,1,...,Ns — 1,
where 4
Ny = —
2me3

is the degeneracy of a Landau level. In the lowest Landau
level the wave functions are therefore of the form

2

PRI

1,2,z ,zVs~! times Gaussian.
The great idea of Laughlin was to propose the Jastrow

type function

N, N,
Y = [z — ) [ e 1= /44
i<k j=1

as the many body ground state wave function. To get the
Fermi statistics m must be odd.
Laughlin’s wave function has some remarkable properties:

e in the thermodynamical limit the parameter m is
related to the filling fraction v as

e it can be mapped to a charge neutral two
dimensional classical plasma, which makes it possible
to use classical statistical mechanics to evaluate e.g.
the energy.

e small systems (<12 particles) can be solved exactly.
Comparisions with Laughlin’s wave function show
that it is practically the exact solution of the many
body problem



Spin polarization

We consider the filling fraction v = 1, i.e. the lowest
Landau level is fully occupied. We turn on the
electron-electron interaction and note that

e typically the Landau level separation Aw, is
(much) larger than the characteristic Coulomb
interaction energy e?/efy.

e if the electrons remain polarized the interaction
cannot do much: all energetically favorable states are
already occupied.

So, we let electrons to flip their spins. However,

e according to Hund’s rule the repulsive interaction is
the smaller the larger the total spin S.

e In the absence of the Zeeman coupling all possible S,
states are degenerate.

e the Zeeman coupling gupBS, tends to polarize the
system, although the Lande g-factor is rather small
(in GaAs g =~ 0.5).

We conclude that the ground state at v =1 is polarized.
The diagonalization method

We will work in rectangular geometry with periodical
boundary conditions.

' o
1
1

O

‘Hy is the single particle Hamiltonian,

He.o is the Coulomb interaction between an
electron and all other electrons and their images
summed over all electrons,

He-im is the interaction between an electron and its
images,

e H.y is the electron-background interaction,

e Hy_p is the background-background interaction.

The Zeeman coupling is treated afterwards.
We

1. restrict to the lowest Landau level.

2. work in occupation representation. There
_ .
H = E wjal a;,
jo

J
+ > A

J202
Ja04

o T

31523354 %101 Vjaon Vjsos Vjsos
J101
J303
"
where operators aj, (a;,) create (destroy) an

electron with spin o in a single particle state j.

3. fix Ny, the number of flux quanta (= 10). This is
also the number of allowed single particle states.

4+ - - — & &x~NHhe number of electrons. At full Landau level
© o

Ow=1) N. = N,.
1
. fix thelpolarization S, and the total momentum since
they ate preserved by Coulomb interaction.

-+
69 form the i)asis by constructing all possible

non—interﬁcting states satisfying the above conditions.

|

7. repPesqnt fhe Hamiltonian as a matrix in the basis

- = = = constepetdd above.

O L .
o O 8. diagonplize the matrix. As a result we have the

o energyjspectrum and corresponding eigenvectors.

|
9. for ea_c'h eigenstate find its total spin S. Since
[H,S] = 0, we know that these eigenstates are

eigenstates of spin, too.
x

Our Hamiltonian is
H= HO + He—e + He—im + He—b + Hb—ba
where

e we suppose a homogenous positive background,
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(S2)

We now have the spectrum Ey, F1, Es, ... for the
interacting many particle system. To calculate the
polarization we note that

e the energies F; are associated with other quantum

numbers like the total spin S; and its z-component
S



since there are no spin dependent term in the
Hamiltonian all states with quantum numbers
(Ei7 Sia Szi = *Si); (Ez; Sl'a Szi = 7Sl + 1)5 cey
(E;, Si, Szi = +5;) are degenerate. So, the
expectation value of S, would be 0.

the Zeeman interaction must be turned on. The
energies will shift like

€ = E; — gupBS.i.
It turns out that, as expected, the total spin in the ground
state is Sy = N./2 (supposing N, to be even). Due to the
Zeeman coupling the ground state is polarized at T' = 0.
The spins of the excited states, however, have all the
possible values 0,1,..., N./2. So, we expect the
polarization to decrease with increasing temperature.
The dependence on temperature is evaluated in the
canonical ensemble as

(S.) = 1 S Suiem (EimannBS-0/knT
4 Z - zZ1 b

where Z is the canonical partition sum

z=2¢"

E g,uBBSﬂ)/k:BT

Relativistic electron gas
The rest energy of an electron is

me? = 0.511keV

and the relativistic total energy

€, = mc2)2 + (ep)?
P ( ) P
— p ...
= m+ — om + .
Denote by
ke = % —2.59-102m™!

the Compton wave vector of an electron and by

2
k—” —943.10 2m

C

Ae =

its Compton wave length.
Since p = hk, we have

k= chy/k? + k2.

Periodic boundary conditions are the same as in the non
relativistic case i.e.

21
k = f (nxanya nZ)
so we have
kS
P F
32
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When kr = (372p)'/3 is of the order k., the relativistic
corrections must be taken into account. The
corresponding density is

kS
32
10 x density of metallic electron gas

1
Pe =5.87-10% —
Hl

~
~

We have an wultrarelativistic electron gas when kp > k. or
correspondingly p > p..

Let us consider cold relativistic material, i.e. let us
suppose T' < Tk

The total energy is

JF Ak k2ehn/R2 F k2

o k2

E=Ne=N

where

e eV F 2

mc

kr/ke
Jo ' dwa
) ) OkF/k”da:x [\/1—1—:32—1}
= mc” +mc

fokF/kc dz a2

is the average electronic energy.
At the non relativistic limit we have

ko/kfdx 237+
fOkF/kcdxxz

e\ 2
F) .

ke
from which our earlier results can be derived, provided
that the rest energy of electrons is taken into account.
At the ultrarelativistic limit kr > k. we get

]

Q

1+

3
14+ =
+10

)

kr/ke
— o 2 OF drz ° § hk
€~ meT Ty 1 CTkr-
Jo e dea?
Thus the energy density is
E 3
V _ Z (371’2)1/3Chp4/3

and the pressure
ok

-

ov
at the ultrarelativistic limit

),

E 1
V=1 (372) M/ 3chpt/3.

1
P=3
White dwarf
In a properly functioning star the energy released in
nuclear reactions (mainly 2H — He) and the collapsing
gravitational force are in balance. When the nuclear fuel
is comsumed the start collapses. If the mass of the star is
large enough all material will become ionized. Depending
on the mass of the star the final state can be for example



e white dwarf, if the pressure of the degenerated
electronic plasma prohibits further compression.

e neutron star if the electronic pressure is not enough
to compensate the gravitational force. The matter
compresses further to neutrons and their degeneracy
pressure prohibits further collapse.

Typical properties of a white dwarf:

e the diameter of the star 2R ~ 10*km.
the total number of nuclei Ny = 10°7.

the mass M ~ 103°kg ~ M, where
Mg = 1.989 - 103°kg is the mass of the sun.

the mass density p, ~ 10°kgm™> is about 10X the
density of the sun or of the earth.

the number density of electrons p ~ 103°m=3. Then
kr = k., so the electron gas is only moderately
relativistic. In inner parts the gas can be much
denser and thus ultrarelativistic.

the pressure p ~ 10%?Pa ~ 107 atm.

the temperature in inner parts T~ 107K ~ Tp,.
Since the Fermi temperature is Tp ~ 101K > T we,
however, have a cold electron gas.

Let p(r) be the pressure at the distance r from the center
of the star, g(r) the corresponding gravitational
acceleration and p,,(r) the density.
pPA
A
‘p+dp )
|

v

 PnAdrg

r+dr
r

V. P

N
S (ptdp)A

The condition for the balance of hydrostatic mechanical
forces is

& o g(r)om(r).
Now
o(r) = )

where M (r) is the mass inside of the radius r and

N 2
G =6.673-10"1——
kg

is the gravitational constant. We get the pair of equations

W) MO)el)
dr r2
d]\ifr) = Anr?p,(r).
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Because in nuclei there are roughly as many neutrons as
protons, and, on the other hand, there are as many
protons as electrons, we have

P (1) & 2mypp(r).

Here
m, = 1.673-10"*"kg

is the proton mass and p(r) the number density of the
electrons.

As a good approximation the electron density of a star
can be taken as a constant, p say. Then

M(r) = 2

3 wmppr?’

and thus the total mass

8
M= -

3 ™M pR3,

when R is the radius of the star. The pressure must now
satisfy the differential equation

dp__E

2 2
Fe 37rmpp Gr

with the boundary condition that the pressure vanishes at
the surface, i.e.

p(R) = 0.

Integrating the differential equation we get for the
pressure at the center

8
p= ? szz,pQRz

Since the electron gas is not quite ultrarelativistic we
calculate more accurately than before. The average
electronic energy is

ke /k

Jo e dratVa? + 1
fokF/kc de 22
B 14 4]
fokF/kc dz a2

3 k. }

m02

[l

ch

3 kr

2
me [4 ke 4 kp

From this we can get for the pressure

he
1272

1
1 (371'2)1/3hcp4/3 |:1 _

(kp — keki+--)

m2c

R (372 )2/

i }

This is the equation of state of the relativistic electron
gas.



We require that the pressures obtained from the equation
of state and from the hydrodynamic balance conditions
are equal in the center, i.e.

mQC

h*(3m2p)%/3

2

When we substitute the electron density (as a function of
the mass and radius)

3M

p= 8mm,R3

we get the condition

% 2/3_1_ E 2 M, 2/3
M, N R, M '
where
9 1/2 he 3/2 .
MC = Myp (512) (Gm2> ~ 0.52-10 my
P
1/3 1/3
M

R, = i (%) ( C) ~ 4700km.

mc 8 my

For the radius of the star we get

en () - G)')

We see that the white dwarf has the maximum mass

M = M_.. A more careful calculation shows that the mass
of a white dwarf cannot exceed Chandrasekhar’s limit,
about 1.4M, without collapsing to a neutron star or a
black hole.

M
M.

M
M.

Other Fermionic systems

Nuclear matter
The mass density of heavy nuclei is

pm ~ 2.8-10"kgm 3.

When we assume that the proton and neutron densities
are equal the Fermi wave vectors of both gases are

kp~1.36-10%m™!
and the Fermi energies
er ~ 38MeV.

Since my,c? = 938MeV, the nuclear matter is non
relativistic. The attractive nucleon interactions cancel the
pressure due to the kinetic energy.
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Neutron star

When the mass of a star exceeds the Chandrasekar limit
the Fermi pressure of the electrons is not enough to
cancel the gravitational force. The star continues its
collapse. The star forms a giant nucleus where most
electrons and protons have transformed via the reaction

p+te —n+r,
to neutrons. The radius of the star is
R =~ 10km,

the nucleon count
NN ~ 1057

and the mass density
pm ~ 108kgm 3.

The pressure acting against the gravitation is mostly due
to the pressure of the Fermi gas and to the strong, at
short distances very repulsive nuclear forces.

Quark matter

When nuclear matter is compressed 2-10 times denser
than in atomic nuclei the nucleons start to ”overlap” and
their constituent quarks form a quark plasma.

Liquid *He

The nucleus is p+p+n and the nuclear spin %

At low temperatures the nuclear spin determines the
statistics, i.e. 3He atoms are Fermions.

The Fermi temperature corresponding to the normal
density is )

F
Tr = ey 5K.

Since the mutual interactions between 3He atoms are
considerable the 3He matter forms an interacting Fermi
liquid. The He liquid has two super phases (A and B).
These are in balance with the normal phase at the critical
point

TR

T. ~ 2.7TmK .
TmK < 7500



